Approximation and Data Assimilation

Ronald DeVore

Collaborators: Peter Binev, Albert Cohen, Wolfgang Dahmen, Guergana Petrova, Przemek Wojtaszczyk

USC-Spring -p. 1/41

State of Numerical Computation

- Many pressing scientific problems challenge our computational ability
 - Atmospheric modeling: predicting climate change
 - Monitoring threat activities
 - Contaminant transport
 - Optimal engineering design
 - Medical diagnostics
 - Modeling the internet
 - Option pricing, bond valuation
 - **9**
- GOAL OF NUMERICAL COMPUTATION: Build the most efficient numerical procedures to treat these problems

The Computational Task

- Generally one of the following:
 - Approximate an unknown function *u* called the target function
 - Compute a quantity of interest about u such as an integral of u or the max or min of u
- An important issue is what information is available about *u*: This is described by a model class *K*
 - In numerical PDEs we know u is the solution to a PDE with known coefficients, initial values, boundary values
 - Classically, model classes describe the smoothness that is known about the target function u
 - Selection of the correct model class is a key issue since it governs best algorithms and expected
 performance
 USC-Spring – p. 3/41

Outline of this Talk

- This talk will emphasize the following issues:
 - I. The Role of Approximation Theory
 - II. Finding the best approximation scheme given the model class K
 - III. Building optimal algorithms
 - We will emphasize this for problems of data fitting

Role of Approximation Theory

- Any numerical procedure is based on some form of approximation: polynomials, splines, Fourier, wavelets, etc.
- Approximation Theory aims at exactly characterizing the performance of any proposed method of approximation and thereby giving a benchmark for the optimal numerical procedure based on the chosen method of approximation
- It can also provide a guide to
 - which method of approximation to chose
 - how to build an optimal algorithm for the chosen method

USC-Spring - p. 5/41

Types of Approximation

- We fix a norm $\|\cdot\|_X$ in which to measure error, e.g. $\|u\|_{L_p(\Omega)} := (\int_{\Omega} u(x)|^p dx)^{1/p}$
- Approximation methods are linear or nonlinear
 - Linear methods of approximation
 - $X_0, X_1 \cdots, X_n, \cdots$ linear spaces with $\dim(X_n) = n$
 - We approximate u by the elements of X_n giving error $E_n(u)_X := E(u, X_n)_X := \inf_g \in X_n ||u - g||$
 - If *K* is a model class then performance of X_n on *K* is $dist(K, X_n) := \sup_{u \in K} E_n(u)$
 - Optimal performance on K given by the nb- width $d_n(K)_X := \inf_{\dim(Y)=n} \operatorname{dist}(K, Y)_X$
- Approximation Classes: For $\alpha > 0$ $\mathcal{A}^{\alpha}((X_n)_{n \ge 1}) := \{u \in X : E_n(u) \le Mn^{-\alpha}\}$
- $||u||_{\mathcal{A}^{\alpha}}$ is the smallest M

USC-Spring – p. 6/41

Nonlinear Approximation

- X_n is replaced by a nonlinear space Σ_n
 - *n* term approximation: \mathcal{D} a dictionary (redundant family of functions)

 $\Sigma_n := \{ g = \sum_{j=1}^n \alpha_j \phi_j : \phi_1, \dots, \phi_n \in \mathcal{D} \}$

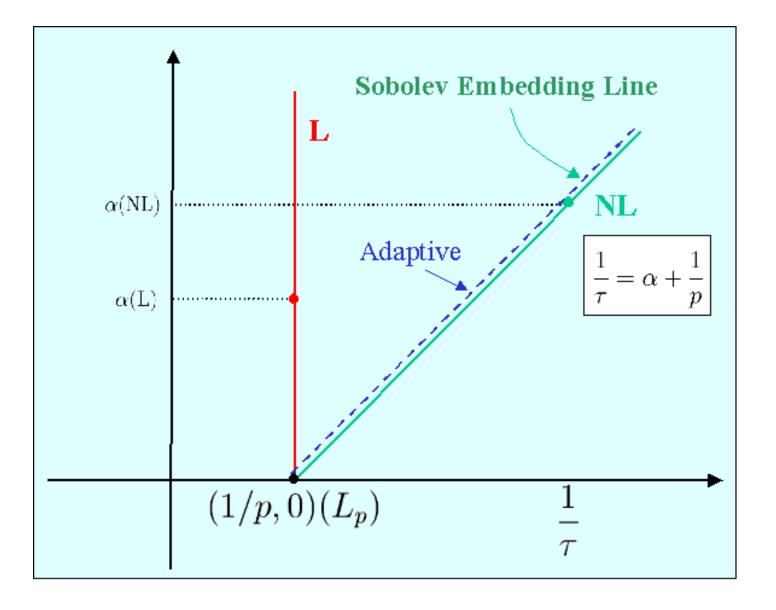
- Library approximation: $\mathcal{L} := \{Y : \dim(Y) = n\}$ with $\#(\mathcal{L}) = N$ finite $\operatorname{dist}(f, \mathcal{L})_X := \inf_{Y \in \mathcal{L}} \operatorname{dist}(f, Y)_X$
- Piecewise Polynomial Approximation of functions on $\Omega \subset \mathbb{R}^d$: Divide Ω into n cells Ω_i depending on u and approximate u by g which is a piecewise polynomial of degree m on each cell Ω_i
- Adaptive piecewise polynomial approximation: Generate the partition by an adaptive algorithm: typically subdividing the cell which has biggest error

