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Face Recognition : In biometrics, a fundamental problem is to identify if a new face image                               

belongs to that of a registered individual or not.         

Cast as a regression problem by trying to fit various features of the new image to                               

corresponding features of existing images of the individual in the registered database  
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Assume that images are represented as n-dimensional feature vectors say, using simple                       

pixel-based features. Also assume that there already exist p images of the person in the                             

database.  

Represent the new image xt ∈ Rn in terms of the database images X = [x1, . . . , xp] ∈ Rn×p of 

that person.    One solution is to perform linear interpolation:

 

If the person is genuine, then there will exist a combination w∗ such that for all i, we have xi
t 

≈ Xiw∗     i.e., all features can be faithfully reconstructed.  Problematic, if however the new 

image  xt has occlusions or is otherwise corrupted where  = 0   on 

uncorrupted pixels but can take large and unpredictable values for corrupted pixels . 

Nevertheless, one can compute the least squares fit in the presence of such corruptions 

The challenge is to do this without effort to identify the locations of the corrupted pixels. 
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ROBUST   REGRESSION  

Goal is to take a set of n (possibly) corrupted data points (xi,yi)n
i=1 and recover the 

underlying parameter vector w∗,  

The variables b∗
i  can be unbounded in magnitude and of arbitrary sign. However, we 

assume that only a few data points are corrupted i.e., the vector b∗ = [b∗
1, b∗

2, . . . , b∗
n] is 

sparse ∥b∗∥0 ≤ k (for as large a k as possible).  

Note, it is impossible  to recover the model w∗ if more than half the points are corrupted i.e., k ≥ 

n/2.   

It can be seen that w∗ and supp(b∗) =: S∗  i.e., the true model and the locations of the 

uncorrupted points, are the two most crucial elements since given one, finding the other is 

very simple.  

Indeed, if someone were to magically hand us w∗, it is trivial to identify S∗ by simply 

identifying data points where yi = xi
⊤w∗. On the other hand, given S∗, it is simple to obtain w∗ 

by simply solving a least squares regression problem on the set of data points in the set S∗ 

namely,      
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(0)  AM-RR maintains a model estimate wt and an active set St ⊂ [n] of points that are 

deemed clean at the moment.   

(1) Initially the active set S1  is taken to be the first n-k points  

      (2) At every time step t,  

      (3)  AM-RR first fixes the active set St  and updates the model wt  (via least squares over 

active set),  

and then  

(4)  fixes the model wt+1 and updates the active set St+1 (by taking the n − k data points of S 

with the smallest residuals (by magnitude) with respect to the updated model and designating 

them to be the active set )  

 

Robust Recovery Guarantee for AM-RR   
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The SSC/SSS properties require that the design matrix X formed by taking any subset of k 

pixels from the data set of n pixels act as an approximate isometry on all p dimensional 

points.  

[These properties are related to the traditional RSC/RSS properties and it can be shown 

that RIP-inducing distributions over matrices also produce matrices that satisfy the SSC/SSS 

properties, with high probability. ] 

 

 

 

Intuitive Proof : 

Since the algorithm uses only a subset of data points to estimate the model vector, it is essential that 

smaller subsets of data points of size n − k (in particular the true subset of clean points S∗) also 

allow the model to be recovered.  

This is equivalent to requiring that the design matrices formed by smaller subsets of data points not 

identify distinct model vectors. This is exactly what the SSC property demands.  
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Robust Regression via Projected Gradient Descent  
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[DALM]  

  [Extended Lasso] 
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Ensuring RIP and other Properties  

Random Designs: The simplest of these results are the so-called random design 

constructions which guarantee that if the matrix is sampled from certain well behaved 

distributions, then it will satisfy the RIP property with high probability. For instance, the 

work of Baraniuk et al. [2008] shows the following result: 

 

Thus, a distribution over matrices that, for every fixed vector, acts as an almost isometry 

with high probability, is also guaranteed to, with very high probability, generate matrices 

that act as a restricted isometry simultaneously over all sparse vectors. Such matrix 

distributions are easy to construct – one simply needs to sample each entry of the matrix 

independently according to one of the following distributions: 
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