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Problem structures that allow non-convex approaches to avoid NP-hardness results, are 

very similar to those that allow their convex relaxation counterparts to avoid distortions 

and a large relaxation gap. 

 

However, non-convex techniques usually offer more scalable solutions ! 

 

 

 

 

 

 

 

 

 

Ref: 
[1]  ​Non-convex Optimization for Machine Learning ​Prateek Jain​, ​Purushottam Kar  
 
[2] ​ ​A Mathematical Primer for Computational Data Sciences ​ ​Chandrajit Bajaj  
 
[3]  ​SMAC: Simultaneous Mapping and Clustering,​ Chandrajit Bajaj, Tingran Gao, 
Qixing Huang 
 
Additional References are specific to Algorithms and cited below. 

 
1 

mailto:bajaj@cs.utexas.edu
https://arxiv.org/pdf/1712.07897.pdf
https://arxiv.org/find/stat/1/au:+Jain_P/0/1/0/all/0/1
https://arxiv.org/find/stat/1/au:+Kar_P/0/1/0/all/0/1
http://www.cs.utexas.edu/~bajaj/math-ds.pdf
https://www.sharelatex.com/project/592c7baa9d05b54f3f88b91c
https://arxiv.org/find/stat/1/au:+Kar_P/0/1/0/all/0/1


 

 

 

Mathematical Notation ([1], [2])    

● The sets of real numbers and natural numbers are denoted by R and N 
respectively. 

● The cardinality of a set S is denoted by |S|.  
● Vectors are denoted by boldface, lower case alphabets (eg ​x, y)​. The zero vector 

is denoted by 0. A vector ​x ​∈ R​p​ will be in column format. The transpose of a 
vector is denoted by​ x​⊤​. The​ i ​th​ coordinate of a vector ​x​ is denoted by ​x​i​. 

● Matrices are denoted by upper case alphabets (eg A, B). A​i ​denotes the i​th ​column of the 
matrix A and A​j ​denotes its j​th​ ​row. A​ij ​denotes the element at the i​th ​row and j​th ​column. 

● For a vector ​x​∈R​p​ ​and a set S ⊂[p], the notation ​x​S​ ​denotes the vector ​z​∈R​p ​such that 
z​i ​= ​x​i ​for i ∈ S, and ​z​i ​= 0 otherwise. Similarly for matrices, A​S ​denotes the matrix B with 

B​i ​=A​i  ​for i∈S and B​i ​=0 for i  ​S​.  Also, A​S​ ​denotes the matrix B with B​i ​= A​i ​for i ∈ S 

and  B​i ​= 0​⊤​ ​for i  S 

● The support of a vector x is denoted by supp(​x​) := {i : ​x​i ​  0}. A vector​ x ​is referred to 
as ​s-​sparse if |supp(​x​)| ≤ ​s​. 

● The canonical directions in R​p ​are denoted by ​e​i​, i = 1, . . . , p. 
● The identity matrix of order p is denoted by I​p×p ​or simply I​p​.  

● For a vector ​x ​∈ R​p​, the notation    ​ ​denotes its L​q ​norm. As special 
cases we define ∥​x​∥​∞​ ​:= max​i​ ​|​x​i​|,   ∥​x​∥​−∞ ​:= min​i ​|​x​i​|,   and   ∥​x​∥​0 ​:= |supp(​x​)|. 

● Balls with respect to various norms are denoted as B​q​(r) := {​x ​∈ R​p​, ∥​x​∥​q ​≤ r​ }​. Note, 
B​0​(s) is used to denote the set of s-sparse vectors. 
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Applications I:  “Learning Models from Data”    
 

Face Recognition ​: In biometrics, a fundamental problem is to identify if a new face image                
belongs to that of a registered individual or not.  

 
 

 

Cast as a regression problem by trying to fit various features of the new image to corresponding                 

features of existing images of the individual in the registered database. Assume that images are               

represented as ​n​-dimensional feature vectors say, using simple pixel-based features. Also           

assume that there already exist ​p images of each person in the database. Represent the new                

image ​x​t ​∈ R​n ​in terms of the database images X = [​x​1​, . . . , ​x​p​] ∈ R​n×p ​of that person. One                        

solution is to perform ​linear interpolation. If the person is genuine, then there will exist a                

combination ​w​∗ ​such that for all i, we have ​x​i​t ​≈ X​i​w​∗ ​i.e., all features can be faithfully                   

reconstructed.  

