
Approximation and Data
Assimilation

Ronald DeVore

Collaborators: Peter Binev, Albert Cohen,

Wolfgang Dahmen, Guergana Petrova,

Przemek Wojtaszczyk

USC-Spring – p. 1/41

State of Numerical Computation

Many pressing scientific problems challenge our
computational ability

Atmospheric modeling: predicting climate change

Monitoring threat activities

Contaminant transport

Optimal engineering design

Medical diagnostics

Modeling the internet

Option pricing, bond valuation

....

GOAL OF NUMERICAL COMPUTATION: Build the
most efficient numerical procedures to treat these
problems

USC-Spring – p. 2/41

The Computational Task

Generally one of the following:

Approximate an unknown function u - called the
target function

Compute a quantity of interest about u such as an
integral of u or the max or min of u

An important issue is what information is available
about u: This is described by a model class K

In numerical PDEs we know u is the solution to a
PDE with known coefficients, initial values, boundary
values

Classically, model classes describe the smoothness
that is known about the target function u

Selection of the correct model class is a key issue
since it governs best algorithms and expected
performance

USC-Spring – p. 3/41

Outline of this Talk

This talk will emphasize the following issues:

I. The Role of Approximation Theory

II. Finding the best approximation scheme given the
model class K

III. Building optimal algorithms
We will emphasize this for problems of data fitting

USC-Spring – p. 4/41

Role of Approximation Theory

Any numerical procedure is based on some form of
approximation: polynomials, splines, Fourier, wavelets,
etc.

Approximation Theory aims at exactly characterizing
the performance of any proposed method of
approximation and thereby giving a benchmark for the
optimal numerical procedure based on the chosen
method of approximation

It can also provide a guide to

which method of approximation to chose

how to build an optimal algorithm for the chosen
method

USC-Spring – p. 5/41

Types of Approximation

We fix a norm ‖ · ‖X in which to measure error, e.g.

‖u‖Lp(Ω) := (
∫
Ω u(x)|p dx)1/p

Approximation methods are linear or nonlinear

Linear methods of approximation

X0, X1 · · · , Xn, · · · linear spaces with dim(Xn) = n
We approximate u by the elements of Xn giving
error En(u)X := E(u,Xn)X := infg ∈ Xn‖u− g‖
If K is a model class then performance of Xn on K
is dist(K,Xn) := supu∈K En(u)
Optimal performance on K given by the nb- width
dn(K)X := infdim(Y)=n dist(K,Y)X

Approximation Classes: For α > 0
Aα((Xn)n≥1) := {u ∈ X : En(u) ≤ Mn−α}
‖u‖Aα is the smallest M

USC-Spring – p. 6/41

Nonlinear Approximation

Xn is replaced by a nonlinear space Σn

n term approximation: D a dictionary (redundant
family of functions)

Σn := {g =
∑n

j=1 αjφj : φ1, . . . , φn ∈ D}
Library approximation: L := {Y : dim(Y) = n} with
#(L) = N finite dist(f,L)X := infY ∈L dist(f, Y)X

Piecewise Polynomial Approximation of functions on

Ω ⊂ IRd: Divide Ω into n cells Ωi depending on u and
approximate u by g which is a piecewise polynomial
of degree m on each cell Ωi

Adaptive piecewise polynomial approximation:
Generate the partition by an adaptive algorithm:
typically subdividing the cell which has biggest error

USC-Spring – p. 7/41

Canonical results of Approximation

Canonical results in AT characterize Aα

Example: Approximate functions in X := C[0, 1]

Linear Approximation:

Divide [0, 1] into n equally spaced intervals. Xn the
space of piecewise constant functions on this
partition

Nonlinear Approximation:

Σn := {S : S is piecewise constant with n pieces}
Characterization of approximation spaces

A1(Xn)n≥1) = Lip 1

A1((Σn)n≥1) = BV ∩ C[0, 1]

