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The philosophy

Numerical methods achieve stability in many different ways.

@ Standard finite element method: coercivity & conformity
@ Mixed methods: balanced pair of spaces
@ SUPG methods: artificially added streamline diffusion
o DG methods: upwind stabilization & jump penalization
@ HDG methods: difference between interior & interface unknowns
° bPG methods: stability by automatic test space design
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Outline of Lecture 2

@ Petrov-Galerkin schemes

@ Ideal & practical DPG methods
© A priori error analysis

@ Least-squares interpretation

@ Interpretation as a mixed method

@ A posteriori error estimate
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“Petrov-Galerkin” schemes (PG)

PG schemes are distinguished by different trial and test (Hilbert) spaces.

[P.D.E+
The problem: .
boundary conditions.
1
[ Find x in a trial space X satisfying
Variational form: b(x,y) =¥(y)
i for all y in a test space Y.
1
[ Find x4, in a discrete trial space X, C X satisfying
Discretization: b(xp,yn) = £(yn)
for all yp in a discrete test space Y, C Y.

For PG schemes, Xj, # Y}, in general.
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Historical remarks

o [B. G. Galerkin, 1915] “Series occurring in various questions concerning the elastic
equilibrium of rods and plates”, Vestnik Inzhenerov

(Engineer’s Bulletin).

Q [G. |. Petrov, 1940] “Application of the method of Galerkin to a problem involving
the stationary flow of a viscous fluid. Prikl. Matem. i Mekh.

(Journal of Applied Mathematics and Mechanics).

(3] [S. G. Mikhlin, 1950] “Variational methods of solution of problems of
mathematical physics”, Uspekhi Mat. Nauk

(Russian Math. Surveys).
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Petrov’s paper

AKALEMMZAHA H AVY K cccpe
USSR ACADEMY OF SCIENCES

HHCTHUTYT MEXAHWKXKHA INSTITUTE OF MECHANICS
KYPHAJ LIIPHKIATHAS JOURNAL OF APPLIED
MATEMATHKA M MEXAHMKA* MATHEMATICS AND MECHANICS
T, IV, ». 8, 1940

IPHMEREHNE METOJXA TAJEPRHHA K BAJAYE 0B VCTOHYHBOCTH
TEYEHHA BABKOA EHIKOCTH

I. . IETPOB
(Mocksa)

IIpw mecmexoBamEE pacmpocTpameEms Kolefamni B MIOCKOM npaMoxmHeHHOM
IOTOKe BSSKOH MMNKOCTH W yCTOXYABOOTA TAEMX TedeEmH B3aJava IPHEBOTATCS

® EDAaGRON BANATe IS VDABHOEHS:
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Petrov’s paper
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Petrov’s paper

CHOTEMH, CTpeMAmeecs K TOWHOMY npm #-» co. Ecam ¢ymrmmm v; Bsats Te e,
9T0 X ¢;, T0 ypasHenms (14) Gyayr ypasmemnamm Moroxs [azeprmma (),

B meroropmx caywasx yno6mo moansoBathes apyro#f cmeremofi Gymrmmit,
TaK XA PYHKORE v; He JOTEKHN OOHBATOALHO YAOBAOTBODATH IPANRIEHEM YCIO-
BEMM.

TpeGosarme OpTOrOHANGHOCTH NPHEATO HAME TOJXBKO XIL YAOGCTBA BHBORA

“

.If functions v; are taken to be the same as ;, then (1.4) is the equation of
Galerkln s method.

In some cases, it can be useful to employ another set of v;, since v; need not
satisfy the boundary conditions ..."

However, there is no example, or analysis, in the rest of
the paper with vi # ;.
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Mikhlin’s review

§ 1. BBEJIEHITE
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Mikhlin’s review

§ 1. BBEJEHNE
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Mikhlin’s review
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Mikhlin’s review

@ Mikhlin refers to Petrov's contribution as the
“generalized Galerkin method”.