A popular way to recover ​w​∗ ​is using the ​least squares ​formulation  
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 ​w​∗​=argmin​ ​w​∈R​p ​   ​ ​n    (​y​i​−​x​i​⊤​w)​ 2​. i ..Σ = 1  

Problematic, if however the new image ​x​t ​has occlusions or is otherwise corrupted            

where = 0 on uncorrupted pixels but can take large and           

unpredictable values for corrupted pixels . 

 
Gene Expression Analysis : ​Given say, for ​n ​human test subjects participating in the study, 
the expression levels of a large number ​p ​of genes (encoded as a real vector ​x​i​ ∈ R​p​), and the 
corresponding phenotypical trait yi ∈ R.  ​For the sake of simplicity, we assume that the 
phenotypical response is linearly linked to the gene expression levels i.e. for some ​w​∗ ​∈ R​p​, we 
have y​i ​= ​x​i​⊤​w​∗ ​+ η​i ​where η​i ​is some noise.  
 
The goal then is to use gene expression data to deduce an estimate for ​w​∗​. Having access to                  
the model ​w​∗​ ​can be instrumental in discovering possible genetic bases for diseases, traits etc.  
 
 
The linear regression problem as well as the least squares estimator, comes in two flavours,               
below : 

(a) only a few of the p features/covariates are actually relevant to the problem but do not                
know their identity,  i.e. n >> p  (Face Recognition) 

(b)  working in extremely data-starved settings i.e., n ≪ p 
 

 
Issues: 
Firstly, the number of genes whose expression levels are being recorded is usually very large               
(running into several tens of thousands), the number of samples (test subjects) is usually not               
nearly as large, i.e. n ≪ p.  
 
Standard statistical approaches require at least n ≥ p data points to ensure a consistent               
estimation of all p model parameters and are unable to offer accurate model estimates in the                
face of data-starvation. 
 
Secondly, we do not expect all genes being tracked to participate in realizing the phenotype.               
Indeed, the whole objective of this exercise is to identify a small set of genes which most                 
prominently influence the given phenotype. Note that this implies that the vector w​∗ ​is very               
sparse. Traditional linear regression cannot guarantee the recovery of a sparse model.  
 
In both cases ​sparse regression/recovery ​solves the twin problems as ​n ≥ s log p (as opposed                 
to n ≥ p​) data points are required for sparse recovery to work , drastically reducing the data                  
requirement.  
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Problems can be handled by the ​sparse recovery ​approach, which seeks to fit a sparse model                
vector (i.e., a vector with say, no more than ​s ​non-zero entries) to the data. The least squares                  
formulation, modified as a ​sparse recovery​ problem, is given  
w​sp​=  argmin​ ​w​∈R​p ​ ​ ​n    (​y​i​−​x​i​⊤​w)​ 2​                ​s.t. ​w ​∈ B​0​(s) i ..Σ = 1 [B​0​(s) := {​x ​∈ R​p​,      
∥​x​∥​0 ​≤ s} ] 
 
Although the ​objective function in the above formulation is ​convex​, the ​constraint ∥​w​∥​0 ​≤ s               
corresponds to a ​non-convex constraint​ set . 
 

Application II :  Learning Models from Data 

Recommendation Systems: 

Several internet search engines and e-commerce websites utilize recommendation systems to 
offer items to users that they would benefit from, or like, the most. (recommendations for songs 
etc, all the way to critical recommendations in ​personalized medicine​). 
 
To be able to make ​accurate ​recommendations, we need very good estimates of how each user 
likes each item (song), or would benefit from it (drug).  
However, users typically rate only a handful of the hundreds of thousands of songs in any 
commercial catalog and it is not feasible, or even advisable, to administer every drug to a user. 
Thus, for the vast majority of user-item pairs, we have no direct information.  

 
 

 
5 



 

 

It is useful to visualize this problem as a ​matrix completion​ ​problem: for a set of m users 

u​1​,...,u​m  ​and n items a​1​,...,a​n​, we have an m × n ​preference matrix ​A = [A​ij​] where A​ij ​encodes 
the preference of the i​th ​user for the j​th ​item. 
 
Now, it is easy to see that ​unless there exists some structure in matrix​, and ​by extension, in the 
way users rate items​, there would be no relation between the unobserved entries and the 
observed ones. This would result in there ​being no unique way to complete the matrix. ​Thus, it 
is essential to impose some structure on the matrix. 
 
