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CHAPTER 1

Introduction

These are notes based very loosely on a class I gave on harmonic analysis
on homogeneous spaces at the Royal Institute of Technology in Stockholm in
the spring of 1994 as part of a course whose first term was a course in integral
geometry (which is why there are so many references to integral geometry).
They are not quite elementary in that it is assumed that the reader knows
the basics of elementary differential geometry, that is the definition of a
smooth manifold, vector fields and their flows, integration of differential
forms, and some very elementary facts of Riemannian geometry. Volume
one of Spivak [25] covers much much more than is required. As time, energy,
and interest permits I plan to add to these notes mostly along the lines of
applications to concrete problems on concrete spaces such as Spheres and
Grassmann manifolds.

The main goal was to give a proof of the basic facts of harmonic analysis
on compact symmetric spaces as given by the results in Chapter [ (and
Theorems 5.1.1] and p.2.1 in particular) and then to apply these to concrete
problems involving things such as the Radon and related transforms on these
spaces. In this the notes are only half successful in that I an quite happy
with the proofs in Chapter [ in that they only use basic functional analysis
and avoid the machinery of Lie groups and should be accessible to anyone
with a year of graduate real analysis under their belt (and willing to take a
few facts about manifolds on faith). As to the applications these notes are
more or less a failure as none of any substance are given. Much of the class
was spent on these applications, but as I just more or less followed standard
presentations (mostly the wonderful book of Helgason [I7]) there seemed
little reason for writing up those lectures.

To make up for the lack of applications to Radon transforms on sym-
metric spaces, Appendix B uses the machinery of Chapter H in the case of
finite groups and gives several results on Radon transforms on Grassman-
nians of subspaces of vector spaces over finite fields. I had a great deal of
fun working this out and would like to think it is at least least moderately
entertaining to read.

The two appendices [J and [ give a proof of Federer’s coarea formula and
use it to prove some Sobolev and Poincare type inequalities due to Federer
and Fleming, Cheeger, Mckean, and Yau. These appendices (which were
originally notes from an integral geometry class) are included in the belief
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that having “analysis” in the title obligates me to include some nontrivial
inequalities.

As to the basic notation if M is a smooth manifold (and all manifolds
are assume to be Hausdorff and paracompact) then the tangent bundle of
M will be denoted by T'(M) and the tangent space at = € M by T(M),. If
f: M — N is a smooth map then the derivative map is denoted by f, so
that fi, is a linear map fu, : T(M)z — T(N) ). The Lie bracket of two
vector fields X and Y on M is denoted by [X,Y].



CHAPTER 2

Basics about Lie Groups and Homogeneous Spaces

2.1. Definitions, Invariant Vector Fields and Forms

A Lie Group is a smooth manifold G and a smooth map (§,7) — &n
(the product) that makes G into a group. That is there is an element e € G
so that e = e = ¢ for all £ € G. For any € € G there is an inverse £7! so
that €671 = ¢71¢ = e and the associative law £(n¢) = (£1)¢ holds.

REMARK 2.1.1. According to Helgason [I6, p. 153] the global definition
of a Lie group given just given was emphasized until the 1920’s when the
basic properties where developed by H. Weyl, E. Cartan, and O. Schrier.
Local versions of Lie groups have been around at least since the work of Lie
in the nineteenth century.

EXERCISE 2.1.2. Use the implicit function theorem to show that the
map & — £ ! is smooth. HINT: This is easier if you know the formula for
the derivative of the product map (&,7n) — &n given in proposition B.1.5
below (whose proof does not use that & — =1 is smooth). O

The left translation by g € G is the map L,(§) = g&. This is smooth
and has L,-1 as an inverse so it is a diffeomorphism of G' with its self.
Likewise there is right translation R,({) = £g. These satisfy

Lgig, = LgiLg,, Rgig, = Ry, Ry, .
(Note that order of the products is reversed by right translation.) Also left
and right translation commute
Ry, 0 Ly, = Ly, © Ry, .

A vector field is left invariant iff (Lg,X)(§) = X(g&) for all g,¢ € G.
Denote by g the vector space of all left invariant vector fields.

PROPOSITION 2.1.3. Ifv € T(G), there is a unique left invariant vector
field X with X (e) = v. Thus the dimension of g as a vector space is dim G.
If ¢ is a curve in G with ¢(0) = e and ¢(0) = v then X is given by

d d
X(6) = Eﬁc(t) = —Rp€

dt

= L¢yv.

t=0 t=0

PRrOOF. Uniqueness is clear from the left invariance: If two left in-
variant vector fields agree at a point they are equal. To show existence
just define X (§) = L¢v and verify that it is left invariant. To show the

7
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other formula for the left invariant extension holds define a vector field by
Y (&) := (d/dt)éc(t)|i=o. Then

d d d
Ly Y (&) = Ly —&c(t = —L&c(t = — t =Y .
g (5) g dté-C( ) =0 dt QSC( ) 0 dtg§C( ) =0 (gé-)
So Y is left invariant and as Y(e) = v = X(e) this implies X = Y and
completes the proof. O

PROPOSITION 2.1.4. Any left invariant vector field is complete (i. e.
integral curves are defined of all of R.) If X is left invariant and c in an
integral curve of X with c(0) = e, then c(s +1t) = c(s)c(t). (That is c is a
one parameter subgroup of G.)

PROOF. Let ¢ : (a,b) — G be an integral curve of the left invariant
vector field X. We need to show that the domain of ¢ can be extended to all
of R. Let a < tg < t1 < band let g € G be the element so that gc(to) = c(t1).
Define v : (a+ (t1 —t0),b+ (t1 —to)) — G be y(t) = gc(t — (t1 — to)). Then

Y (t) = Ly (t — (t1 — t0)) = LguX (c(t — (t1 — t0)))
= X(ge(t — (t1 — t0))) = X (7(1))

so 7y is also an integral curve for X and as v(t;) = gc(to) = c(t1) this
implies that ¢ = 7 on the intersection of their domains. Letting § = (¢ — to,
thus shows that ¢ can be extended to (a,b+ 9) by letting ¢ = v on [b, b+ 9).
Repeating this argument k times shows that ¢ can be extended as an integral
curve of X to (a,b+ kd). Letting k¥ — oo shows that ¢ can be extended to
(a,00). A similar argument now shows that ¢ can be extended to R =
(—00,00). This completes the proof X is complete.

Let s € R and let ¢ be a integral curve of the left invariant vector field
X with ¢(0) = e. Define y(t) = ¢(s)~tc(s +t). Then (0) = c(s) te(s) = e
and

7/(t) = Lc(s)_l*cl(s + t) = Lc(s)_l*X(C(s + t)
= X(c(s)"te(s + 1)) = X(1(1)).
Therefore by the uniqueness of integral curves for a vector field ~(t) =

c(s)7Le(s +t) = c(t), which implies (s +t) = c(s)c(t). O

If v € T(G). and X is the left invariant vector field extending v, then the
one parameter subgroup ¢ determined by X is usually denoted by exp(tv) :=
c¢(t). With this notation the map v — ¢(1) = exp(v) from T'(G), to G is the
exponential map.

PROPOSITION 2.1.5. Letp : GXG — G be the product map p(§,n) = &n.
Then the derivative of p is given by

Pem+(X,Y) = Le.Y + Ry X.
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(Here the tangent space to T(G X G)¢ . s identified with T(G)e x T(G),
in the obvious way.) If 1 : G — G is the inverse map (&) = €71, then

Lg*X = —Lé—l*Rg—lX = —Rg—l*Lg—lX.

PRrOOF. To prove the formula for p, it is enough to show that
p(&,n)*(Xv O) = Rn*X and p(fm)*(o, Y) = Lg*Y.
Let ¢(t) be a curve in G with ¢(0) = £ and ¢/(0) = X. Then
d d d
L X,0) = —p(c(t), = — = —R,c(t
(5,00 = Glett)m)| = e et

t=0 a dt
The calculation for p¢ ), (0,Y) = Lg,Y is similar.
By Exercise the map ¢ is smooth. To find the derivative of ¢ let
c(t) be a curve with ¢(0) = ¢ and ¢/(0) = X. Then c(t) te(t) = e so

d _
0= a(c(t) Lex (b)

(t)n = R X.

t=0

d _
= LC(O)—l*CI(O) + RC(O)* EC(t) 1

t=0
d .1
= L1, X + Re. ac(t) .
Solving this for (d/dt)e(t) =0
X = 2 c(t) ! Re-1,Le-1, X
% = — = — —1y —1y

PROPOSITION 2.1.6. If X and Y are left invariant vector fields, then so
is [X,Y].

PrOOF. For any diffeomorphism ¢ and any vector fields the relation
0| X, Y] = [p« X, 0. Y] holds. If X and Y are left invariant the proposition
follows by letting ¢ = L. O

REMARK 2.1.7. The last proposition shows that the vector space g of
left invariant vector fields is closed under the Lie bracket. A Lie algebra
vector space with a bilinear product [-,...] which is skew-symmetric (i.e.
[X,Y] = —[Y, X] that satisfies the Jacobi identity

[Xv [Yv ZH = [[Xv Y]7Z] + [Y7 [X7 Z]]

As the Lie bracket of vectors fields satisfies the Jacobi identity the last
proposition show that g is a Lie algebra, called the Lie algebra of G.
While this is very important in some parts of the theory of Lie groups, for
example the representation of Lie groups, it does not play much of a role in
classically integral geometry.
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Just as there are left and right invariant vector fields, there are left and
right invariant forms. Let w be a differential form on G Then w is left
tnvariant iff Ljw = w for all g € G. It is right invariant iff Rjw = w for
all g € G.