@ Mikhlin says that an analysis of such methods was performed in an
early dissertation:

> [N. I. Pol'sky, 1949] “On the convergence of approximation methods of
Galerkin type”, Kiev State University, Ph. D. dissertation (hand written).

o If anyone knows more about the analysis in this dissertation, please
contact me!
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Elements of modern theory

e Variational formulation: (BNB Theorem)
Exact inf-sup condition .
adjoint
|b(x, y)| |+ _ = wellposedness
allxl[x < sup ———= uniqueness
yev lylly
e Babuska's theorem: [Babugka 1970], [Xu+Zikatanov 2003]
Discrete inf-sup condition 6]
b = ||x—x < — inf ||[x — wyl|x.
ollxsllx < sup |b(xh, yn)| e =mllx < 72 inf |l nllx

weYn yally

o Difficulty: Exact inf-sup condition =~ Discrete inf-sup condition
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Elements of modern theory

e Variational formulation: (BNB Theorem)
Exact inf-sup condition .
adjoint
|b(x, y)| |+ _ = wellposedness
allxl[x < sup ———= uniqueness
yev lylly
e Babuska's theorem: [Babugka 1970], [Xu+Zikatanov 2003]
Discrete inf-sup condition 6]
b = ||x—x < — inf ||[x — wpl|x.
cl[xnllx < sup 150, yn)] | pllx < &) Whexh” bllx

eV yally
o Difficulty: Exact inf-sup condition =~ Discrete inf-sup condition

@ |s there a way to find a stable test space for any given trial space?
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The best test space & ideal DPG method
Pick any X, C X. The ideal DPG method finds x; € X}, satisfying

¢ def

b(xpn,y) = £(y), forall y € Y, ¥ T(Xn),

where T : X — Y is defined by (Tw,y)y = b(w,y), forall y € Y
and any w € X.

Rationale:
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The best test space & ideal DPG method
Pick any X, C X. The ideal DPG method finds x; € X}, satisfying

¢ def

b(xpn,y) = £(y), forall y € Y, ¥ T(Xn),

where T : X — Y is defined by (Tw,y)y = b(w,y), forall y € Y
and any w € X.

Rationale:
b
@ @: Which function y maximizes | H(X[’)/)’ for any given x ?
Yy
6Ol (T )y

sup =
vey lyly — yey lylly
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The best test space & ideal DPG method

Pick any X, C X. The ideal DPG method finds x; € X}, satisfying

b(xny) = £y),  forally e Y™ € T(Xp),

where T : X — Y is defined by (Tw,y)y = b(w,y), forall y € Y
and any w € X.

Rationale:
|b(x, y)|
ylly

@ @: Which function y maximizes for any given x ?

o A: y = Tx is the maximizer. < Optimal test function.
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The best test space & ideal DPG method
Pick any X, C X. The ideal DPG method finds x; € X}, satisfying

b(xny) = £y),  forally e Y™ € T(Xp),

where T : X — Y is defined by (Tw,y)y = b(w,y), forall y € Y
and any w € X.

Rationale:

160x, )
134157

o A: y = Tx is the maximizer. < Optimal test function.

@ @: Which function y maximizes for any given x ?

DPG Idea: If the discrete test space contains the optimal test functions,

exact inf-sup condition = discrete inf-sup condition.
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Quasioptimality of the ideal DPG Method

Assumption [U] Uniqueness

{y € Y: b(x,y) =0 for all x e X} ={0}.

Assumption [I] Inf-Sup

b
Jdag >0: VxeX, allxllx < sup |b(x, y)|
ozvey IIylly

< [[Bl[ lIx[Ix-

Assumptions [U+1] =

|bl| .
“allx < 2 inf ilx = wallx.
[[x = xnllx < - WLthHX whl|x

Proof: Since the discrete inf-sup condition holds, apply Babugka's
theorem. O
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Example: An ODE

u=f in(0,1),

1D t t:
ranspor u(0) = up (inflow b.c.)
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Example: An ODE

u=f in(0,1),

1D transport:
P u(0) = up (inflow b.c.)