This shows the typical advantage of nonlinear
approximation: need less smoothness for f

USC-Spring – p. 8/41

Performance in Lp- one Variable

USC-Spring – p. 9/41

Curse of Dimensionality

Most of our numerical challenges involve functions that
depend on many (say D) variables/parameters

The classical numerical methods such as splines or
FEM fail in this case because of the so-called curse of
dimensionality

Suppose the assumption is that the targets function
f is real valued and has smoothness (of order s)

Approximation theory tells us with n computations

we can only capture F to accuracy C(D, s)n−s/D

where D is the number of variables
When D is large than s must also be very large to
guarantee any reasonable accuracy
No control over s which is inherent in the problem
So conventional assumptions on F and
conventional numerical methods will not work

USC-Spring – p. 10/41

Example (Novak-Wozniakowski)

To drive home the debilitating effect of high dimensions
consider the following example

Ω := [0, 1]D, X = C(Ω), K := {F : ‖DνF‖L∞
≤ 1, ∀ν}

Any algorithm which computes for each F ∈ K an

approximation F̂ to accuracy 1/2 in L∞ will need at

least 2D/2 FLOPS

So if D = 100, we would need at least 250 ≍ 1015

computations to achieve even the coarsest resolution

This phenomenon is referred to as The Curse of
Dimensionality

How can we overcome this Curse?

USC-Spring – p. 11/41

The Remedy

Conventional thought is that most real world HD
functions do not suffer the curse because they have
properties other than traditional smoothness

Sparsity : F is a sum of a small number of functions
from a fixed basis/frame/dictionary

Anisotropy/Variable Reduction: not all variables are
equally important - get rid of the weak ones

Tensor structures: variable separability

Superposition: F is a composition of functions of few
variables - Hilbert’s 13-th problem

Many new approaches based on these ideas:
Manifold Learning; Laplacians on Graphs; Sparse
Grids; Sensitivity Analysis; ANOVA Decompositions;
Tensor Formats; Discrepancy; Deep Learning
(Superposition)

USC-Spring – p. 12/41

Finding a good Subspace

When building a linear numerical algorithm we have the
option of choosing the subspace Xn

Suppose K is our model class for the target function u
and we measure error in a Banach space norm ‖ · ‖X
The best choice for Xn given the value of n is the
n-width space - but it is generally impossible to find

As a substitute we describe a method to find a space
that is almost as good as the n-width space

USC-Spring – p. 13/41

The (Pure) Greedy Algorithm

f0 := argmax{‖f‖ : f ∈ K}
If f0, . . . , fn−1 have been chosen, define

Vn := span{f0, . . . , fn−1}
fn := Argmax

f∈K
dist(f, Vn)X

Thus at each step, the function fn is chosen in a
greedy manner

For the purposes of numerical implementation the
algorithm is usually modified to a weak greedy algorithm

This means that at each step we weaken the selection
criteria: For a fixed γ ∈ (0, 1], we choose fn so that

dist(fn, Vn)X ≥ γ sup
f∈K

dist(f, Vn)X

USC-Spring – p. 14/41

Performance

Binev - Cohen - Dahmen - DeVore -Petrova
-Wojtaszczyk prove the following theorem for the
spaces Vn, n ≥ 1, generated by the weak greedy
algorithm with parameter γ in the case X is a Hilbert
space

Theorem: If r > 0, then there is a constant C(r, γ) > 0

such that whenever dn(K)X ≤ Mn−r, n ≥ 1 we have

dist(K,Vn)X ≤ C(r, γ)Mn−r, n ≥ 1

Finding the greedy space Xn requires querying K

This is done by discretizing K to the accuracy of the
current error

In parametric PDEs the space Xn is referred to as
model reduction

USC-Spring – p. 15/41

A Specific Task: Data Fitting

We turn next to the following Common Scientific
Problem: We are given data about some underlying
function f (scientific process) and we wish to ‘fit the
data’ to answer some question about f