PROPOSITION 2.1.8. Let wy be an element of N\* T*(G)e. Then there is
a unique left invariant form w with we = wo. If w a left invariant form, then
s0 is Rgw for any g € G.

PROOF. Define w by w¢ = Lg,lwo. Then w is easily checked to be left
invariant.

Assume that w is left invariant so that Li{w = w. Then using that left and
right translation commute we have Li"Rjw = R;ng = Rgw. Therefore
Rjw is left invariant. O

2.2. Invariant Volume Forms and the Modular Function

Proposition P.1.§ implies the space of left invariant volume forms (that
is forms of degree n where n = dim G) is one dimensional and that if Q¢ is a
left invariant volume form, then so is Ry Q¢ for any g € G. This allows us to

define a function A, : G — R# (where R¥ = R\ {0} is the multiplicative
group of non-zero real numbers) by
AL(9)Qa = RZ—1QG

where ()¢ is any non-zero left invariant volume form on G. It is easily
checked this definition is independent of the choice of the form Q4. Also
define the modular function Ag of G by

Ac(g) = |A5(9)]-
The group G is unimodular iff Ag = 1. We will see shortly that G is
unimodular iff there is measure on G that is both left and right invariant.

ProrosiTION 2.2.1. The function AE never vanishes and is a smooth
group homomorphism of G into R¥ (i.e. AL(g1g2) = AL(91)AL(g2)). The
function Ag is a smooth group homomorphism from G into R™ (the mul-
tiplicative group of positive real numbers). If G is connected then AE
is positive on G. If K is a compact subgroup of G, then Ag(a) = =£1 for all
a € K. In particular if G is compact then G is unimodular.

Proor. If g1,92 € G, then
AG(9192)0 = R, 1196
- RQIIR9£1QG
= AL(91)AG(92)Q6-

This implies AL(g1g2) = AL(91)AL(g2). As Af(e) = 1 the relation 1 =
AL(9)AL(g™Y) implies AL(g) # 0. Thus A is a homomorphism into R#
as claimed. This implies A¢ is a homomorphism into R™. If G is connected,
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then Ag can not change sign with out taking on the value zero. Therefore
in this case AE’; > 0. If K is a compact subgroup of G, then the image
AE[K ] is a compact subgroup of R*. But every compact subgroup of R#
is a subset of {£1}. This completes proof. O

PROPOSITION 2.2.2. Let Qg # 0 be a left invariant volume form on G,
and © a right invariant volume form with ©, = Q. Then

0= AEQ(;.
Therefore G has a volume form that is invariant under both left and right

. . . +
translations if and only if Al = 1.

PROOF. Note
(R;AL00), = AL(EgT R = Ab(Eg)AL(9) = AGE( Q).

Thus AgQG is right invariant. As this form and © both equal Q¢ at the
origin right invariance implies AEQG = 0. O

REMARK 2.2.3. In many cases (see examples below) it is straight for-
ward to find left and right invariant volume forms on the group G. Then
the last proposition gives an easy method for finding the function Ag.

PROPOSITION 2.2.4. If Q¢ is a left invariant volume form on G, and
t: G — G is the map 1(€) = £71, then
L*QG = (—1)”Agﬂg.
PROOF. First note that to Ry = Ly-1 o¢. Thus
Ry Qg = (10 Ry)" Qg = (Lyg-101)" Qg = "L Qg = " Q¢

which shows that t*Q¢ is right invariant. The derivative of ¢ at e is 1o = — Id
(cf. Prop. B.1.5) and thus (:*Qg)e = (—=1)"(Q¢)e. The result now follows
from the last proposition. O

Let d¢ be the left invariant measure on GG, which can be viewed as the
“absolute value” of a left invariant volume form Qg. Then the transforma-
tion rules above can be summarized as

/G F(g€) de = /G £(6) de

(2.1) /G f(é9)de = A(g) /G £(6) de

/ ey de = / FO)AG(E) de
G G
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2.3. Homogeneous Spaces

2.3.1. Definitions and the closed subgroup theorem. Here we
describe the spaces that have a transitive action by a Lie group G. All these
spaces can be realized as spaces of cosets G/K := {{K : £ € G} for closed
subgroups K of G. The the closed subgroups of a Lie group are better
behaved that one might expect at first because of:

THEOREM 2.3.1 (E Cartan). A closed subgroup H of a Lie group G is
a Lie subgroup of G. That is H is am imbedded submanifold of G in such
the manifold topology of H is the same as the subspace topology.

REMARK 2.3.2. This result was first proven by E Cartan. A little earlier
Von Neumann had proven the result in the case G = GL(n,R). The proof
here follows Sternberg [27, p. 228] and is based on several lemmas. As most
of the closed subgroups of Lie groups that we will encounter will more or
less obviously be Lie subgroups the reader will lose little in skipping the the
proof. And to be honest we will be using two facts ((2:3) and (23)) which
are standard parts of the basics about Lie groups, but which get not proof
here.

LEMMA 2.3.3. Let g be the Lie algebra of G. Let {X;} be a sequence of
elements of g so that lim;_,., X; = X for some X € g and assume there
is a sequence of nonzero real numbers t; with lim;_t; = 0 and so that
exp(t;X;) € H for alll. Then exp(tX) € H for all t.

PROOF. As exp(—X;) = (exp(X;))~! by possibly replacing X; by —X;
we can assume t; > 0. Letting [-] be the greatest integer function define for
teR

t
ki(t) = [t_] so that llim tik(t) = t.
! —00
Since k;(t) is an integar and exp(;X;) € H,
exp(ki(t)t1X1) = (exp(t; X1)" " € H.

But lim;_, ki (t)X; = tX and as H is closed and exp continuous we have
exp(tX) = lim;_ exp(ki(t)X;) € H. This completes the proof. O

LEMMA 2.3.4. Let b be the subset of the Lie algebra g of G defined by
h={X €g:exp(tX) € H for allt}. Then b is a Lie subalgebra of g.

ProoF. We first show § is closed under sums. Let XY € h. Then
exp(tX)exp(tY) € H for all t € R. But
(2.2) exp(tX)exp(tY) =exp(t(X +Y) +tZ;)

where lim;_,g Z; = 0. Taking any sequence of positive numbers {t;} so that
lim;_.o ¢t = 0 and setting X; := X +Y + t;Z;, we can use Lemma P.373 to
conclude that X +Y € h.
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We now need to show h is closed under Lie bracket. If X,Y € b then
for all t € R there is a W; € g so that

(2.3) exp(tX)exp(tY) exp(tX) Lexp(tY) ! = exp(t*[X, Y] + t*W,) € H

and lim; g W; = 0. So that another application of Lemma P.3.3 implies
[X,Y] € h. This completes the proof. O

LEMMA 2.3.5. Using the notation of the last lemma let b’ be a com-
plementary subspace to b in g so that g = b ® b'. Then there is a open
neighborhood V' of 0 in b’ so that 0 £Y € V' implies expY ¢ H.

PROOF. If the lemma is false there is a sequence 0 # Y; € b’ with
lim; o Y] = 0 and exp(Y;) € H. Put a Euclidean norm || - || on b’ and
let K be the closed annulus K := {X € ' : 1 < || X| < 2}. We can
assume that ||Y;|| < 1 for all [ which implies there are integers n; so that
nY; € K. Since K is compact by going to a subsequence we can assume
that lim;_,.on;Y; = X for some X € K. Then if we set X; := n;Y; and
t; := 1/n; then Lemma P33 implies exp(tX) € H for all ¢t and thus X € b.
But then X € hNh’ = {0} which contradicts that || X|| > 0. This completes
the proof. O

LEMMA 2.3.6. There is an open neighborhood U of the identity e of G
so that U N H is a smooth submanifold of U.

PROOF. Let V' be the neighborhood of 0 in §’ given by the last lemma
and let V' be a small open neighborhood of 0 in . Then by making V and V'
smaller we can assume the map (X, X’) — exp(X)exp(X’) from the open
neighborhood V' x V' in g is a diffeomorphism onto an open neighborhood
U of e in G. Assume that exp(X)exp(X’) € H. Then as X € V C h we
have exp(X) € H so that also exp(X’) € H. By Lemma P.3.5 this implies
that X’ = 0. Thus HNU = {exp(X) : X € V} which is a smooth (and in
fact real analytic) submanifold of U. This completes the proof. U

ProOOF OoF THEOREM 3. Let U be the neighborhood of the identity
e of G given by the last lemma. Then for any point £ € GG the open neigh-
borhood &U := {£g : g € U} is an open neighborhood of £ in G so that
&U N H is a submanifold of £U. Therefore H is an embedded submanifold
of G. That H is a Lie subgroup is now straightforward. O

A good deal of both integral geometry and harmonic analysis on homo-
geneous spaces involves integration over spaces such as the space of all lines
or all planes in in R3, the space of all circles on the sphere S? and the like
where what these examples have in common is that they have a transitive
action by a Lie group. We will show that under very minimal hypothesis
this implies the object in question must be a smooth manifold and can be
realized as a “homogeneous space” or coset space G/H for Lie group G with
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closed subgroup H. This point of view is important not only because it lets
us see that most objects in mathematics that have a transitive continuous
group of symmetries are “nice” in the sense they are manifolds, the realiza-
tion of these spaces as homogeneous spaces G/H makes it possible to deal
with the analysis and geometry of these spaces in a uniform manner.