[ Find u € L2, and a number 47 € R, satisfying

1 1
/ uv'+01v(1):/ fv+ uv(0), veH.
0 0

L% weak form: ~
b( (u,01), v) €(v)
Trial space: X = L2 xR, ||(u, 01)||% = |[ull® + |d1]2.
| Test space: Y = H', IvII3 = [|V/]|* + |v(0)]>.
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Example: An ODE

1D transport:

L2 weak form:

Ideal DPG:

Jay Gopalakrishnan

u=fFf in(0,1),
u(0) = up (inflow b.c.)

Find u € L2, and a number 0; € R, satisfying

1 1
/ uv'+01v(1):/ fv+ uv(0), veH.
0 0

~~

b( (u,01), v) €(v)
Trial space: X = L2 xR, ||(u, 01)||% = |[ull® + |d1]2.
| Test space: Y = H', IvII3 = [|V/]|* + |v(0)]>.

Find (up, i) € Xy = P, x R, satisfying
b( (up, 1), v) = £(v), for all v € Y ' = T(Xp).
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Example: An ODE

Exercise: For this example, Y,?pt = Ppy1.

The spectral DG solutions

0
05 @ Experiment: Solve ODE
(the transport equation)
» o .7 using DG and ideal DPG
, N e on a single element.
— y >
< ‘ . ] .
515 = @ Exact solution has a
/ 7 /
, - N ’ sharp layer at x = 1.
2} . .~ .- ]
7
/ e Exact solution
25}/ . - = —p=t '
|/ // - p=3
-, S L p=8
-3 . L n n
0 0.2 0.4 06 038 1
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Example: An ODE

Exercise: For this example, Y,?pt = Ppy1.

The spectral DPG solutions

0
o5 Experiment: Solve ODE
' (the transport equation)
1t using DG and ideal DPG
on a single element.
gl fc] S Exact solution has a
) sharp layer at x = 1.
= — o DPG is more stable.
xact solution . .
25} - - —p=t | Solution oscillates an
- g:g order of magnitude less.
-0 0.2 0.4 0.6 0.8 1
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The importance of “D” in “DPG”

@ The ideal DPG method requires us to compute the optimal test space
YP' = T(Xp) where T : X = Y is defined by

(Tw,y)y =b(w,y), forallyeY,weX.

@ Application of T decouples into element-by-element calculations
when Y admits DG functions,

@ When Y is infinite-dimensional, we must further approximate T to
get a practical method.
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The (practical) DPG method

Pick any X, C X. The ideal DPG method finds x; € X}, such that

b(Xhay) = f(y)7 for all ye T(Xh)7

where T : X — Y is defined by (Tw,y)y = b(w,y), forall y € Y
and any w € X.

Pick any X, € X. The (practical) DPG method finds x, € Xj,
using a finite-dimensional Y}, C Y/, such that

b(xp,y) = 4(y), for all y € Tx(Xp),

where T, : X — Y}, is defined by (Tpw,y)y = b(w,y), for all
¥y € Yyand any w € X.
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The (practical) DPG method

Pick any X, C X. The ideal DPG method finds x; € X}, such that

Xp = argzn”éi)r} |€ — Bzp||y-.
h h

Pick any X, € X. The (practical) DPG method finds x, € Xj,
using a finite-dimensional Y}, C Y/, such that

, =arg min ||[{ — B
Xh = arg min | zp||y;

Here B : X — Y™ is the operator generated by the form b(x,y), i.e.,
b(x,y) = (Bx)(y) forall x e X,y € Y.

Jay Gopalakrishnan 14/27



Three avenues to DPG methods

Least-squares
Galerkin method

Petrov-Galerkin
with optimal
test space

Mixed Galerkin
method

Jay Gopalakrishnan
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Equivalent Least-Squares method

Find xp € X}, satisfying

b(xn,y) = (y) for all y € Th(Xh) (1)

where Tj, : X — Y}, is defined by (Tyz,y)y = b(z,y) for all y € Y}, for
any z € X.

Xp = arg zztéi)rgh |6 — Bzp|lyy <= xp solves (1).
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Equivalent Least-Squares method

Find xp € X}, satisfying

b(xn,y) = (y) for all y € Th(Xh) (1)

where T, : X — Y}, is defined by (Txz,y)y = b(z,y) for all y € Y}, for
any z € X.

