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Figure 9.3: An experiment on face reconstruction using robust regression techniques. Two face
images were taken and different occlusions were applied to them. Using the model described
in § 9.1, reconstruction was attempted using both, ordinary least squares (OLS) and robust
regression (AM-RR). It is clear that AM-RR achieves far superior reconstruction of the images
and is able to correctly figure out the locations of the occlusions. Images courtesy the Yale Face
Database B.

Face Recognition : In biometrics, a fundamental problem is to identify if a new face image

belongs to that of a registered individual or not.

Cast as a regression problem by trying to fit various features of the new image to

corresponding features of existing images of the individual in the registered database
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Assume that images are represented as n-dimensional feature vectors say, using simple
pixel-based features. Also assume that there already exist p images of the person in the

database.

Represent the new image x' € R"in terms of the database images X = [x,, . . ., x,] € R™Pof
that person. One solution is to perform linear interpolation:

min

in it — Xsz = i(xi — X'w)2.

=

If the person is genuine, then there will exist a combination w*such that for all i, we have x;'
= X'w* i.e., all features can be faithfully reconstructed. Problematic, if however the new
X'w* + b}

b

. *
image x'has occlusions or is otherwise corrupted *i ~ where ~i =0 on

uncorrupted pixels but can take large and unpredictable values for corrupted pixels .

Nevertheless, one can compute the /least squares fit in the presence of such corruptions

The challenge is to do this without effort to identify the locations of the corrupted pixels.
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Figure 9.1: A corrupted image y can be interpreted as a combination of a clean image y

*

and
a corruption mask b* i.e., y = y* + b*. The mask encodes the locations of the corrupted pixels
as well as the values of the corruptions. The clean image can be (approximately) recovered as
an affine combination of existing images in a database as y* = Xw?". Face reconstruction and
recognition in such a scenario constitutes a robust regression problem. Note that the corruption
mask b* is sparse since only a few pixels are corrupted. Images courtesy the Yale Face Database
B.



ROBUST REGRESSION

Goal is to take a set of n (possibly) corrupted data points (xiyi)"._, and recover the

i 2
min ly — Xw —b||5,
wERP beR™ 2
i bl <k
underlying parameter vector w", 1Bllo=

The variables b*, can be unbounded in magnitude and of arbitrary sign. However, we
assume that only a few data points are corrupted i.e., the vector b*=[b*,, b*,, ..., b* ]is

sparse [/ b* /[ ,< k (for as large a k as possible).

Note, it is impossible to recover the model w*if more than half the points are corrupted i.e., k >
n/2.

It can be seen that w*and supp(b®) =: S, i.e., the true model and the locations of the
uncorrupted points, are the two most crucial elements since given one, finding the other is

very simple.

Indeed, if someone were to magically hand us w*, it is trivial to identify S« by simply

identifying data points where y, = x,'w=. On the other hand, given S, it is simple to obtain w*

by simply solving a least squares regression problem on the set of data points in the set S*
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namely,



Algorithm 11 AltMin for Robust Regression (AM-RR)

Input: Data X,y, number of corruptions k
Output: An accurate model w € R?

1 wle0,8 =[1:n—k|

2: fort=1,2,...do

3 witl « argmingerr Yjeg, (i — X, w)?
4
5

P S, s T, t+1Y2
St+1  argmin|gi—p_r 2ies(¥i —%; W)

. end for

6: return w

(0) AM-RR maintains a model estimate w' and an active set S, C [n] of points that are

deemed clean at the moment.

(1) Initially the active set S, is taken to be the first n-k points
(2) At every time step t,

(3) AM-RR first fixes the active set S, and updates the model w* (via least squares over

active set),
and then

(4) fixes the model w"' and updates the active set S,,, (by taking the n - k data points of S

with the smallest residuals (by magnitude) with respect to the updated model and designating

them to be the active set)

Robust Recovery Guarantee for AM-RR

Definition 9.1 (Subset Strong Convexity/Smoothness Property [Bhatia et al., 2015]). A matriz
X € R™7? is said to satisfy the ay-subset strong convexity (SSC) property and the [y -subset
smoothness property (SSS) of order k if for all sets S C [n] of size |S| < k, we have, for all
v ER?P,
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The SSC/SSS properties require that the design matrix X formed by taking any subset of k

pixels from the data set of n pixels act as an approximate isometry on all p dimensional
points.

[These properties are related to the traditional RSC/RSS properties and it can be shown

that RIP-inducing distributions over matrices also produce matrices that satisfy the SSC/SSS
properties, with high probability. ]

Theorem 9.1. Let X € R"*P satisfy the SSC property at order n — k with parameter o, i
and the SSS property at order k with parameter Sy such that Sy /o, — < \/51_‘_1. Let w* € RP
be an arbitrary model vector and y = Xw* 4+ b* where |b*||, < k is a sparse vector of possibly
unbounded corruptions. Then AM-RR yields an e-accurate solution |[w' —w*||, < € in no more

than O (log ”b*'lz) steps.

€

Intuitive Proof :

Since the algorithm uses only a subset of data points to estimate the model vector, it is essential that

smaller subsets of data points of size n — k (in particular the true subset of clean points Sx) also

allow the model to be recovered.

This is equivalent to requiring that the design matrices formed by smaller subsets of data points not

identify distinct model vectors. This is exactly what the SSC property demands.