Here is the basic outline of how this works. Let X be a set and let G be
an abstract group. By an action of G on X we mean a map (g,x) — gz
from G x X — X so that ex = z for all z € X and (g192)z = g1(g22). This
implies that g~'gz = « for all ¢ and x and therefore the map = — gz is
invertible with inverse x — gz. The action is transitive iff for all x1,x9 € X
there is a ¢ € G with gr; = x3. That is any element of X can be moved
to any other element by a member of G. Let xp € X and let H = {a €
G : axg = xo}. The subgroup H is the one point stabilizer of o or the
isotropy subgroup of G at xy. Let G/H = {¢H : £ € G} be the space of
left cosets of H in GG. Note there is also a natural action of G on the space
G/H given by g(§H) = (g€)H.

EXERCISE 2.3.7. Assume that the action of G on X is transitive and let
H be the one point stabilizer of g in G. Then show:

1. The map ¢ : G/H — X given by @(§H) = &xp is a bijection of
G/H with X. This map commutes with the action of G, that is
p(g€H) = gp(EH).

2. Ifxy € X let H = {a € G : ary = 11}, then H; = gHg~! where g is
any element of G with grg = 1.

3. An element ¢ fixes every point of X (i.e. £&x = x all x € X) if and

£ €Nye 9l O

We now set up some notation. Let H be a closed subgroup of the Lie
group G with dimG = n and dim H = k and let G/H be the set of left
cosets of H in G. Let m : G — G/H be the natural projection 7(§) = £H.
This maps commutes with the action of G, 7(g§) = gn(§). Give G/H the
quotient topology, that is a subset U C G/ H is open iff the preimage 7! [U]
is open in G. This maps clearly maps 7 continuous. It also makes 7 into
an open map, that is if V' C G is open, then 7[V] is open in G/H. This is
because 7~ V] = VH :=J,cy Va is a union of open sets and thus open.

THEOREM 2.3.8. IfG is a Lie group and H a closed subgroup of G, then,
with the topology above, the space G/H has a natural structure of a smooth
manifold of dimension dim G — dim H.

PRrOOF. The idea of the proof is simple and natural. Choose a submani-
fold of G of dimension dim G —dim H that is transverse to each of the cosets
&H it meets and so that it only meets each coset at most once. Then coor-
dinates on the submanifold give coordinates on the space of cosets. What
takes some work is showing that the transition functions between coordi-
nates constructed in this way are smooth.
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We first show that G/H is a Hausdorff space. If £y, m9 € G with {oH #
&1H (so (&) # (&) in G/H), then there are open neighborhoods Vp and
V1 of & and & so that VpH NV H = @. To see this note 51_150 ¢ H and H
is closed. Thus by the continuity of the map (&,n) +— n~1¢ there are open
neighborhoods V; of &; so that the set {n~1¢ : € € Vi,n € Va} is disjoint
form H. From this it is not hard to check that Vi H and Vo H are disjoint.
As each V;H is a union of the open sets Vja with a € H it is an open set.
As the map 7 is open the sets 7[VoH| and n[V1 H] are disjoint open sets in
G/H and as 7(§;) € w[V;H] this shows distinct points of G/H have disjoint
neighborhoods so G/H is Hausdorft.

Let n = dim G and k& = dim H. Then call a submanifold M of G nicely
transverse iff it has dimension n — k, at each £ € M the submanifolds M
and £H intersect transversely at & (that is (M) NT({H)e = {0}) and
finally the set £H only intersects M at the one point €. Let N be another
nicely transverse submanifold of G. Let U be the subset of M of points £ so
that the set £ H meets the submanifold N in some point which we denote by
©(£). We now claim that U is open in M, ¢[U] is open in N and that the map
¢ : U — ¢[U] is a smooth diffeomorphism. Define a function f: M xH — G
by f(§,a) := €a. Let Xi,..., X, be a basis for T'(M)¢ and Yi,...,Y}; a
basis of T'(H),. Then using the formulas of proposition B.1.5

Fetea)(Xi,0) = Rau X1, fu(e)(0,Y)) = Le.Yj.

Note that R.,X1,..., R«wX,_ are linearly independent modulo the sub-
space T'(§H )¢q (as X1,..., X, —p are linearly independent modulo T'({H )¢
and R, maps T'({H )¢ onto T(H )¢q). Also Le, maps Y7, ... , Y}, onto a basis
of T(§H )¢q- It follows that f, ¢ o) maps a basis of T'(M x H) (¢ ,) onto a basis
of T(G)¢q- Therefore by the inverse function theorem the map f is a local dif-
feomorphism. But the hypothesis that M is a nicely transverse implies that
f is injective. (If £1a1 = &2a9, then & = §1a2a1_1 and as the orbit & H only
meets M at & this implies £ = & and a; = ag.) Therefore is a diffeomor-
phism of M x H onto the open set f{M x Hl = MH ={a:{ € M,a € H}.
As the set ¢[U] is just the intersection of N with M H it follows that ¢[U]
is open in N. A similar argument replacing, but reversing the roles of M
and N, shows that U is open in M.

Any point of p[U] can be written uniquely as f(§,a) = £a for £ € U
and a € H. The inverse of the map ¢ is then given by f(&,a) — (£,a). As
the level sets {f(&o,a) : a € H} = o H are all transverse to N the implicit
function theorem implies this maps is smooth. Thus the inverse of ¢ is
smooth. Again a similar argument reversing the roles of M and N shows
that ¢ is smooth. Thus ¢ : U — ¢[U] is a diffeomorphism as claimed.

We now construct coordinates on G/H. Let xyp € G/H. Choose {y € G
with 7(§y) = xp. Then there is a nicely transverse submanifold M with
& € M. By making M a little smaller we can assume that there is a
diffeomorphism uy; : M — Vjy where Vyy C R" % is an open set. As above
the set M H is open in G and thus 7[M] = n[M H] is open in G/H and the
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restriction of 7 to M is a bijection of M with w[M]. Define vys : w[M] — Vs
by vy = 7T|]T/[1 ouys. The function vys thus gives local coordinates on the
open set w[M]. To see this defines a smooth structure on G/H we need to
check that the transition functions between coordinates are smooth. Let N
be another nicely transverse submanifold of G and let vy be the coordinates
function defined on 7[N]. Let U C M be as above and let ¢ : U — ¢[U] be
as above. Then the transition function 7y n : var[Var N V| — on[Var N V]
is given by
TM,N :Uj\i/ll OUN :uJT/Ilogoo’LLN

which is clearly smooth. This completes the proof. O

2.3.2. Invariant Volume Forms. We are now interested in when the
homogeneous space G/H has an invariant volume form. There is a easy
necessary and sufficient condition for the existence of such a form, but first
we need a little notation. Let G be Lie group of dimension n and let H be a
closed subgroup of G dimension k. Then there is a linearly independent set
of left invariant one forms w', ... ,w™ ¥ so that the restriction of each w’ to
T(H), is zero. By left invariance this implies that the restriction of each w?
to T'({H)¢ is zero for each . Thus for each & the T({H)e = {X € T(G)e :
w'(X) =w"k(X) =0}. If ¢!,... ,0" % is another such set of left invariant
one forms, then the is a nonsingular matrix cé- so that o =Y j céwj . This
implies the (n — k)-form

WG/ H = wh A AR
is well defined up to a nonzero constant multiple.

THEOREM 2.3.9. The homogeneous space G/H has a G invariant vol-
ume form Qg if an only if the form wg/y is closed (i.e. dwg/p = 0).
If this holds, then wg/g = 7™ Qq/g where m : G — G/H is the natural
projection.

REMARK 2.3.10. This is from the book [23] of Santalé page 166. For
other conditions that imply the existence of an invariant measure see [23,
p. 168, and §10.3 pp.170-173].

ProOF. If G/H has an invariant volume form Q¢/g, then 7°Qg /g is a
left invariant (n — k)-form on G so that 1x7*Qg /gy = 0 for all X € T(H)e.
This, and a little linear algebra, show that wg,p = cm*Qg/g for some
constant ¢. Thus dwg g = cdn*Qq/g = cn*dQq/g = 0 as dQg g = 0 for
reasons of dimension.

Now assume that dwg/iy = 0. We first claim that wg/g = 7 for a
unique form Q on G/H. To see this let xyp € G/H and choose coordinates
z', ..., 2" centered at zy (where n = dimG, k = dim H). Let & be
a point in G with 7(&) = x¢. Define functions u!,... ,u" % near & by
u! = m*2' = 2’ om. Then by the implicit function theorem there are function
yt, ... ,yF so that y*, ... ,y*, ul,... ,u" % are coordinates on G centered
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at &. Note that the forms dul,...,du™ " all vanish on all of the vector
tangent to a fiber 7~ ![z] and thus locally are in the span (over the smooth
functions on G) of the forms w?, . .. ,w" kTt follows that in the coordinates
y', . yF ug, ... u™F the form wg,/p 1s of the form

wG/H = a(y’, u)dul A - A dumF

for a unique smooth function a(y’,u'). Then
i Oa
0=dwg/yg = ZdylaT/ldyl Adut, . AduE
=1

This implies da/dy' = 0 for all [l = 1,... ,k and thus that a is independent

of y',. .. vk s0 a=a(ul,... ,u") and
wWa/H = a(ul,... ,u”_k)dul A Adu™F = 770
Q=a(z!, ..., 2" F)dat Ao A da"

This clearly uniquely defines €2 near xzy and the uniqueness shows that €2 is
globally defined on G/H. But then 7°¢g*Q = Lyn*Q = LyQq /g = Qq/g =
Q. As 7 is a submersion this yields ¢g*Q = 2 and so G/H has the invariant
volume form Qg g = 2. O

PRrROPOSITION 2.3.11. If w is a left invariant form and g € G, then the
forms dw and Rjw are also left invariant.