A structural assumption popularly made is that of ​low rank​: we wish to fill in the missing entries 
of A ​assuming​ that A is a ​low rank​ ​matrix​. This can make the problem well-posed and have a 
unique solution since the additional low rank structure links the entries of the matrix together. 
The unobserved entries can no longer take values independently of the observed values. 
 
If we denote by Ω ⊂ [m] × [n], the set of observed entries of A, then the low rank matrix 
completion problem can be written in the form 
 
A​ lr​=argmin​ ​X​ ∈R​m×n​       ​ (i,j )∈Ω   ​ (X​ij​−A​ij​)​2 ​           s.t. rank(​X​) ≤ r,  

 
where the rating given by user i to item j can now be seen to be A​ij ​≈ U​i​,V​j​ ​.  
This formulation also has a ​convex objective​ but ​a non-convex rank constraint​ . 
Assuming the ratings matrix to have rank at most r is equivalent to assuming that the matrix A 
can be written as A = U V ​⊤​   with the matrices U ∈ R​m×r​ ​and V ∈ R​n×r​ ​having at most r columns. 
The alternate formulation becomes 
 
A​ lv​ =argmin ​U ∈ Rm×r  V ∈ Rn×r ​ ​  ​(​i,j​)∈Ω ​    (U​i​⊤​V​j −​A​ij)​ 2 

 
There are no constraints in the formulation. However, the formulation requires joint optimization 
over a pair of variables (U, V ) instead of a single variable. ​More importantly, it can be shown 

that the ​objective​ function is ​non-convex​ in (U, V ) .  
  

Recovering the rank ​r​ matrix A also gives us a bunch of ​r-dimensional latent vectors​ describing 
the users and items. These latent vectors can be extremely valuable in themselves as they can 
help us in understanding user behavior and item popularity, as well as be used in 
“​content​”-based recommendation systems which can effectively utilize item and user features. 
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The above examples, and several others from machine learning, such as (i) ​low-rank tensor 
decomposition,​ (ii) ​training deep networks​, and (iii) training structured models, demonstrate the 
utility of non-convex optimization in naturally modeling learning tasks. 
 

Application III :  Learning Models from Data 

Multi-Assembly  Systems (SMAC: Simultaneously Mapping and Clustering) 
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The ​objective​ function is ​non-convex​ and in very high dimensions.  
 
 
 

Solution Approaches #1:  Convex Relaxation 
    

Faced with the challenge of non-convexity, and the associated NP-hardness, a traditional workaround in literature has been to modify the problem 

formulation itself so that convex optimization tools can be readily applied. This is often done by relaxing the problem so that it becomes a convex 

optimization problem.  

 

For sparse linear regression, the relaxation approach gives us the popular LASSO  (​least absolute shrinkage and selection operator) 

formulation.   

    

Now, in general, such modifications change the problem drastically, and the solutions of the relaxed formulation can be poor solutions to the 

original problem​.  

 

However, it is known that if the problem possesses certain nice structure, then under careful relaxation, these distortions, formally referred to as 

a“relaxation gap”, are absent, i.e., solutions to the relaxed problem would be optimal for the original non-convex problem as well.

 

Although a popular and successful approach, this still has limitations, the most prominent of them being scalability.  

Although the relaxed convex optimization problems are solvable in polynomial time, it is often challenging to solve them efficiently for large-scale 

problems.  

 

Relaxation-based methods​ :  LASSO, various extended LASSO, Elastic Nets,  SVT (Singular Value THresholding)  

Solution Approaches #2:  Non-Convex  
    

The alternative approach to solving machine learning and signal processing problems  is  the ​non-convex optimization ​approach owing to its 

goal of optimizing non-convex formulations directly.  

Techniques frequently used in non-convex optimization approaches include simple and efficient primitives such as ​projected gradient 

descent, alternating minimization, the expectation-maximization algorithm, stochastic optimization, and variants t​hereof. These are 

very fast and hence scalable in practice.   