Xp = arg zztéi)rgh |6 — Bzp|lyy <= xp solves (1).

Proof:
b(x = xh, Thzn) =0 <= (Th(x = xn), Thzn)y =0
— xp=arg min [Tu(x—2z)ly  (Th=Ry!B)
zheXp

= xh:argzmei)rg 1B(x — zu)|lv;- O
h h
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Assumptions for error analysis

Let b(x,y) = (Bx)(y), the sesquilinear form on X x Y generated by B.

{y € Y: b(x,y) =0 for all x € X} = {0}.
—
Ja>0: W¥xeX, alxllx< sup |b(x, y)|
ozvey lylly

< [Ib[}{Ix[[x-
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Assumptions for error analysis

Let b(x,y) = (Bx)(y), the sesquilinear form on X x Y generated by B.

{y € Y: b(x,y) =0 for all x € X} ={0}.

b
Jdag >0: Vxe X, alxllx < sup |b(x, y)|
oxvey |lylly

< [Ib[}{Ix[[x-

3 continuous linear IT : Y — Y}, such that

b(zp,y —IIy) =0 for all z, € Xy, y € Y.
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A priori error analysis

Assumptions [U + | + F] =

bl|[|IT|| .
e = xnllx < LI g 2y
C1 zpEXp
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A priori error analysis

Assumptions [U + | + F] =

bl|[|IT|| .
e = xnllx < LI g 2y
C1 zpEXp

Proof: For any x; € X, C X,

thv
cllxallx < sup L2 by [1]
o2 Ty

17
_ gup [Pl V)| by [F]
otyey  |lylly

thaHy th?.yh
<) sup PO <y g LI
oisly Nyl oimtr, Il

Now apply the Babuska's theorem. ([

Jay Gopalakrishnan 18/27



The avenue of mixed methods

Least-squares
Galerkin method

Petrov-Galerkin
with optimal
test space

Mixed Galerkin
method

Jay Gopalakrishnan
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Equivalent mixed method

The function e, € Y}, solving [Dahmen+Huang+Schwab+We|per 2012]

(en,y)y = £(y) — b(xn,y) forall y € Y},

is called the approximate error representation function.

Theorem
An x, € X, together with some e, € Y}, solves

(ens y)y + b(xn, y) = {(y) forall y € Y,
b(z,ep) =0 for all z € Xp,

if and only if

Xp = argzzréi)rgh 1€ — Bzp||yy-
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Equivalent mixed method

The function e, € Y}, solving [Dahmen+Huang+Schwab+We|per 2012]

(en,y)y = £(y) — b(xn, y) forall y € Y},

is called the approximate error representation function.

Theorem

An x, € X, together with some e, € Y}, solves

(ens y)y + b(xn, y) = {(y) forall y € Y,
b(z,ep) =0 for all z € Xp,

if and only if

Xp = argzzréi)rgh 1€ — Bzp||yy-

Proof:  b(zh, e5) = (Thzn, en)y = (Thzn, Ry (£ — Bxp))y
= (ThZh, Th(X — Xh))y = b(X — Xh, ThZh) = 0. D
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Next

© Petrov-Galerkin schemes ....... ... ... ... ... ... ... v
@ Ideal & practical DPG methods ................................. v
© A priorierror analysis ... ... v
@ Least-squares interpretation ........... ... ... v
© Interpretation as a mixed method ............. ... ... ... .. ... v

@ A posteriori error estimate
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Adaptive DPG applied to the Helmholtz equation

W
|

i
5
L]
-
8

Standard finite elements DPG method

Experiment: Use an adaptive algorithm with standard FEM and DPG
methods, for simulating a Gaussian beam solution of Helmholtz equation.
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Estimating error

Residual: p ={ — Bxy.

Error representation function: -1
P en = Ry (£ — Bxp)

Error estimator: n=llenlly = llpllv; = [1€ — Bxnllv;-

‘ Petrov-Galerkin solveHeh by local postprocessing}

ep is Riesz inverse of residual}
Mixed method e is one of the variables}
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Estimating error

Residual: p ={ — Bxy.