PROOF. If w is left invariant, then Ljdw = dLjw = dw and so dw is also
left invariant. As the maps R, and L, commute for all g;,g € G we have

Ly Ryw = RyLy w = Rjw, which shows that Rjw is left invariant. O

2.3.3. Invariant Riemannian Metrics. Let G be a Lie group and K
a closed subgroup of G. The geometry of the homogeneous G/K is easier
to understand if it is possible to put a Riemannian metric on G/K that is
invariant under the action of G on G/K. One reason for this is that it is
often useful to have a metric space structure on G/K that is invariant by
the action of G and an invariant Riemannian gives such a structure. If the
group K is compact then we can use a standard averaging trick to show that
G/K has such a metric:

THEOREM 2.3.12. Let G be a Lie group and K a compact subgroup of
G. Then the homogeneous space G/K has an invariant Riemannian metric.
Taking K = {e} shows that the group G has a left invariant Riemannian
metric.

PROOF. Let m : G — G/K be the natural projection and let o = m(e)
be the origin of G/K. Then the group K acts the tangent space T'(G/K)o
by the action a - X = a,.X where a, is the derivative of a at 0. Let go(,) be
any positive definite inner product on the vector space T'(G/K)o. As the
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group K is compact it has a bi-invariant measure da. Then define a new
inner product g(,) on T(G/K), by

g(X,Y):/ go(axX,a.Y)da.
K

This in invariant under the action of K: If b € K then (using the change of
variable a — ab™!)

9(b:X,0.Y) :/ go(axbi X, ab.Y) da :/ go(a: X, a.Y)da = g(X,Y).
K K

Define a Riemannian metric (,) on G/K by choosing for each z € G/K an
element ¢ € G with £o = o and setting

(2.4) (X,Y), = g(&1 X, &71Y).

This is independent of the choice of £ with o = z for if {0 = z then £’ = &a
for some a € K and therefore

g( )X (YY) =g(a ' X, a1 TY) = g(671X,6TY)

by the invariance of g(,) under K. Finally if g € G/K then as the map
m: G — G/K is a submersion there is neighborhood U of zp and a smooth
function £ : U — G so that m(&(x)) = z for all x € U, that is {(x)o =
m(€(0)) = x. This implies that near any point z¢ of G/K it is possible to
choose the elements ¢ in the definition (.4) to depend smoothly on z. Thus
(,) is a smooth Riemannian metric on G/K. We leave showing that this
metric is invariant under G as an exercise. O

COROLLARY 2.3.13. If G/K is a homogeneous space with K compact
then G/K has an a measure invariant under G.

PRrROOF. The space G/K has an invariant Riemannian metric and thus
the Riemannian volume measure is invariant under the action of G. |

It will often be useful to have a left invariant Riemannian metric on G
that related in a nice way to a given invariant Riemannian on G/K.

PROPOSITION 2.3.14. Let G be a Lie group and K a closed subgroup of
G. Let g(,) be a Riemannian metric on G which is left invariant under
elements of G and also right invariant under elements of K. Then there
is a unique Riemannian metric (,) on G/K so that the natural map © :
G — G/K is a Riemannian submersion. This metric is invariant under the
action of G on G/K.

Conversely if K is compact and () is an invariant Riemannian on met-
ric on G/K then there is a Riemannian metric g on G which is left invariant
under all elements of G and right invariant under elements of K. We will
say that the metric g(,) is adapted to the metric ().
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PROOF. A (tedious) exercise in chasing through definitions. (In proving
the section part it is necessary to average over the subgroup K to insure
that the metric g(,) is right invariant under elements of K.) O

PROPOSITION 2.3.15. Let G/K be a homogeneous space with K com-
pact. Let (,) be an invariant Riemannian metric on G/K and assume G
has a Riemannian metric that is adapted to (,) in the sense of the last
proposition. Then for any integrable function on f on G/K

(2.5) Vol(K) [ fla)de = / f(me)de
G/K G
where d€ is the Riemannian measure on G and Vol(K) is the volume of K
as a Riemannian submanifold of G.
Likewise if h is an integrable function on G then

(2.6) | rman= [ p / |, e deds

where d¢ is the volume measure of 7~ 1[x] considered as a Riemannian sub-
manifold of G.

PROOF. A straight forward exercise in the use of the coarea formula. [J

2.3.4. Invariant Forms on Matrix Groups. Many if not most of
the Lie groups encountered in geometry are matrix groups. Fortunately
they are in several ways easier to deal with than general Lie groups. In
particular there are several methods for finding the left and right invariant
on matrix groups and their homogeneous spaces. As a first example of
this we let GL(n,R) be the general linear group over the reals. That is
GL(n,R) is the group of n x n-matrices with non-zero determinant. We use
the natural coordinates X = [z]] on GL(n,R). It terms of these coordinates
the following lets us find the left and right invariant forms.

PROPOSITION 2.3.16. If X = [z]] is matriz of coordinate functions on
GL(n,R), then the elements of the matriz X 'dX are a basis of the left
invariant one forms of GL(n,R). If G is a Lie subgroup of GL(n,R) of
dimension m, then the basis of the left invariant one forms on G can be
found by restricting the some collection of invariant one forms of GL(m,R)
down to G. Likewise the elements of the matriz (dX)X ! gives a basis of
the right invariant one forms on GL(n,R) and by restriction these can be
used to find the right invariant one forms on any Lie subgroup of GL(n,R).

PROOF. Let A € GL(n,R) be a constant matrix. Then left translation
by A is matrix multiplication on the left by A: La4(X) = AX. As A is
constant d(AX) = AdX. Thus

Ly X 'dX) = (AX)1d(AX) = X A1 AdX = X~ tdX.
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Thus the elements of X ~'dX are left invariant as claimed. At the identity
matrix I we have (X 'dX); = [dz!]; and these are linearly independent.
Thus the elements of X ~'dX form a basis of the left invariant one forms as
claimed. That the left invariant one forms on a Lie subgroups can be found
by restriction is straight forward linear algebra and left to the reader. The
proof in the case or right invariant forms is identical. O

We now give several examples of this. As a first example let

G:{B 31/} ::c,yGR,:c;éO}.

This is the group of all affine mappings of the line R. Letting g = [g y]

1
we have .
P - dg = [da: dy]
— | X X 9 -
0 1 0 O

do dy d ydr
g ldg=\"7% =z |. dogt=1|7% x 4
0 0 0 0

Thus the elements dx/x and dy/z of g~'dg give a basis for the left invariant
one forms on G and the elements dx/x and —(ydx)/z + dy of dgg=! are a
basis of the right invariant one forms on G. This implies

dr ANd
Qg = 22
x
is a left in variant volume form on G and
dx N\d
0= Y
x
is a right invariant volume form. The relation © = AEQG of proposi-
tion Z.2.2 then implies
1

Thus G is not unimodular and this shows the function AJ& can change sign
as claimed above.

For this group we now give some homogeneous spaces and use the theory
above to investigate if they have an invariant volume form. First identify

the real numbers R with the set of column vectors of the form clz . Then

y] [a]:[xa—i_y}Thesub-

G acts on R by left multiplication [ 0 1 1 1

group H fixing the element (1] is
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The form wg/f is given by
dy
wa JH = — -
x
As dwg g = —(dz A dy)/x? # 0 this implies the homogeneous space G/H =
R has no invariant volume form invariant under G. (While it is clear that
R has no measure invariant under the group of affine maps and the above
may seem like over kill it is useful to see how the theory works in easy
to understand cases before applying it it cases where the results are not
obvious.)
The group also acts on R#, the space of nonzero real numbers, by ga =
za. In this case the subgroup fixing the point 1 is

no{[) 7] oven).

So in this case wg g = dr/x and this a closed. Thus R has a G invariant
volume form, and if z is the natural coordinate on R, then dz/x is the
invariant volume form on R#. Note that dz/z is also the invariant volume
form on R# considered as a multiplicative group.

We now look at a more interesting example. Let E(2) be the group of
rigid orientation preserving motions of the plane R2. If we identify R? with
a
the space of column vectors | b | then the group E(2) can be realized as
1
a the matrix group

cos) —sinf =z

E(2) = sinf cosf y |:0<0<2mz,yeR
0 0 1
cosf) —sinf =z
Letting g = | sinf cosf y | we have
0 0 1
cosf sinf —xzcosh —ysinf
g '=| —sinf cosf xsinh—ycosh |,
0 0 1
—sinfdf —cosfdf dx
dg = cosfdf —sinfdf dy |,
0 0 0

0 —df cosfBdx+sinfdy
g ldg=|dd 0 —sinfdx+cosfdy |,
0 O 0

0 —df ydf+dx
dggt=1dd 0 —xdd+dy
0 0 0
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Thus a basis for the left invariant one forms is df, cosfdx + sinf dy and
—sin @ dx+cos @ dy. A basis for the right invariant one forms is df, y df + dx
and —x df + dy. Taking the exterior product of these elements yields that

QE(Q):dH/\dx/\dy:dm/\dy/\dG

is a bi-invariant volume form on E(2).
The group E(2) has a transitive action R2. The subgroup fixing the
origin is
cosf —sinf 0
SO(2) = sinf cosf 0 |:0<60<27m
0 0 1
The foliation of E(2) by the left cosets of SO(2) is defined by cos @ dzx +
sinfdy = —sinf dx + cos 0 dy = 0. Therefore

wR2 = (cos@dx +sinfdy) A (—sinf dx + cos 0 dy) = dx A dy.

This is closed, so the space R? has the invariant area form dz Ady. Of course
we knew this was an invariant volume before starting the calculation. The
next example is less obvious.