Non-Convex Methods : ​ ​ProjectedGradientDescent(PGD), GeneralizedProjectedGradientDescent(gPGD), 

GeneralizedAlternatingMinimization(gAM),  AltMaxforLatentVariableModels(AM-LVM), ExpectationMaximization(EM), 

NoisyGradientDescent(NGD), ProjectedNoisyGradientDescent(PNGD),  IterativeHard-thresholding(IHT), SingularValueProjection(SVP) , 
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AltMinforMatrixCompletion(AM-MC), AltMinforRobustRegression(AM-RR),  Gerchberg-Saxton Alternating Minimization (GSAM), 

Wirtinger’sFlowforPhaseRetrieval(WF)  

 

 

 

1. Convex Projected Gradient Descent 
 
The following convex optimization problem :  
min f(​x​) ​x​∈R​p s.t. ​x ​∈ C.  
where C ⊂ R​p ​is a convex constraint set and f : R​p ​→ R is a convex objective function.  
 
A fundamental step includes 

  

 
The projected gradient descent algorithm  is given by Algorithm 1 . The procedure generates 
iterates ​x​t ​by taking steps guided by the gradient in an effort to reduce the function value locally. 
Finally it returns either the final iterate, the average iterate, or the best iterate.  

 
Convergence Guarantee 
Consider PGD for ​objective functions ​that are either 
 ​a)​ convex with bounded gradients, or ​b)​ strongly convex and strongly smooth.  
Let ​f​∗​ ​= min​x​∈C ​f(​x​) ​be the optimal value of the optimization problem. A point ​x​ ​∈ C will be said 
to be an ε-optimal solution if f(​x​ ​) ≤ f​∗ ​+ ε.  

 
 (a)Theorem 2.5. ​Let ​f ​be a convex objective with bounded gradients and Algorithm 1 be 
executed for ​T ​time steps with step lengths ​η​t ​=η= 1/√T ​  .​Then, for any ​ε>0​, if ​T =O(​ 1/ε​2​),  and 

since function values on average approach f*,  ​  
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Similarly since . Furthermore, applying Jensen’s 

inequality for convex functions,  
 
 
 
(b) ​SC = Strongly Convex,  SS = Strongly Smooth 
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A more general definition that extends to non-differentiable functions uses the notion of 
subgradient ​to replace the gradient in the above expression.  

1. Non-convex Projected Gradient Descent  
    

The algorithmic and analytic techniques used in convex problems are extensible to non-convex             
problems that possess nice additional structure :    

A. constraint sets that, despite being non-convex, possess additional structure so that           
projections onto them can be carried out efficiently.  

B. structural properties of objective functions ​that can aid optimization.  
 
Problems that possess nicely structured objective functions and constraint sets, the PGD-style            
algorithm for non-convex problem, converges to the global optimum in ​polynomial time with a              
linear rate of convergence.  

Projection Operators 
Convex Projections 
Given any closed set C ⊂ R​p​, the projection operator ​Π​C​(·) ​is defined as 
 
Π​C​(z) := arg min ∥x − z∥​2  

                        x∈C 

(Note, one need not use only the L​2​-norm in defining projections)  
 
For instance, if C = B​2​(1) i.e., the unit L​2 ​ball, then projection is equivalent​ ​to a normalization step 

 
 

For the case C = B​1​(1), the projection step reduces to the popular ​soft thresholding ​operation. If 
z​ ​:= Π​B​1​(1)​(​z​), then ​z​ ​i ​= max{​z​i ​−θ,0}, where θ is a threshold that can be decided by a sorting 
operation on the vector .  

 
Projection Property-O  (Lemma 2.2), often called a ​zeroth order ​property, always holds, 
whether the underlying set is convex or not.  
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Projection Properties-I and II (Lemmas 2.3, 2.4) are  ​first order ​properties and can be violated if 
the underlying set is non-convex.  
 
Projection on Non-Convex Sets:  
Executing the projected gradient descent algorithm with non-convex problems requires 
projections onto non-convex sets.  

 

 
 
 
A (i) Projecting onto Sparse Vectors 

    
In the sparse linear regression problem 
W*​ ​=argmin​  ​i=1..n (​y​i​−x​i​⊤​w)​ ​2​,Σ  

∥w∥​0 ​≤s  
applying projected gradient descent requires projections onto the set of s-sparse vectors i.e., 
B​0​(s) := {x ∈ R​p​, ∥x∥​0 ​≤ s}. The following result shows that the projection Π​B​0​(s)​(z) can be 
carried out by simply sorting the coordinates of the vector z according to magnitude and setting 
all except the top-s coordinates to zero.  

 
 

A (ii) Projecting onto Low-rank Matrices  

 
12 



 

 

 
In the recommendation systems problem, we project onto the set of low-rank matrices.  