Canonical results of Approximation

- Canonical results in AT characterize \mathcal{A}^{α}
- Example: Approximate functions in X := C[0, 1]
- Linear Approximation:
 - Divide [0, 1] into *n* equally spaced intervals. X_n the space of piecewise constant functions on this partition
- Nonlinear Approximation:
 - $\Sigma_n := \{S : S \text{ is piecewise constant with } n \text{ pieces}\}$
- Characterization of approximation spaces
 - $\mathcal{A}^1(X_n)_{n\geq 1}$) = Lip 1
 - $\mathcal{A}^1((\Sigma_n)_{n\geq 1}) = \mathrm{BV} \cap C[0,1]$
- This shows the typical advantage of nonlinear approximation: need less smoothness for *f*

USC-Spring – p. 8/41

Performance in L_p **- one Variable**



USC-Spring - p 9/41

Curse of Dimensionality

- Most of our numerical challenges involve functions that depend on many (say D) variables/parameters
- The classical numerical methods such as splines or FEM fail in this case because of the so-called curse of dimensionality
 - Suppose the assumption is that the targets function
 f is real valued and has smoothness (of order *s*)
 - Approximation theory tells us with *n* computations we can only capture *F* to accuracy $C(D, s)n^{-s/D}$ where *D* is the number of variables
 - When D is large than s must also be very large to guarantee any reasonable accuracy
 - No control over s which is inherent in the problem

USC-Spring – p 10/41

So conventional assumptions on F and conventional numerical methods will not work

Example (Novak-Wozniakowski)

- To drive home the debilitating effect of high dimensions consider the following example $\Omega := [0,1]^D$, $X = C(\Omega)$, $\mathcal{K} := \{F : \|D^{\nu}F\|_{L_{\infty}} \leq 1, \forall \nu\}$
- Any algorithm which computes for each $F \in \mathcal{K}$ an approximation \hat{F} to accuracy 1/2 in L_{∞} will need at least 2^{D/2} FLOPS
- So if D = 100, we would need at least $2^{50} \simeq 10^{15}$ computations to achieve even the coarsest resolution
- This phenomenon is referred to as The Curse of Dimensionality
- How can we overcome this Curse?

The Remedy

- Conventional thought is that most real world HD functions do not suffer the curse because they have properties other than traditional smoothness
 - Sparsity : F is a sum of a small number of functions from a fixed basis/frame/dictionary
 - Anisotropy/Variable Reduction: not all variables are equally important - get rid of the weak ones
 - Tensor structures: variable separability
 - Superposition: F is a composition of functions of few variables Hilbert's 13-th problem
 - Many new approaches based on these ideas: Manifold Learning; Laplacians on Graphs; Sparse Grids; Sensitivity Analysis; ANOVA Decompositions; Tensor Formats; Discrepancy; Deep Learning (Superposition)

USC-Spring – p. 12/41

Finding a good Subspace

- When building a linear numerical algorithm we have the option of choosing the subspace X_n
- Suppose K is our model class for the target function u and we measure error in a Banach space norm $\|\cdot\|_X$
- The best choice for X_n given the value of n is the *n*-width space - but it is generally impossible to find
- As a substitute we describe a method to find a space that is almost as good as the *n*-width space