For a much more interesting example let AG(1,2) be the space of all
oriented lines in R?. That is a straight line together with a choice of one
of the two directions along the line. The group E(2) is transitive on the set
AG(1,2) and thus AG(1,2) is a homogeneous space for E(2). Let Ly the
x-axis with its usual orientation. Then the subgroup of elements of E(2)
fixing Ly is

The foliation of E(2) by left cosets of H is defined by df = —sinfdx +
cosdy = 0. Thus

wag(1,2) = (—sinfdz + cos dy) A db.

This form is closed so AG(1,2) has an invariant area form. To get a more
cosf —sinf =z
usable form of it. If g = | sinf cosf y | and Ly is the z-axis, then
0 0 1
the direction of the line gLg is the vector (cos#,sinf) and thus the normal
vector to gLg is (— cos6,sin@). Also the point (z,y) is on the line gL thus
the distance of the line gL to the origin is

p=(z,y) (—sinh,cosf) = —xsinf + y cosd
A calculation shows
dp AN df = (—sinfdx + cos 0 dy) A df = wag(1,2)-

Thus Q45(1,2) = dp A df is an invariant area form on AG(1,2). Note this in
this example the isotropy subgroup H is not compact and the space AG(1,2)
does not have an invariant Riemannian metric.



CHAPTER 3

Representations, Submodules, Characters and the
Convolution Algebra of a Homogeneous Space

3.1. Representations and Characters

Let G be any group and V a vector space. Then a representation
of G on V is a group homomorphism p : G — GL(V) where GL(V)
is the general linear group of V. (That is GL(V) is the group of all
invertible linear maps A : V — V. When it is clear from context what
that homomorphism p is, then we sometimes write gv := p(g)v. In other
terminology if p : G — GL(V) is a representation, then V' is a G-module
and G is said to have an action on V. A subspace W C V of the G-
module V' is a submodule iff gW = {gv : v € W} C W for all g € G.
(If W is a submodule then it is not hard to show that gW = W for all
g € G.) A G-module is irreducible iff the only the only submodules of V'
are the trivial submodules {0} and V. An #rreducible representation is
a representation p : G — GL(V') so that V is an irreducible G-module.

Two representations p; : G — GL(V}) and ps : G — GL(V3) are iso-
morphic or equivalent iff there is an invertible linear map S : V3 — Vs so
that

(3.1) Spi(g)v = pa(g)Sv forall g € Gand v e V.

More generally given two two representations of p; : G — GL(V;) and
p2 : G — GL(Vs2) any linear map (but not necessarily invertible) linear S
that satisfies (B.1)) is called an intertwining map, a G-module homo-
morphism or often just a G-map. The following result is elementary but
basic to the theory.

PROPOSITION 3.1.1 (Schur’s Lemma). Let p1 : G — GL(V1) and ps :
G — GL(V3) be two representations of G and S : Vi — Va an intertwining
map.
1. If V1 s irreducible then S is either injective or the zero map.
2. If V5 is irreducible the S is either surjective or the zero map.
3. If V1 and V4 are both irreducible then S is either an isomorphism or
the zero map.

PrOOF. As S is an intertwining map ker .S is a submodule of V; and the
image S[Vi] is a submodule of V5. If Vj is irreducible then ker S = {0}, in
which case S is injective, or ker.S = V; in which case S = 0. Likewise if

23
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Vs is irreducible then S[Vi] = V5 or S[V;] = {0} which proves Part 2. The
third part follows from the first two. O

EXERCISE 3.1.2. Let V be an irreducible G module and let D be the
set of all linear maps S : V — V that intertwine the G-action. That is
Sgv = ¢gSv for all g € G and v € V. Then show that D is a division
algebra. ]

REMARK 3.1.3. With the notation the last exercise, let F be the base
field of the vector space V. (In our considerations F = R, or F = C.) Then
F C D by identifying ¢ € F with cId € D. It is known that when D is finite
dimensional and F = R that the only possibilities for D are D =R, D = C,
or D = H (the four dimensional division algebra of quaternions). Thus the
real finite dimensional irreducible representations of a group G split into
three types, the real representations, the complex representations, and the
quaternionic representations, depending on the algebra D. In parts of the
algebraic theory this distinction is important. We will be able to ignore it.
In the complex case things are simpler. In this if D is finite dimensional
then it follows form the fundamental theory of algebra that D = C. (To see
this note that if @ € D then 1,a,a? a?,... are linearly dependent as D is
finite dimensional. Thus a satisfies a polynomial equation and so a € C).

If p: G — GL(V) is a finite dimensional representation of the group G
the character of the representation is

(3.2) Xp(g) = trace(p(g)).
This is a function on G with values in the base field of the vector space V.

PROPOSITION 3.1.4. If p1 : G — GL(Vy) and ps : G — GL(V3) are two
equivalent finite dimensional representations of G then x,, = Xp,-

PROOF. As the representations are equivalent there is a linear isomor-
phism S : Vi — V5, so that Spi(g) = p2(g)S for all G. That is pa(g) =
Sp1(g)S~!. That is for all g the linear maps p;(g) and p2(g) are similar.
But then it is a standard result form linear algebra that trace(pi(g)) =
trace(pa2(g)). O

If V is a G-module and K C @ is a subgroup then
VE ={veV :aw=vforalacK}.

is the set of elements of V' invariant under the action of K.

As an example where G modules arise naturally assume that K is a
closed subgroup of G and that the homogeneous space G/ K has an invariant
measure. For example this will always be the case if K is compact. An
important special case is K = {e} in which case G/K = G and the left
invariant measure on G is an invariant measure on G/K. In this case if
F(G/K) is one of the following function spaces C(G/K) (the continuous
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functions on G/K), C*(G/K) (the C* functions on G/ K where 0 < k < o),
or LP(G/K) (the measurable functions f on G/K so that fG/K |f(z)]P dx <

oo where 1 < p < 0o or p =00 and || f||p> := esssup |f| < c0). Then there
is a natural action 7 : G — GL(F(G/K) of G on any of these spaces given
by given by

(3.3) Tof(x) = fg ).

It is easily checked that 74,4, = 74, 7¢, and 7. = Id so this is a representation.
As the measure dz is invariant under left translation by elements of G it
follows that G acts by isometries of LP(G/K):

g fllze = Il fllLe-

In the case G/K is compact one of our main goals is to show there is an
orthogonal direct sum decomposition L?(G/K) = @, E, into finite dimen-
sional irreducible submodules F,, (with similar decompositions for the other
spaces LP(G/K), C*(G/K)). Thus in the compact case there are lots of
finite dimensional submodules of the spaces LP(G/K). In the noncompact
case finite dimensional submodules of the LP(G/K) spaces are harder to
come by:

THEOREM 3.1.5. Let G be a noncompact Lie group and let K be a com-
pact subgroup of G. Then for 1 < p < oo and for any nonzero f € LP(G/K)
the set of translates {T4f : g € G} is infinite dimensional. In particular
LP(G/K) has no nonzero finite dimensional submodules.

PROOF. As K is compact we can assume GG/K has a G-invariant Rie-
mannian metric (,). Let d : G/K x G/K — [0,00) be the distance func-
tion defined by (,). If 0 # f € LP(G/K) then we can normalize so that
| fllz» = 1. For x € G/K and r > 0 let B(z,r) = {y : d(x,y) < r} be the
ball of radius r about z. Denote by o the origin of G/K, that is the coset of
the identity. As G/K is not compact it is unbounded in the d metric. Thus
it is possible to choose a sequence of numbers ry < ro < r3 " 00 so that

1
p
1
153000 = ( Lo If(x)\pdx> >1- o,

1
I lzr(c/m0BOr) < gr

i.e.

Let 21 = o and by recursion choose zj1 so that dist(xgy1, {z1, - ,zr}) >
Tk+1. Choose g € G with g, 'o = z. Set fi(z) == 7, f(z) = f(g; '2).
Then fi(o) = f(zg). It follows from then invariance of the measure and the
estimates above that for ¢ # j

1
HfiHLP(B(ijj)) = gmin{i,j}
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which in turn implies

S il Loy <D 5 = 1
; — 9 10

i#k i=1
Now assume for some set {ki,,...,k;} that fi,,..., fy, are linear depen-
dent. Let c1 f, +---+ ¢ fr, = 0 be a non-trivial linear relation between the
frys--- s fr,- By reordering we can assume that |c1]| > |¢;| for 1 <1i <[. By

dividing by ¢;
l
e, = Zbifk’i where |b;] < 1.
i=2
But then

8
1 fisllzo(Bar, ) = I lErBom, ) 21— g5 2 5

and using |b;| < 1 and the inequalities above
!

el 2o (B e, ) < Z 03[l i | Lo (B, )
=2

1
< M illze B, oy ) < 0
ik

These lead to the contradiction 1/10 > 8/9 which completes the proof. [J

REMARK 3.1.6. The last theorem is false for p = co. For example let
G = R" and K = {0} so that G/K = R". Let 0 # a € R" and set
falx) = eV~ M9 Then f, € L®(R™) and f,(z 4+ h) = eV 1) £ () and
thus the one dimensional space spanned by f, is invariant under the action
of G = R by translation.

3.1.1. The Regular Representation on LP(G/K). In this section
G/K will be a homogeneous space with K compact so that G/K has an
invariant Riemannian metric (cf. Theorem P.3.12). This implies that G/K
has an invariant volume measure, (the Riemannian volume measure). It also
implies that G/K has an invariant metric space structure. That is let d(z, y)
be the Riemannian distance between x,y € G/K, then d(gz, gy) = d(z,y).
For this section the existence of the invariant measure and the invariant are
the important points and the results generalize to the setting of homogeneous
spaces that satisfy this conditions.