We put forward general principles that can be tailored to
any specific application

USC-Spring – p. 16/41

Your Favorite Application

USC-Spring – p. 17/41

Data Tasks

Two types of tasks

Prediction: Given any query x we want to compute
f(x)

Since x is arbitrary, we need to approximate f
We call this the full appproximation problem

Quantity of Interest: calculate some narrower
quantity

maximum/minimum of f
average behavior: calculate an integral of f
value of f at some designated point

We seek algorithms that can be proven optimal for
recovering f or answering questions of interest about f :
optimal and certifiable performance

USC-Spring – p. 18/41

Mathematical Formulation

Consider the full approximation problem for f

Form of the Data?: We assume
wj = lj(f), j = 1, . . . ,m, where lj are linear

functionals
Measurement map M(f) = w := (w1, . . . , wm)

How to measure performance? We measure
distortion by a norm ‖ · ‖X with X a Banach space

An algorithm is a mapping A : IRm 7→ X where A(M(f))
is an approximation to f ∈ X giving error

E(f,A)X := E(f,M,A)X := ‖f −A(M(f))‖X

USC-Spring – p. 19/41

Model Classes

With no other information we can say nothing about the
error or discuss best algorithms

To state a meaningful problem we need to have
additional information about f

This additional information is typically given in an
assumption that f ∈ K ⊂ X with K a model class

An accurate description of the model class K is the
most important ingredient in data assimilation

The more info we have on K the better we can do

In scientific computation this is extracted by
understanding the scientific process: for example,
bandlimits for signals, regularity theorems for PDEs

USC-Spring – p. 20/41

Optimal Recovery: Best Algorithms

K, ‖ · ‖X fixed and consider any algorithm A

Define Kw := {f ∈ K : M(f) = w}
Membership in Kw is all we know about f

Pointwise error: E(Kw,M,A) := sup
f∈Kw

‖f −A(w)‖X

Worst case error:
E(K,M,A) := sup

f∈K
‖f − A(Mf))‖X = sup

w∈IRm

E(Kw,M,A)

Optimal Performance: E∗(K,M) := infAE(K,M,A)

Optimal Recovery: The best algorithm A∗

Let B(gw, Rw) be the smallest ball that contains Kw

A∗ : w 7→ gw is an algorithm that is pointwise optimal
E(Kw,M,A∗)X = E∗(Kw,M) = Rw

USC-Spring – p. 21/41

Graphic for Optimal Recovery

USC-Spring – p. 22/41

Not so Fast!

You may think that this is the end of the story

But finding the Chebyshev ball is a substantial
problem and is only carried out in certain special
settings: for certain K and certain distortion metrics
‖ · ‖X
Results where optimal recovery is known are
summarized in Micchelli-Rivlin

However, there is a general setting where we can
determine optimal or near optimal algorithms and we
can determine a priori the optimal performance

This setting will also expose when one has good
data or bad data

USC-Spring – p. 23/41

Approximation Sets

Remember! Any algorithm will be based on some form
of approximation!

Let V = Vn be the functions used in the approximation:
polynomials, neural nets, wavelets, sparse sums, etc.

Since we have chosen V we think K is described by the
fact it is well approximated by V

Natural Model class: Approximation set:

K := K(ǫ, V) = {f : dist(f, V)X ≤ ǫ}

We shall describe algorithms which are optimal over all
ǫ and you do not need to know ǫ

USC-Spring – p. 24/41

Performance estimates

Full approximation problem: Performance determined
by V and null space N := {f ∈ X : M(f) = 0} via

µ(N , V) := µ(N , V)X := sup
η∈N

‖η‖
dist(η, V)

When X is a Hilbert space best performance for an
approximation set K = K(ǫ, V) is

E∗(K,M) = µ(N , V)ǫ

When X is a general Banach space best performance
E(K,M) for an approximation set K = K(ǫ, V) satisfies