The (Pure) Greedy Algorithm

- $f_0 := \operatorname{argmax}\{\|f\| : f \in \mathcal{K}\}$
- If f_0, \ldots, f_{n-1} have been chosen, define
 - $V_n := \operatorname{span}\{f_0, \ldots, f_{n-1}\}$
 - $f_n := \operatorname{Argmax}_{f \in \mathcal{K}} \operatorname{dist}(f, V_n)_X$
- Thus at each step, the function f_n is chosen in a greedy manner
- For the purposes of numerical implementation the algorithm is usually modified to a weak greedy algorithm
- This means that at each step we weaken the selection criteria: For a fixed $\gamma \in (0, 1]$, we choose f_n so that

 $\operatorname{dist}(f_n, V_n)_X \ge \gamma \sup_{f \in \mathcal{K}} \operatorname{dist}(f, V_n)_X$

USC-Spring – p. 14/41

Performance

■ Binev - Cohen - Dahmen - DeVore -Petrova -Wojtaszczyk prove the following theorem for the spaces V_n , $n \ge 1$, generated by the weak greedy algorithm with parameter γ in the case X is a Hilbert space

Theorem: If r > 0, then there is a constant $C(r, \gamma) > 0$ such that whenever $d_n(K)_X \le Mn^{-r}$, $n \ge 1$ we have $\operatorname{dist}(K, V_n)_X \le C(r, \gamma)Mn^{-r}$, $n \ge 1$

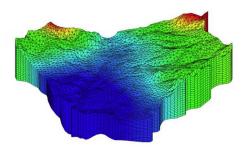
- Finding the greedy space X_n requires querying K
- This is done by discretizing K to the accuracy of the current error
- In parametric PDEs the space X_n is referred to as model reduction

A Specific Task: Data Fitting

- We turn next to the following Common Scientific Problem: We are given data about some underlying function *f* (scientific process) and we wish to 'fit the data' to answer some question about *f*
- We put forward general principles that can be tailored to any specific application

Your Favorite Application

MRI



Groundwater Modeling

Global Temperatures

Manifold Learning

Data Tasks

- Two types of tasks
 - Prediction: Given any query x we want to compute f(x)
 - Since x is arbitrary, we need to approximate f
 - We call this the full appproximation problem
 - Quantity of Interest: calculate some narrower quantity
 - maximum/minimum of f
 - average behavior: calculate an integral of f
 - value of f at some designated point
- We seek algorithms that can be proven optimal for recovering *f* or answering questions of interest about *f*: optimal and certifiable performance

USC-Spring – p. 18/41

Mathematical Formulation

- Consider the full approximation problem for f
 - Form of the Data?: We assume

 $w_j = l_j(f), \quad j = 1, \dots, m$, where l_j are linear functionals

- Measurement map $M(f) = w := (w_1, \ldots, w_m)$
- How to measure performance? We measure distortion by a norm $\|\cdot\|_X$ with X a Banach space
- An algorithm is a mapping $A : \mathbb{R}^m \mapsto X$ where A(M(f)) is an approximation to $f \in X$ giving error

 $E(f,A)_X := E(f,M,A)_X := \|f - A(M(f))\|_X$

USC-Spring – p. 19/41

Model Classes

- With no other information we can say nothing about the error or discuss best algorithms
- To state a meaningful problem we need to have additional information about *f*
- This additional information is typically given in an assumption that $f \in \mathcal{K} \subset X$ with \mathcal{K} a model class
- An accurate description of the model class \mathcal{K} is the most important ingredient in data assimilation
- The more info we have on \mathcal{K} the better we can do
- In scientific computation this is extracted by understanding the scientific process: for example, bandlimits for signals, regularity theorems for PDEs