Let 1 <p < oo and let LP(G/K) be the usual Banach space of measur-
able functions on G/K so that the norms || f||z» = (fg/K |f(2)|P dz)Y/P < oo

for p < oo and || f||p= = esssup |f|. The left regular representation (or
just the regular representation) 7 of G on LP(G/K) is

Tof(x) == fg~ ).
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PROPOSITION 3.1.7. If the homogeneous space LP(G/K) has an invari-
ant measure, then the regular representation of G on LP(G/K) acts by
isometries for all 1 < p < oco. That is |74 f||zr = || f|lLe-

Proor. This follows form the invariance of the measure:

Iy £ = /G L mfrds = /G Mpds

- / F@)Pde = | fIE,
G/K

when 1 < p < oo with an equally straightforward proof in the case p =
Q. O

EXERCISE 3.1.8. Consider X to be one of the following function spaces
on G/K. The bounded continuous functions with the L* norm, the con-
tinuous functions that vanish at infinity (that is for each € > 0 there is
a compact set C' C G/K so that sup,gc [f(7)] < €) with the L norm,
and the space of uniformly continuous functions again with the L°° norm.
Show that the regular representation is acts by isometries on all of these
spaces. O

Let X be a Banach space with norm || - ||x and let p — GL(X) be a
representation of G on X. This representation is strongly continuous iff
for each x € X p(§) is a bounded linear map the function & — p(&)x is
continuous in the norm topology.

There is another notation of continuity of representations that at first
looks more natural than strong continuity. Let X and Y be a Banach space
then the operator norm of a linear operator A: X — Y is

[ Azly
[Allop := sup :
0#zeX [ x

The operator norm defines a norm on the vector space of bounded linear
maps form X to Y. In this section it will usually be the case that X =Y.
If G is a Lie group and X a Banach space then p: G — GL(X) is a norm
continuous representation iff each p(&) is a bounded linear map and the
map & — p(§) is continuous in the norm topology. The following gives the
correct insight as to which is the more useful notion in our setting:

EXERCISE 3.1.9. Let S! = R/27Z be the unit circle realized as the real
numbers modulo 27 times the integers. Define the representation 74 f(z) =
f(x+s) on LP(Sh).

(a) Show that if 1 < p < oo that 7 is not norm continuous.
(b) However if 1 < p < oo then 7 is strongly continuous.
(c) But 7 is not even strongly continuous on L>(S!). O
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THEOREM 3.1.10. If G/K is a homogeneous space with K compact and
1 < p < oo then the regular representation T of G on LP(G/K) is strongly
continuous.

PRrROOF. Let Cy(G) be the set of continuous functions on G/K with com-
pact support. The basic fact we use is that Cyp(G/K) is dense in LP(G/K)
for 1 < p < oo (but not dense if p = o0.) If ¢ € Cy(G/K) then ¢ is
uniformly continuous and thus lim,_.. 749 — ¢ uniformly so

lim |75 — ¢||Lr = 0.
g—e

Choose a left invariant metric on G and let d(§,n) be Riemannian distance
with respect to this metric, so that d(g§,gn) = d(§,n). Let f € LP(G/K)
and € > 0. Then there is a ¢ € Cy(G/K) with

£
17—l < 5.

Choose § > 0 so that if d(e, g) < 0 then

€

3

Then for g with d(e, g) < 6 and using that 7, is an isometry

ITg — wllLr <

1f =7 flle <IIf = ller + Ml = 7ollLr + 179 = 79l Lr
=2/ =@l + llp = 1l <e.

If d(g1,g92) < ¢ then d(e, gflgg) < ¢ so using the last inequality and that 7
acts by isometries

70 f = T liw = f = 7y1 F o < c.

As € was arbitrary this completes the proof. ]

3.2. Definitions and Basic Properties of the Convolution Algebra

Let M(G; K) be the set of all measurable functions h : G/KxG/K — R
so that for all z,y € G/K and g € G

(3.4) h(gz, gy) = h(zx,y).

REMARK 3.2.1. While the definition is in terms of real valued functions
latter it will also be useful to deal with complex valued functions h : G/K x
G/K — C. All of the basic properties given here work in the complex case
also.

Now define
(3.5) C®(G;K):={he M(G;K) :he C*(G/K x G/K)}
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and for 1 <p <
(3.6)

LP(G;K) := {M(G;K) : /G/K

and define a norm on LP(G; K) by

(37 ||hl, = max (/G /K|h<x,o>|f’dx)p,</0 /K\h<o,y>|f’dy)p

If x € G/K then there is a g € G so that gz = o thus using the invariance
of the measure dy under the action of G

/ h(a,y) [P dy = / (g, gy)lP dy
G/K G/K

Ih(z, 0)? dx, / (o, )P dy < oo}
G/K

=/ !h(o,gy)\pdyZ/ |h(0,y)|P dy
G/K G/K

Likewise fG/K [h(z, y)P dz = [, |h(z, 0)|P dz. So the definition of LP(G; K)
and the norm ||h||, is independent of the choice of the origin o.

EXAMPLE 3.2.2. We now give examples to show that fG/K |h(o,y)|Pdy <
oo does now imply fG/K |h(z,0)[Pdr < oo for h € M(G;K). Let G be
any connected Lie group and let Ag be the modular function of G. Let
K = {e} be the trivial subgroup of G. Then G/K = G in a natural
way. Let f : G — R be continuous. Then h(z,y) := f(z~ly) satis-
fies h(gz,gy) = h(z,y) for ¢ € G. For this choice of h (using that un-
der the change of variable z +— z~! the left invariant measure maps by

dzx — Ag(z)dr).
/G Ihe,y)P? dy = /G F@P dy

xT.,e €T = m_l X
/G|h< oy /Glf( )P d
— [ 1P Aa() ds
G

If the group is not unimodular then Ag[G] # {1} is a multiplicative sub-
group of (0,00) and so Ag is unbounded on G. Form this it is not hard
to show that there is a continuous function so that [ |f(y)[P dy < co but
Jo If (@) PAg(z) du = co. For this f the function h(z,y) = f(z~'y) gives
the desired example. O

For any h € LY(G;H) define an integral operator T}, : LP(G/K) —
LP(G/K) by

(3.8) Tof(z) = /G ) Sy
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THEOREM 3.2.3 (Generalized Young’s Inequality). Let h € LY(G;K).
Then Ty, : LP(G/K) — LP(G/K) is a bounded linear operator that satis-

fies
(3.9) [ Thflle < l[All2llf]|ze-

Moreover this linear operator commutes with the action of G in the sense
that

(3.10) Thoryg=T40T) forall geG.

PROOF. That T}, is bounded as a linear map LP — LP and the bound (B.9)
holds follow from Corollary [A.1.3. To prove (B.I0) let f € LP(G/K) then

(T 0 7)) () = /G ) dy

= / h(z,g9y)f(y)dy (Change of variable y — gy)
G/K

- / W e, f(y)dy (W, gy) = hg~'z.9" ' gv))
G/K

= (190 Th) f(z) O

REMARK 3.2.4. Let ¢ € L'(R") and let h(z,y) := ¢(xr —y). Then
h € LYR"™;{0}) and ||hl]1 = ||| 1. If f € LP(R™) (1 < p < 00) then

Tf(@) = [ ele—0)f)dy = o+ @

where the convolution ¢ % f is defined by the integral. The last theorem
then implies || x f|lzr < ||@||1]|fl|z». This is the classical form of Young’s
inequality. See Exercise B.2.8 for the extension to other groups.

For h,k € L'(G; K) define a product h x k by

(3.11) hxk(x,y) = /G/K h(z, z)k(z,y) dz.

THEOREM 3.2.5. The space L'(G; K) is closed under the product (h, k)
hxk and
(3.12) [h* k1w < [[Rl[]|&]1-
If hk € LY(G; K) then
(3.13) Thate = Th o T,

where Ty, is defined by (3.8) above. Thus the product x is associative. There-
fore (L' (G; K), %) is a Banach algebra, the convolution algebra of G/K.
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REMARK 3.2.6. A very short history of convolutions in analysis can be
found in the Hewitt and Ross [T, pp. 281-283]. In the setting of analysis
on locally compact groups the basic papers seemf] to be those of Weyl and
Peter [29], Weil (28], and Gel’fand [14].

PRrROOF. First note

/ |h * k(x,0)| dz < / |h(x, z)||k(z,0)| dz dx
G/K G/K JG/K

=/ / |h<:c,z>|d:c/ k(2 )| dz
q/k Ja/K G/K

< Al / k(2. 0)|dz
G/K
< Akl

and a similar calculation shows fG/K |h * k(o,y)|dy < ||h|l1]|k|l1. For any
geqG

b+ k(gz, gy) = / hg, 2)k(z, gy) d=
G/K

= / h(gx,gz)h(gz,gy)dz (change of variable z — gz)
G/K

= / h(z, 2)k(z,y) dz
a/K
= hx*k(z,y)

Therefore h * k € L'(G; K) as claimed. To get the formula for T} o T}
compute:

(Ty o Ti) f(x) = / B, 2T f (=) de

G/K

= / h(x,z)/ k(z,y)dydz
G/K G/K

:/ / h(z, 2)k(z,y) d=f(y) dy
G/K JG K
:/ hxk(z,y)f(y) dy

G/K

= Thar f(2).