µ(N , V)ǫ ≤ E(K,M) ≤ 2µ(N , V)ǫ

Important: µ is easy to compute and (near) best
algorithms can be described as will follow

USC-Spring – p. 25/41

A simple example

Take X to be a Hilbert space

If lj(f) = 〈f, ωj), j = 1, . . . ,m with (ωj)
m
j=1 ONS, then

v∗(w) := Argmin
v∈V

‖w −M(v)‖ℓ2
A : w 7→ v∗(w) is near optimal with constant 2

If u∗(w) ∈ Kw is the closest element v∗(w) then
A∗ : w 7→ u∗(w) is linear and pointwise optimal

Best algorithm is essentially least squares fit:

µ can be computed by SVD of cross Grammian

What is new?: Generally you do not see µ and
performance estimates for least squares

Note: Data is good if µ is small and bad if µ is large

USC-Spring – p. 26/41

Hilbert space geometry

USC-Spring – p. 27/41

Choosing V

The above optimal estimates take the form
‖f −A(M(f)‖X ≤ Cµ(N , V) dist(f, V)

Here there is a competition between µ and dist(f, V)

Increasing the complexity of V improves dist(f, V)
but increases µ(N , V)

I want to illustrate this with a (toy) example

X = C(D) with D a domain in IRd

wj = lj(f) = f(xj) with xj ∈ D, j = 1, . . . ,m

V ⊂ C(D) a linear space of dimension n ≤ m

µ(N , V) = 1 + µ(V,N) where

µ(V,N) = sup
v∈V

‖v‖C(D)

max1≤j≤m |v(xj)|

USC-Spring – p. 28/41

Point values

Near best algorithm is v∗ := Argminv∈V ‖w −M(v)‖ℓ∞
Example X = C([0, 1]), ξ1, . . . , ξm equally spaced,
V = Pn−1 - polynomials of degree < n. Then it is known

If you choose n = m then µ(N ,Pm) ≈ an, a > 1

If n =
√
m then µ(N ,Pn) ≤ 3

This gives ‖f − A(M(f))‖C ≤ 3 dist(f,P√
n)C

This points out the importance of the choice of V and
the knowledge we have about f

The above says do not interpolate unless you know f is
very smooth - analytic

Analogy with statistical learning: Do not overfit data

computing µ tells you what overfit means

USC-Spring – p. 29/41

High dimension

What happens when f depends on many
variables/parameters: many features in data

The main issue is what is the correct model class K -
what is the correct V to avoid the curse of
dimensionality

Model classes K are proposed built on sparsity,
anisotropy, variable reduction, feature selection, etc.

Typical V are built on highly nonlinear methods such
as dictionary appproximation, neural networks

To have a quantitative theory (certifiable
performance) we need to understand

Which functions are approximated well by V - if
and only if theorems
What is µ(N , V) for given data and V
Computational complexity of optimal algorithms

USC-Spring – p. 30/41

Additional Remarks

The main references for the above are:
Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk
(Hilbert space), DeVore -Petrova-Wojtaszczyk (Banach
space)

Closely related work emphasizing more the issue of
stable computation is given by Adcock, Hansen,
Shadrin, Trefethen, et al

USC-Spring – p. 31/41

Quantities of Interest

A similar theory of optimal recovery exists for quantities
of interest Q

Performance now controlled by

µ(N , V,Q) := µ(N , V,Q)X := sup
η∈N

‖Q(η)‖
dist(η, V)

For any Banach space X we have the performance
bounds

µ(N , V,Q)ǫ ≤ E(Q,K(ǫ, V),M) ≤ 2µ(N , V,Q)ǫ

USC-Spring – p. 32/41

Constructive Opt. Linear Algorithm

When K is an approximation set and Q is a linear
functional then one can find an optimal algorithm that is
linear by constrained optimization:

Let LQ := {l = ∑m
j=1 ajlj : l(v) = Q(v), v ∈ V } and

l∗ := Argmin
l∈LQ

‖Q− l‖X∗ =

m∑

j=1

a∗j lj

Then A∗ : w 7→ ∑m
j=1 a

∗
jwj is an optimal algorithm

Note this may be numerically intensive constrained
minimization

Perf: |Q(f)−A∗(Mf)| ≤ ‖Q− l∗‖X∗ dist(f, V)X

You see µ ≤ ‖Q− l∗‖X∗

USC-Spring – p. 33/41

Example: Quadrature

Integration: Option trading, uncertainty quantification,
Quasi-Monte Carlo, etc.

Data are point values lj(f) = f(xj), j = 1, . . . ,m,

We want to compute Q(f) =
∫
D ω(x)f(x) dx, f ∈ K(ǫ, V)

The optimal quadrature on X = C(D) using the points
xj ∈ D is

A∗(f) =
∑m

j=1 a
∗
jf(xj)

(a∗j) := Argmin{∑m
j=1 |aj | :

∑m
j=1 ajv(xj) =∫

D ω(x)v(x) dx}
This is a constrained ℓ1 minimization problem

µ(N , V,Q) =
∑m

j=1 |a∗j |
|
∫
f − A∗(M(f))| ≤ µ(N , V,Q) dist(f, V)C(D)

USC-Spring – p. 34/41

Example: Global Temperature

Let T (x, t) denote temperature at position x on earth
and time t

Quantity of interest Q(T) =
∫
Y ear

∫
Earth T (x, t) dx dt

Roughly 14K sites from 1950 till 2017

USC-Spring – p. 35/41

Obstacles to Mathematical Analysis

Life would be good if

We knew the right model class for T (x, t) - the right V

if data sites, equipment, and measuring times did not
change each year

Current algorithms use models based on pw
polynomials - not clear what space

We will use spherical harmonics

We compare Spherical Harmonics versus GISTemp
(NASA) on their adjusted data set

We can compute µ for spherical harmonics but not for
GISTemp

USC-Spring – p. 36/41

Current Algorithms

There are many algorithms

The following flowchart gives the main steps of the
NOAA and NASA algorithms using piecewise
polynomials on a uniform grid

Impossible to analyze accuracy because of the ad hoc
adjustments to the data

USC-Spring – p. 37/41

Comparison:GISTempvs. SH6

USC-Spring – p. 38/41

Comparison: GISTemp vs. SH9

USC-Spring – p. 39/41

Typical Growth of µ

Are we computing global temperature?

This would require proving validity of our model
class: would require analysis from physical principles

Also depends on behavior of µ

n 3 6 9 12 15 18

µ 1 1.03 2.61 24.13 223.50 2779.85

We see that even if we justify our model class, we need
to restrict the size of n

USC-Spring – p. 40/41

	State of Numerical Computation
	The Computational Task
	Outline of this Talk
	Role of Approximation Theory
	Types of Approximation
	Nonlinear Approximation
	Canonical results of Approximation
	 Performance in {ed L_p}- one Variable
	Curse of Dimensionality
	Example (Novak-Wozniakowski)
	The Remedy
	Finding a good Subspace
	 The (Pure) Greedy Algorithm
	 Performance
	A Specific Task: Data Fitting
	 Your Favorite Application
	Data Tasks
	Mathematical Formulation
	 Model Classes
	Optimal Recovery: Best Algorithms
	 Graphic for Optimal Recovery
	Not so Fast!
	Approximation Sets
	Performance estimates
	A simple example
	Hilbert space geometry
	Choosing {ed V}
	Point values
	High dimension
	Additional Remarks
	Quantities of Interest
	Constructive Opt. Linear Algorithm
	Example: Quadrature
	Example: Global Temperature
	Obstacles to Mathematical Analysis
	Current Algorithms
	Comparison:GISTempvs. SH6
	Comparison: GISTemp vs. SH9
	Typical Growth of {ed $mu $}