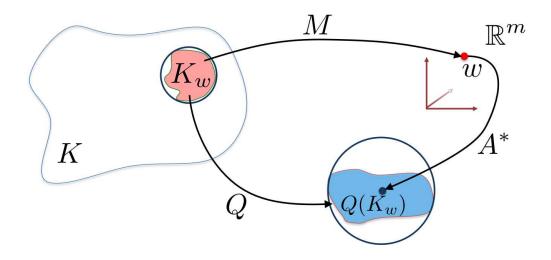
USC-Spring – p. 20/41

Optimal Recovery: Best Algorithms

- $\mathcal{K}, \|\cdot\|_X$ fixed and consider any algorithm A
- Define $\mathcal{K}_w := \{f \in \mathcal{K} : M(f) = w\}$
 - Membership in \mathcal{K}_w is all we know about f
- Pointwise error: $E(\mathcal{K}_w, M, A) := \sup_{f \in \mathcal{K}_w} \|f A(w)\|_X$
- Worst case error: $E(\mathcal{K}, M, A) := \sup_{f \in \mathcal{K}} \|f - A(Mf))\|_X = \sup_{w \in I\!\!R^m} E(\mathcal{K}_w, M, A)$
- Optimal Performance: $E^*(\mathcal{K}, M) := \inf_A E(\mathcal{K}, M, A)$
- Optimal Recovery: The best algorithm A*
 - Let $B(g_w, R_w)$ be the smallest ball that contains \mathcal{K}_w
 - $A^* : w \mapsto g_w$ is an algorithm that is pointwise optimal $E(\mathcal{K}_w, M, A^*)_X = E^*(\mathcal{K}_w, M) = R_w$

USC-Spring – p. 21/41

Graphic for Optimal Recovery



USC-Spring – p. 22/41

Not so Fast!

You may think that this is the end of the story

- But finding the Chebyshev ball is a substantial problem and is only carried out in certain special settings: for certain \mathcal{K} and certain distortion metrics $\|\cdot\|_X$
- Results where optimal recovery is known are summarized in Micchelli-Rivlin
- However, there is a general setting where we can determine optimal or near optimal algorithms and we can determine a priori the optimal performance
 - This setting will also expose when one has good data or bad data

Approximation Sets

- Remember! Any algorithm will be based on some form of approximation!
- Let $V = V_n$ be the functions used in the approximation: polynomials, neural nets, wavelets, sparse sums, etc.
- Since we have chosen V we think \mathcal{K} is described by the fact it is well approximated by V
- Natural Model class: Approximation set:

 $\mathcal{K} := \mathcal{K}(\epsilon, V) = \{ f : \operatorname{dist}(f, V)_X \le \epsilon \}$

We shall describe algorithms which are optimal over all e and you do not need to know e

USC-Spring – p. 24/41

Performance estimates

• Full approximation problem: Performance determined by *V* and null space $\mathcal{N} := \{f \in X : M(f) = 0\}$ via

$$\mu(\mathcal{N}, V) := \mu(\mathcal{N}, V)_X := \sup_{\eta \in \mathcal{N}} \frac{\|\eta\|}{\operatorname{dist}(\eta, V)}$$

• When X is a Hilbert space best performance for an approximation set $\mathcal{K} = \mathcal{K}(\epsilon, V)$ is

 $E^*(\mathcal{K}, M) = \mu(\mathcal{N}, V)\epsilon$

• When X is a general Banach space best performance $E(\mathcal{K}, M)$ for an approximation set $\mathcal{K} = \mathcal{K}(\epsilon, V)$ satisfies

 $\mu(\mathcal{N}, V)\epsilon \le E(\mathcal{K}, M) \le 2\mu(\mathcal{N}, V)\epsilon$

Important: μ is easy to compute and (near) best algorithms can be described as will follow

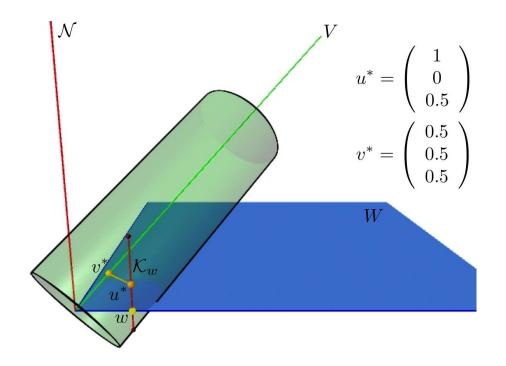
USC-Spring — p. 25/41

A simple example

- Take X to be a Hilbert space
- If $l_j(f) = \langle f, \omega_j \rangle$, $j = 1, \dots, m$ with $(\omega_j)_{j=1}^m$ ONS, then
 - $v^*(w) := \underset{v \in V}{\operatorname{Argmin}} \|w M(v)\|_{\ell_2}$
 - $A: w \mapsto v^*(w)$ is near optimal with constant 2
 - If $u^*(w) \in \mathcal{K}_w$ is the closest element $v^*(w)$ then $A^*: w \mapsto u^*(w)$ is linear and pointwise optimal
- Best algorithm is essentially least squares fit:
- μ can be computed by SVD of cross Grammian
- What is new?: Generally you do not see μ and performance estimates for least squares
- Note: Data is good if μ is small and bad if μ is large