Proof. Let r* =y — Xw! denote the vector of residuals at time ¢ and let C; = (X5t)T X5 and

S, = supp(b*). Then the model update step of AM-RR solves a least squares problem ensuring
wf+1 — Ct_l(XSt)Ty51
= C7H (X5 (XS w" + b},
w* + C7H(X5) Thy,.

The residuals with respect to this new model can be computed as
r'tl =y — Xw't! =b* + XC7H(X5) T,

However, the active-set update step selects the set with smallest residuals, in particular, ensuring

that

H t+1
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Plugging in the expression for rf*! into both sides of the equation, using bg = 0 and the fact
that that for any matrix X and vector v we have

2 2 2 pa 2 2
vl = 7l = [0, = el < el

gives us, upon some simplification,
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where the last step follows from an application of the SSC/SSS properties by noticing that
|S:\Si+1] < k and that b*st and bgt+1 are all k-sparse vectors since b* itself is a k-sparse vector.

Solving the above equation gives us

* /Bk
[b3..]l, < V24 1) b,
The above result proves that in t = O (log mz) iterations, the alternating minimization

procedure will identify an active set S; such that ”bgP ) < e Itis eas;ﬁ to see that a least

squares step on this active set will yield a model w satisfying

e B
Hw" —w| = HCt X TRE]l < -e <,
2 P2 T gy
since B /ap— < 1. This concludes the convergence guarantee. O

The crucial assumption in the previous result is the requirement 3y /oy, i < —2~—. Clearly,

V241"

as k — 0, we have 3, — 0 but if the matrix X is well conditioned we still have v, _; > 0. Thus,

for small enough k, it is assured that we will have 3./, <

1

V241

The point at which this

occurs is the so-called breakdown point of the algorithm — it is the largest number k such that
the algorithm can tolerate k possibly adversarial corruptions and vet guarantee recovery.



Robust Regression via Projected Gradient Descent

It is possible to devise an alternate formulation for the robust regression problem that allows
us to apply the gPGD technique instead. The work of [Bhatia et al., 2017] uses this alternate
formulation to arrive at a solution that enjoys consistency properties. Note that if someone gave
us a good estimate b of the cor ruption vector, we could use it to clean up the responses as y — b
and re-estimate the model as

w(b) = arg mm H(y b) — XWH (XTX)*XT(y—b).
The residuals corresponding to this new model estimate would be
s a2 B
ly-B-x-w®)[, = |- P -b),,

where Py = X(X"X) !X ". The above calculation shows that an equivalent formulation for
the robust regression problem ((ROB-REG)) is the following

min (1= P)(y = b)I3.

[bllg=k

to which we can apply gPGD (Algorithm @ since it now resembles a sparse recovery problem!
This problem enjoy:{ the restricted isometry property whenever the design matrix X is sampled
from an RIP-inducing distribution (see § 7.6). This shows that an application of the gPGD
technique will guarantee recovery of the optimal corruption vector b* at a linear rate. Once we
have an e-optimal estimate b of b*, a good model w can be found by solving the least squares
problem.

w(b) = (X" X)X (y - b)

w y ;
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compares various solvers on a robust regression problem in p = 300 dimensions with 1800
data points of which 40% are corrupted. The solvers include the gAM-style solver AM-RR,
a variant using gradient-based updates, a hybrid method (see §E), and the DALM method
[Yang et al., 2013|, a state-of-the-art solver for relaxed LASSO-style formulations. The hybrid
method is the fastest of all the techniques. In general, all AM-RR variants are much faster than
the relaxation-based method.

Allen Y. Yang, Zihan Zhou, Arvind Ganesh Balasubramanian, S Shankar Sastry, and Yi Ma.
Fast ¢1-Minimization Algorithms for Robust Face Recognition. IEEE Transactions on Image
Processing, 22(8):3234-3246, 2013. [DALM]

Nam H Nguyen and Trac D Tran. Robust Lasso With Missing and Grossly Corrupted Obser-

vations. IEEE Transaction on Information Theory, 59(4):2036-2058, 2013b.
@) [Extended Lasso]



Ensuring RIP and other Properties

Random Designs: The simplest of these results are the so-called random design

constructions which guarantee that if the matrix is sampled from certain well behaved

distributions, then it will satisfy the RIP property with high probability. For instance, the
work of Baraniuk et al. [2008] shows the following result:

Theorem 7.1. [Baraniuk et al., 2008, Theorem 5.2] Let D be a distribution over matrices in
R"™*P such that for any fired v € RP e > 0,

P |[I1xvI5 = IVIE| > e IVI5] < 2exp(—92(n))

X ~Dnxp

Then, for any k < p/2, matrices X generated from this distribution also satisfy the RIP property
at order k with constant § with probability at least 1 — 2 exp(—£(n)) whenever n > ) (5% log f)

Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A Simple Proof of
the Restricted Isometry Property for Random Matrices. Constructive Approximation, 28(3):
253-263, 2008.

Thus, a distribution over matrices that, for every fixed vector, acts as an almost isometry
with high probability, is also guaranteed to, with very high probability, generate matrices
that act as a restricted isometry simultaneously over all sparse vectors. Such matrix
distributions are easy to construct - one simply needs to sample each entry of the matrix

independently according to one of the following distributions:
1. sample each entry from the Gaussian distribution N (0,1/n).
2. set each entry to +1/y/n with equal probability.

3. set each entry to 0 w.p. 2/3 and £++/3/n w.p. 1/6.