As composition of maps is associative Tp.p)sp = (Th 0 Ty,) 0 Ty = T o (Tj o
Tp) = Thu(ksp)- S0 associativity of * follows form:

T have only looked at secondary sources so these opinions should not be taken too
seriously
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LEMMA 3.2.7. Let h € L'(G; K) be so that Ty, f = 0 for all smooth f on
G/K with compact support. Then h = 0 almost everywhere as a function

on G/K x G/K.

PROOF. Let ¢(z,y) := 22:1 fi(x)p;i(y) where f; and p; are smooth com-
pactly supported functions on G/K. Then

//G/Kxg/;{ )¢,y dxdy—Z/G/K/G/Kh(x,y)fi(x) dzp;i(y) dy
—Z/G Tnfi(y)pi(y) dy

=0

as Ty, fi = 0 for each i. But the set of functions Zé:l fi(x)pi(y) is dense in
the uniform norm in the set of all continuous functions with compact sup-
port. Thus by approximation [ [ i xayi M dady = 0 for all continuous
functions ¢ with compact support. But as h is locally integrable a standard
result from real analysis implies h = 0 almost everywhere. U

(It is also easy, and possibly more natural, to prove that * is associative
directly by a calculation.) This completes the proof of the theorem. O

EXERCISE 3.2.8 (Relationship to Group Algebras). If the group G is uni-
modular, then the space L!(G) is a Banach algebra under the convolution
product. (In the case of finite groups this is just the group algebra of G.)
It this exercise we show that when K = {e} is the trivial subgroup of G so
that G/K = G then is the same as the convolution algebra. We work with
a space slightly different than L'(G) so that we can also deal with the case
of non-unimodular functions.

For the rest of this exercise G is a Lie group and K = {e} is the trivial
subgroup of . For any measurable function f on G define a function
K;:GxG— Rby

(3.14) Kp(z,y) = f(z"y).

(a) Show that the map f — Ky is a bijection between the measurable
functions on G and the set M(G; K).
For any measurable function f on G

“HPdy = z)|P x) dx
/G|f<x P /Glf( )P AG(x) d
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Define a norm || - || 1 for function on G by

1l = max{(/G ‘f(ﬂf)pdg:>% ’ (/G |f(x_1)]”d;c>%}
=max{( | \f(x)pdw>;,< /| \f(fﬂ)\pAG(az)dx);},

When the group is unimodular this is just the usual LP norm on G. Let
L}(G) be the Banach space of measurable functions f on G with finite L}
norm. (Compare this to Proposition B.3.1] and Theorem B.3.7.)

(b) Show that the map f +— Ky is an isomorphism of the Banach spaces
Ly(G) and LP(G; K).

If f1, fo € Lj(G) define the convolution product fi x f2 by

(3.15) firfaw) = [ ARG dx
G

(c) Show that for f1, fo € L}(G) that

(3‘16) Kfl * Kfz = Kfl*fz'

Thus the Banach algebras (L'(G; K), ) and (L}(G),*) are isomorphic. In
particular if G = R™ and K = {0} then the the convolution algebra
LY*(R™; {0}) defined above is naturally isomorphic to L'(R™) with the usual
convolution product fi  fa(y) = [ga f1(y — 2) f2(2) dz. O

3.3. Isotropic Functions and Approximations to the Identity

A function f defined on G/K is isotropic or radial iff f(azx) = f(z)
for all @ € K. If E is a G-module then denote by EX the set of all isotropic
functions in E, that is EX is the set of elements of F invariant under K. Let
M(G/K)¥ be the set of measurable isotropic functions on G/ K. Define the
left and right restriction functions Resy, Resg : M(G; K) — M(G/K)X by

(Rest h)(z) := h(xz,0), (Resgh)(y):= h(o,y)

Note if a € K then ao = o so (Resp h)(ax) = h(azx,0) = h(azr,a0) =
h(z,0) = (Resp h)(x) and thus Resy h is isotropic. Likewise for Resp h.
Define the left and right extension operators Extr,Extr : M(G/K)X —
M(G; K) by

(BExty, f)(z,y) = f(n ') where n € G with no =y

(BExtg f)(z,y) = f(E1y) where ¢ € G with fo ==z
If 1/’ is another element of G with o = y then 7’ = na for some a € K and
as f is isotropic f((n')"'x) = f(a='n~tx) = f(n~'x) so that the definition
of Exty f is independent of the choice of 7 with no = y. Likewise Extpg f is

independent of the choice of £ with éo = x. Also if no = y, then gno = gy
and so

(Bxtr f)(gz, 9y) = f((gn) " 'gz) = f(n'z) = (Exty, f)(z,y)
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and thus Exty, f € M(G; K). Similarly Extg f is in M(G; K). The maps
Resy, and Exty, are inverse of each other, and likewise for the right restriction
and extension maps:

(3.17) Resy Exty, f = f, Extr; Resp h =h
(3.18) Resgr Extr f = [, Extgr Resgh = h

We check the first of these.
(Resp Extr f)(y) = (Resy, f)(z,0) = f(z),

(Extr Resp h)(x,y) = (Rest, h)(n_lx) (no=1y)

= h(n"'z,0)
= h(x,no)
= h(z,y)
It follows directly from the definitions for f € M(G; K) that
(3.19) / | Exty, f(x,0)|P do = / |f(x)|P dz
G/K G/K
(3.20) | (Estesomlay= [ 1fw)Pdy
G/K G/K

For a function h to be in LP(G; K) both of the integrals fG/K |h(z,0)|P dx
and fG/K |h(0,y)|P dy must be finite. To give the conditions on a function
f € M(G/K)X so that h = Exty, f satisfies these conditions we need a
definition: Let f € M(G/K)®, then define 6f by

(3.21) (0f)(z) := f(¢ o) (where (o = x.)

As f is isotropic this is independent of the choice of £ with (o = z. (For
if &0 = z then ¢ = £a for some a € K and f((¢')"'o) = f(a='¢to) =
f(€710).) To give a different interpitation of @ if h(x,y) = (Extg f)(z,y) =
f(¢7'y) where €o = @ then (Resy h)(x) = h(z,0) = f(6"'0) = (8])(x).
That is

(3.22) O0f = Resp Extp f

Let LE(G/K)X be the set of measurable isotropic functions f so that the
norm

(38.23) [fllop = max (/G /Krf<x>rpdx>p,(/g /K\wf)(y)\pdy)p

is finite.

PROPOSITION 3.3.1. The map Extg : LL(G/K)X — LP(G;K) is an
bijective isometry of Banach spaces.
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ProOF. If f € M(G/K)* then by the formulas above
| lExtapmpds= [ 1rwldy
G/K G/K

and

| AExta o) ds= [ |(Res, Extr f) (o) do
G/K G/K

~ [ 1en@pd
G/K

Therefore the result follows form the definitions of the norms on LP(G; K)
and LY (G/K)K. O

When the group G is unimodular this simplifies:
THEOREM 3.3.2. If the group G is unimodular then for all h € M(G; K)

(3.24) /G o = / (o, )|? dy

G/K

ProoF. From Proposition B.31 and its proof it follows it is enough to
prove for unimodular G that

/G Jen@pa = /G M

for all f € M(G/K)K. If f € M(G/K)¥X define a measurable function f#
on G by f# :=7*f = fom where 7 : G — G/K is the natural projection.
If 7€ = x then o = z and (6f)(z) = f(¢ 'o). Thus

ON#(E) = (0) (@) = f(E o) = fF(r&™h) = fFET
We can assume that the left invariant measure is the Riemannian measure
of a left invariant Riemannian metric on G. Then for any function f on

G/K
VoK) [ fla)de = / FH(€) de.
G/K G

Also if Ag is the modular function of G then under the map & — £~! the
invariant measure d§ maps by d§ — Ag (&) d€. Putting these facts together
for any f € M(G/K)K

o 2P dr = #H(e—1\P e — # p
VI(K)/G/KI(Hf)( P /Glf (€ P de /Glf ()P AG(E) de
o} z)|Pdx = #(E) P de.
VI(K)/G/KIf( P /Glf ()P de
So equation (B.24) holds if and only if

(3.25) Lirt@racea= [ it as
If G is unimodular then Ag = 1 and this certainly holds. U
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EXERCISE 3.3.3. Use equation (B.25) to show that the condition (B.24)
holds if and only if G is unimodular. O

EXERCISE 3.3.4. Assume that G is unimodular let 1 < p < oco. Set
p = p/(p—1). Then show the dual space (i.e. the space of continuous linear
functionals) of LP(G; K) is LPI(G; K) and the pairing between the spaces is

(h,k) := / h(z,0)k(z,0)dz  for h e LP(G;K) and k € LV (G; K) O
G/K

Next we construct invariant smoothing operators. As the group K is
compact the homogeneous space G/K will have a left invariant Riemannian
metric (,) (Proposition 2.3.19). Let d(z,y) be the Riemannian distance
between x and y defined by the metric (,). Then the function (z,y) —
d(x,y)* on G/K x G/K is smooth in a neighbor hood of the diagonal {z =
y}. Let ¢ : R — [0,00) so that ¢(—t) = ¢(t) and the support of ¢ is
contained in [—1,1]. Then for 6 > 0 define &5 : G/K x G/K by

s(a.1) = Clo)e (1)

where C/(9) fG/K ¢ (d(z,0)?/6%) dx = 1. This satisfies

D5(gz, gy) = Ps(x,y) forallge G
(I)(S(ya .%') = q)5(x7 Z/)

Os(x,y)dy =1 for all z € G/K

G/K
Os5(z,y) =0 if d(z,y) > 6
o5 € C*(G/K x G/K) for small §
Os(x,y) > 0.
Recall I, .(G/K) is the set of all measurable functions f on G/K with

Jo | f(@)P dz < oo for all compact subsets C' of G/K.