Error representation function: -1
P en = Ry (£ — Bxp)

Error estimator: n=llenlly = llpllv; = [1€ — Bxnllv;-

When Y}, consists of DG functions:

@ e, can be computed element-by-element

(en,¥)y = Uy) — b(xn,y), forall y € Y.

@ [ts element-wise norm serves as a local error indicator.
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A posteriori error control

Theorem |
Assumptions [U + | + F] =

allx — xullx < %+ (||| 1 + osc(£))?, (reliability)
n < |16l [Ix — xnllx (efficiency).

The data approximation osc(¢) = ||¢ o (I — IT)||y~ is efficient in the sense

osc(£) < ||BIIIIF = II|| min fx = za]x.
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A posteriori error control

Theorem [
Assumptions [U + | + F] =

allx — xullx < %+ (||| 1 + osc(£))?, (reliability)
n < |16l [Ix — xnllx (efficiency).

The data approximation osc(¢) = ||¢ o (I — IT)||y~ is efficient in the sense

osc(£) < ||BIIIIF = II|| min fx = za]x.

Proof: The efficiency estimate is immediate:

n = [1BOx = xn)llv; < [[6] [Ix = xnllx-
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Proof of reliability

To prove ci|lx — xpll% < n% + (| 1T]| 7 + osc(£))?, we use these:

ecY: (ey)y =4Ly)— b(xny) forally €Y,

en€ Yn: (eny)y =Ly) — b(xny) for all y € Yj.

Reliability of e is immediate:

b(x — xpn,y
c1l|x — xp|lx < sup M

= ||€||ly-
Sy el

But we need reliability of ey.

Jay Gopalakrishnan
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Proof of reliability

To prove ci|lx — xpll% < n% + (| 1T]| 7 + osc(£))?, we use these:
ecY: (ey)y =4Ly)— b(xny) forally €Y,
en€ Yn: (eny)y =Ly) — b(xny) for all y € Yj.

Reliability of e is immediate:

b(x — xpn,y
c1l|x — xp|lx < sup M

= ||€||ly-
Sy el

To obtain reliability of e, observe that ||e 2 =lleyll2 +1le—ell? and
y of ep lelly = llenlly + | %

1
||6||%/ = (575_]75)\/ = (e —ep, 0 — H(S)y

= ((6 — IT5) — b(xp, 6 — I18) — (e, 6 — II5)y

Jay Gopalakrishnan 25/27



Proof of reliability

To prove ci|lx — xpll% < n% + (| 1T]| 7 + osc(£))?, we use these:
ecY: (ey)y =4Ly)— b(xny) forally €Y,
en€ Yn: (eny)y =Ly) — b(xny) for all y € Yj.

Reliability of e is immediate:

b(x — xpn,y
c1l|x — xp|lx < sup M

= ||€||ly-
Sy el

To obtain reliability of e, observe that ||e 2 =lleyll2 +1le—ell? and
y of ep lelly = llenlly + | %

1
H(SH%/ = (575_]75)\/ = (e —ep, 0 — H(S)y

= ((6 — IT5) — BOANTALS) — (en, o — T15)y
< osc(O)[|6]ly + [lenlly [[L][[[o]]v-

Jay Gopalakrishnan 25/27



Remarks on the theorem

@ The proof never used the fact the x; is the DPG solution.

@ Hence the theorem holds in fact for any X, € Xy, such as an inexactly
computed solution. The residual 7j = || — Bp||y; can be used for
error estimation.

@ The reliability estimate
2
cllx =l < 72 + (1] -+ osc(?)
was improved to

2
crllx = xallx < 7P + <m/un||2 “14 osc(z))

by [Keith+Vaziriastaneh+Demkowicz 2017] when IT is a projection.

Jay Gopalakrishnan 26/27



Conclusion of Lecture 2

© Petrov-Galerkin schemes ....... ... ... ... ... ... ... v
@ Ideal & practical DPG methods ................................. v
© A priorierror analysis ... ... v
@ Least-squares interpretation ........... ... ... v
© Interpretation as a mixed method ............. ... ... ... .. ... v
@ A posteriori error estimate .......... ... .. v
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