USC-Spring – p. 26/41

Hilbert space geometry



USC-Spring – p. 27/41

Choosing V

- The above optimal estimates take the form $\|f A(M(f))\|_X \le C\mu(\mathcal{N}, V) \operatorname{dist}(f, V)$
- Here there is a competition between μ and dist(f, V)
 - Increasing the complexity of V improves ${\rm dist}(f,V)$ but increases $\mu(\mathcal{N},V)$
- I want to illustrate this with a (toy) example
- X = C(D) with D a domain in \mathbb{R}^d
- $w_j = l_j(f) = f(x_j)$ with $x_j \in D, j = 1, ..., m$
- $V \subset C(D)$ a linear space of dimension $n \leq m$

•
$$\mu(\mathcal{N}, V) = 1 + \mu(V, \mathcal{N})$$
 where
 $\mu(V, \mathcal{N}) = \sup_{v \in V} \frac{\|v\|_{C(D)}}{\max_{1 \le j \le m} |v(x_j)|}$

USC-Spring – p. 28/41

Point values

- Near best algorithm is $v^* := \operatorname{Argmin}_{v \in V} \|w M(v)\|_{\ell_{\infty}}$
- Example $X = C([0, 1]), \xi_1, \dots, \xi_m$ equally spaced, $V = \mathcal{P}_{n-1}$ - polynomials of degree < n. Then it is known
 - If you choose n = m then $\mu(\mathcal{N}, \mathcal{P}_m) \approx a^n, \ a > 1$
 - If $n = \sqrt{m}$ then $\mu(\mathcal{N}, \mathcal{P}_n) \leq 3$
 - This gives $||f A(M(f))||_C \le 3 \operatorname{dist}(f, \mathcal{P}_{\sqrt{n}})_C$
- This points out the importance of the choice of V and the knowledge we have about f
- The above says do not interpolate unless you know f is very smooth analytic
- Analogy with statistical learning: Do not overfit data
- computing μ tells you what overfit means

USC-Spring – p. 29/41

High dimension

- What happens when *f* depends on many variables/parameters: many features in data
 - The main issue is what is the correct model class K what is the correct V to avoid the curse of dimensionality
 - Model classes \mathcal{K} are proposed built on sparsity, anisotropy, variable reduction, feature selection, etc.
 - Typical V are built on highly nonlinear methods such as dictionary appproximation, neural networks
 - To have a quantitative theory (certifiable performance) we need to understand
 - Which functions are approximated well by V if and only if theorems
 - What is $\mu(\mathcal{N}, V)$ for given data and V
 - Computational complexity of optimal algorithms

USC-Spring - p 30/41

Additional Remarks

- The main references for the above are: Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk (Hilbert space), DeVore -Petrova-Wojtaszczyk (Banach space)
- Closely related work emphasizing more the issue of stable computation is given by Adcock, Hansen, Shadrin, Trefethen, et al

Quantities of Interest

- A similar theory of optimal recovery exists for quantities of interest Q
- Performance now controlled by

$$\mu(\mathcal{N}, V, Q) := \mu(\mathcal{N}, V, Q)_X := \sup_{\eta \in \mathcal{N}} \frac{\|Q(\eta)\|}{\operatorname{dist}(\eta, V)}$$

For any Banach space X we have the performance bounds

 $\mu(\mathcal{N}, V, Q)\epsilon \le E(Q, \mathcal{K}(\epsilon, V), M) \le 2\mu(\mathcal{N}, V, Q)\epsilon$

Constructive Opt. Linear Algorithm

When K is an approximation set and Q is a linear functional then one can find an optimal algorithm that is linear by constrained optimization:

• Let
$$\mathcal{L}_Q := \{l = \sum_{j=1}^m a_j l_j : l(v) = Q(v), v \in V\}$$
 and
 $l^* := \operatorname{Argmin}_{l \in \mathcal{L}_Q} ||Q - l||_{X^*} = \sum_{j=1}^m a_j^* l_j$