 
 
Consider matrices of a certain order, say m×n and let C ⊂ R​m×n ​be an arbitrary set of matrices. 
Then, the projection operator Π​C​(·) is defined as follows: for any matrix A ∈ R​m×n​,  

 where ∥·∥​F ​is the Frobenius norm over matrices.  
For low rank projections we require C to be the set of low rank matrices B​rank​(​r​) := {A ∈ R​m×n​, 
rank(A) ≤ ​r​}. Yet again, this projection can be done efficiently by performing a ​Singular Value 
Decomposition ​on the matrix A and retaining the top​ r ​singular values and vectors. 

C Generalized  Projected  Gradient  Descent 
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2. Alternating Minimization  - low-rank matrix recovery, 
robust regression, phase retrieval 

 
Lloyd’s algorithm [Lloyd, 1982] for k-means clustering and the EM algorithm [Dempster et al., 
1977] for latent variable models are problem-specific variants of the general alternating 
minimization principle.  

 
A. Marginal Convexity and Generalized Alternating Minimization (gAM):​ (structural 

properties of functions that frequently arise in alternating minimization settings ) 
 
Recall the matrix completion problem in recommendation systems from § 1 which involved two 
variables U and V denoting respectively, the latent factors for the users and the items. In several 
such cases, the optimization problem, more specifically the objective function, is not ​jointly 
convex ​in all the variables.  
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The alternating minimization algorithm (gAM) is given in Algorithm 3 for an optimization problem 
on two variables constrained to the sets X and Y respectively. The procedure can be easily 
extended to functions with more variables, or have more complicated constraint sets​4 ​of the form 
Z ⊂ X ×Y. After an initialization step, gAM alternately fixes one of the variables and optimizes 
over the other.  

 
    

This approach of solving several intermediate ​marginal ​optimization problems instead of a 
single big problem is the key to the practical success of gAM. There also exist “descent” 
versions of gAM which do not completely perform marginal optimizations but take gradient steps 

along the variables instead.  
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In the above figures, the bold solid curve plots the function g : X → X × Y with g(x) = (x, mOPTf (x))                        
The bold dashed curve similarly plots h : Y → X × Y with h(y) = (mOPTf (y), y). The figure (left and                       
middle) shows that this may happen even if the marginally optimal coordinates are unique i.e., for                
every ​x ​there is a unique ​y such that ​y = mOPTf (​x​) and vice versa. ​In case a function taking                     
bounded values possesses multiple bistable points, the bistable point to which gAM eventually             
converges depends on where the procedure was initialized. 
gAM-style algorithms for learning latent variable models, matrix completion and phase retrieval            
need to pay special attention to initialize the procedure “close” to the optimum. An exception is for                 
robust ​regression ​where the problem structure ensures a unique bistable point and so, a careful               
initialization is not required.  
 
Convergence Guarantee for gAM (convex) 

 

 

 
Convergence Guarantee for gAM (non-convex) 

 
17 
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Software List: 

Iterative Hard Thresholding: 
https://www.researchgate.net/publication/280301598_Matlab_Code_for_Iterative_Hard_Thresholding_Algorithm_Based_on_Backtracking 

http://www.personal.soton.ac.uk/tb1m08/sparsify/sparsify.html 

Orthogonal Matching Pursuit: 
https://www.mathworks.com/matlabcentral/fileexchange/50584-orthogonal-matching-pursuit-algorithm--omp-?s_tid=gn_loc_drop 

Compressive Sampling Matching Pursuit (CoSaMP): 
https://www.mathworks.com/matlabcentral/fileexchange/32402-cosamp-and-omp-for-sparse-recovery 

Forward-backward (FoBa): 
https://github.com/pxchen95/overlappingspikes/blob/master/notimeshifts/FoBa.m 

Projected Gradient Descent (PGD): 
https://github.com/hiroyuki-kasai/NMFLibrary 

Expectation Maximization (EM): 
https://www.mathworks.com/matlabcentral/fileexchange/47889-expectation-maximization-algorithm-zip 

Singular Value Projection (SVP): 
http://www.cs.utexas.edu/~pjain/svp/ 

Gerchberg-Saxton Alternating Minimization: 
https://www.mathworks.com/matlabcentral/answers/245368-gerchberg-saxton-algorithm 

Wirtinger’s Flow for Phase Retrieval: 
http://www-bcf.usc.edu/~soltanol/matlab/WF_StanfordQuad.m 
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