• Then $A^*: w \mapsto \sum_{j=1}^m a_j^* w_j$ is an optimal algorithm

Note this may be numerically intensive constrained minimization

• Perf:
$$|Q(f) - A^*(Mf)| \le ||Q - l^*||_{X^*} \operatorname{dist}(f, V)_X$$

• You see
$$\mu \leq \|Q - l^*\|_{X^*}$$

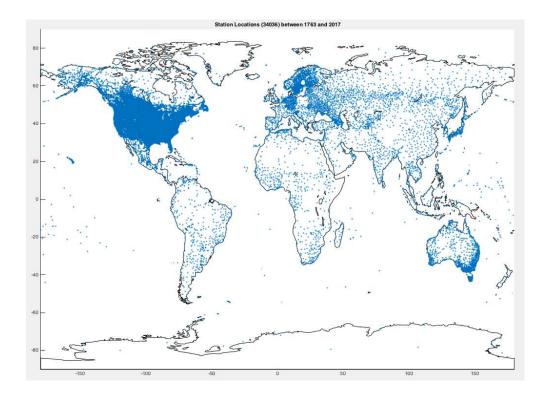
USC-Spring – p. 33/41

Example: Quadrature

- Integration: Option trading, uncertainty quantification, Quasi-Monte Carlo, etc.
- Data are point values $l_j(f) = f(x_j), j = 1, ..., m$,
- We want to compute $Q(f) = \int_D \omega(x) f(x) dx, f \in \mathcal{K}(\epsilon, V)$
- The optimal quadrature on X = C(D) using the points $x_j \in D$ is
 - $A^*(f) = \sum_{j=1}^m a_j^* f(x_j)$
 - $(a_j^*) := \operatorname{Argmin}\{\sum_{j=1}^m |a_j|: \sum_{j=1}^m a_j v(x_j) = \int_D \omega(x) v(x) \, dx\}$
- This is a constrained ℓ_1 minimization problem
- $\mu(\mathcal{N}, V, Q) = \sum_{j=1}^{m} |a_j^*|$
- $|\int f A^*(M(f))| \le \mu(\mathcal{N}, V, Q) \operatorname{dist}(f, V)_{C(D)}$ USC-Spring – p. 34/41

Example: Global Temperature

- Let T(x, t) denote temperature at position x on earth and time t
- Quantity of interest $Q(T) = \int_{Year} \int_{Earth} T(x,t) dx dt$
- Roughly 14K sites from 1950 till 2017



USC-Spring – p. 35/41

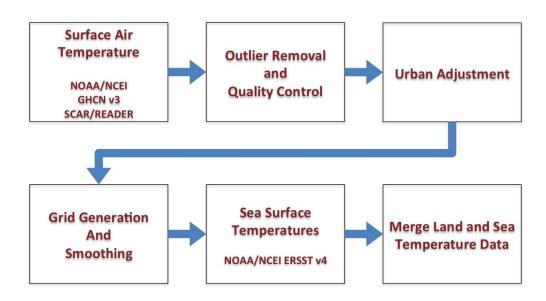
Obstacles to Mathematical Analysis

- Life would be good if
 - We knew the right model class for T(x,t) the right V
 - if data sites, equipment, and measuring times did not change each year
- Current algorithms use models based on pw polynomials not clear what space
- We will use spherical harmonics
- We compare Spherical Harmonics versus GISTemp (NASA) on their adjusted data set
- We can compute μ for spherical harmonics but not for GISTemp

USC-Spring - p. 36/41

Current Algorithms

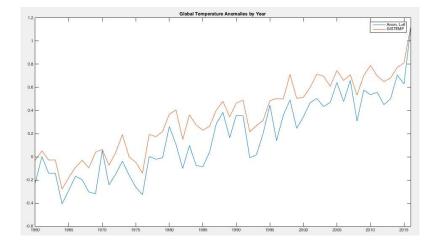
- There are many algorithms
- The following flowchart gives the main steps of the NOAA and NASA algorithms using piecewise polynomials on a uniform grid



Impossible to analyze accuracy because of the ad hoc adjustments to the data

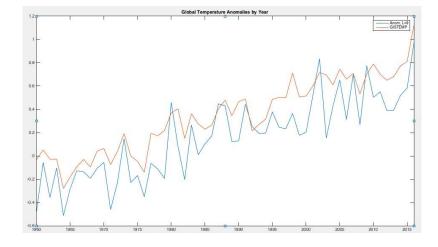
USC-Spring -p 37/41

Comparison: GISTempvs. SH6



USC-Spring – p. 38/41

Comparison: GISTemp vs. SH9



USC-Spring – p. 39/41

Typical Growth of μ

- Are we computing global temperature?
 - This would require proving validity of our model class: would require analysis from physical principles
 - Also depends on behavior of μ

n	3	6	9	12	15	18
μ	1	1.03	2.61	24.13	223.50	2779.85

We see that even if we justify our model class, we need to restrict the size of n

USC-Spring - p. 40/41