THEOREM 3.3.5. Let f € L} .(G/K) and define f5 by
(3.26) fola) =T f(0) = | Bsla)f(w)d.
G/K

Then for all small § the function fs is in C*°(G/K). Also lims\ g f5(z) =
f(z) for almost all x € G/K. If 1 < p < 0o and f € LP(G/K), then
limgs o |f — f5ll» = 0. If f € CF(G/K) for some k >0 then fs — f in the
C* topology uniformly on compact subsets of G/K.

PRrROOF. An exercise based on the above properties of ®s. O
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3.4. Symmetric and Weakly Symmetric Spaces

Let G/K be a homogeneous space with K compact and let o = 7(e)
be the origin as usual. Then G/K is a symmetric space iff there is an
element 1o € K so that the derivative 1o+ of Lo at o satisfies

(3.27) tox = — Id |7(G /K)o

If G/K is a symmetric space and z € G/K then choose £ € G with (o =z,
the symmetry at x is defined by

(3.28) Ly = ELol L.
Then the derivative of ¢, at x is
(329) byx = — Id |T(G/K)I

As the group K is compact we can assume that G/K has in invariant
Riemannian metric (,) (cf. B.3.12). Let exp, : T(G/K), — G/K be the ex-
ponential of this Riemannian metric. (That is for each X € T(G/K),
the map (z) = exp,(tX) is the geodesic so that v(0) = x and +/(0) = X.)
As 1, is a isometry

(3.30) te(exp, (X)) = exp,(—X).

For this reason ¢, is often called the geodesic symmetric at x.

PRrROPOSITION 3.4.1 (Gel'fand). If G/K is a symmetric space then every
h € M(G; K) is symmetric: h(x,y) = h(y,z).

PROOF. Let z,y € G/K and let 2¢ = d(x,y) be the Riemannian dis-
tance between x and y. Then there is a minimizing unit speed geodesic
v [=4,4] form x to y with v(—¢) = x and v(¢) = y. Let z = ~(0)
be the midpoint of this segment. Then the geodesic symmetry ¢, satis-
fies v.(z) = 1.(y(—¢)) = v(£) = y, and likewise ¢,(y) = x. Thus form the
symmetry condition defining ¢,

h(z,y) = h(ez(2), t2(y)) = h(y, ). O

In terms of the harmonic analysis on G/K the symmetry of the func-
tions h € M(G; K) is almost as important as the existence of the geodesic
symmetries. So we define a homogeneous space G/K with K compact to be
weakly symmetric iff

(3.31) heM(G;K) implies h(z,y) = h(y,z) forall xz,y € G/K.

As examples of weakly symmetric spaces consider the sphere S™ as homo-

geneous spaces S = SO(n+1)/S0O(n). If eq,... ,ep+1 is an orthonormal
basis of R™ then the symmetry at e; has the matrix representation
1 0
1= 10 -1

where I is the n x n identity matrix. This is in SO(n + 1) if and only if
(=1)™ = 1, that is if and only if n is even. However it is an easy exercise
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to show that as a homogeneous space S™ = SO(n + 1)/50(n) is a weakly
symmetric space.

EXERCISE 3.4.2. Show that S = SO(n + 1)/SO(n) is a weakly sym-
metry space. HINT: Show that if z,y € S™ there is a g € SO(n + 1) with
gr =y and gy = x and then argue as in the proposition. O

THEOREM 3.4.3. If G/K is a weakly symmetric space then the group G

is unimodular and the norms on the spaces LP(G; K) are given by
1

(332 lhl, = ( /| /K|h<x,o>\pdar>p - ( | e y)\pdy>p.

Also the convolution algebra is commutative. That is for all h,k € L'(G; K)
hxk=Fkxh.

REMARK 3.4.4. This original version of this result is due to Gel’fand [T3].

PROOF. The symmetry property of h € M(G; K) implies

/ |h(x,0)|dx = / |h(o,z)| dzx.
G/K G/K

By Exercise B.3.3 this implies G is unimodular. That the norm on LP(G; K)
is given by (B:32) follows directly form the symmetry of the functions h.
Finally for h,k € L'(G; K) using the symmetry of h, k and k * h

(hxk)(z,y) = /G/K h(z, z)k(z,y)dz

= / k(y,z)h(z,z)dz
G/K

= (kxh)(y, x)

= (kxh)(z,y).
and L'(G; K) is commutative as claimed. O
In the case G/K is a weakly symmetric space the relationship between
LP(G; K) and LP(G/K)*X given in section B.3 shows there is no need to

distinguish the left and right restrictions or between the left and right ex-
tensions. For for future use we record:

PROPOSITION 3.4.5. Let G/K be a weakly symmetric space. Then for

1 < p < oo there there are Banach space isomorphisms Res : LP(G; K) —
LP(G/K)E given by

(Resh)(z) := h(z,0) = h(o, ).
This has as inverse Ext : LP(G/K)X — LP(G; K) given by
(Ext f)(e.0) = f(E'y)  (where o= 1)
— fOr'z)  (where no = y).
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Proor. This follows form the results of section B.3 and the symmetry
property h(z,y) = h(y, z). O
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CHAPTER 4

Compact Groups and Homogeneous Spaces

4.1. Complete Reducibility of Representations

Our goal in this section is to show that many representations of compact
groups can be decomposed into direct sums of finite dimensional irreducible
representations. The basic method is to construct (by averaging) an invari-
ant inner product on the G-module in question and then showing that the
orthogonal complement of a submodule is also a submodule.

Recall form section B.I.]] that a representation p : G — GL(X) of a
Banach space X is strongly continuous iff the map £ — p(§)x is norm
continuous for each x € X.

Let X and Y be a Banach space then the operator norm of a linear
operator A: X — Y is

[Az]ly

0#zeX ]| x ‘

[Allop ==

The operator norm defines a norm on the vector space of bounded linear
maps form X to Y.

PROPOSITION 4.1.1. Let G be a compact group and H a Hilbert space
with inner product (,). Assume that p :— GL(H) is strongly continuous
representation of G on H. Then there is inner product (,) on H which is
invariant under G (i.e. (p(g)x, p(g)y) = (z,y) and which is equivalent to (,)
in the sense that there is a constant ¢ so that ¢~ (x,z) < (z,z) < c(z, z).

PRrROOF. As G is compact there is an bi-invariant measure d€ on G which
we can assume to have total mass 1. Define (,) by

() = /G (p(E). plE)y) de.

That (,) is an inner product is easy to check. Using a change of variable
Erg7'¢

(p(9)z, p(9)y) —/G(p(gﬁ),:v,p(gﬁ)w dE—/G(p(f):r,p(é)y) d§ = (z,y).

Thus (,) is invariant. If x € H the £ — ||p(§)x| is continuous and G
is compact so supge [|[p(§)z([# < oo. As this holds for all z € X the
uniform boundedness principle (cf. Theorem [A-3.]] in the appendix) implies

41
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there is a constant C so that |[p(§)||lop < C for all £ € G. This implies
(p(&)z, p(&)x) < C?*(x,x). Thus

(w.2) = [ (p(E)z. p(€)) de < C? /G (2, 2) de = CP(x z).

G

(z,2) = (p(¢)p(&)x, p(€H)p(€)x) < C*(p(€)x, p(&)2)
so that (p(¢)x, p(&)z) > C~2(x,x). Similar calculation show C~2(z,z) <
(x,x). O

EXERCISE 4.1.2. As a generalization of this show that if p : G — GL(X)
is a strongly continuous representation on the Banach space X with norm
|- lx, then X has a new norm | | x that is invariant under G (i.e. |p(g)z|x =
|z|x) and so that for some C' > 0 C~z||x < |z|x < C|z|x for all z € X.
HINT: Define |z|x = [, [|p(&)z|x dE. O

PROPOSITION 4.1.3. Let G be a compact group, H a Hilbert space, and
p: G — GL(H) and assume that the inner product {,) of H is invariant

under G. If E is a G-submodule of H, then so is the orthogonal complement
EL of E.

PROOF. Let € E+ and g € G. Then for any y € F,

(p(9)x,y) = (plg~")p(9)x, p(g~")y) = (2, p(g™")y) =0
as p(¢g ')y € E and 2 € E+. Thus p(g)z € E+. O

COROLLARY 4.1.4. If G is compact, E is a finite dimensional G-module,
and E1 is a G-submodule of E, then there is a G-submodule Es so that
E=F & E;.

PROOF. As F is finite dimensional there is at least one inner product
on F. By proposition E.I.1] we can assume that E this inner product is
invariant under G. Let E5 be the the orthogonal complement of E; with
respect to this inner product. Then E = F; ® F5 and by the last proposition
Es is a G-submodule. O

The following result, due to Hermann Weyl, is basic to the theory of
compact groups.

THEOREM 4.1.5 (Weyl). If G is a compact group and E is a finite di-
mensional G-module then E is a direct sum E = E1®---® E, of irreducible
G-submodules.

Proor. Let E; be a GG-submodule of E of minimal dimension. Then E}
is irreducible. By the last corollary £ = E; @ F for some G-submodule F'.
The result now follows by induction on dim E. O
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If the group is not compact then this result need not be true. As an
example let G be the additive group of the real numbers (R, +) and let p be

the representation on R? given by p(t) := [ (1) i } . The only submodule of
R?is E, = Ty € R ;. Thus R? is not a direct sum of irreducibles

0

and the submodule F; has no complementary submodule. If is also not
hard to see that there is no inner product on R? that is invariant under p.
On the other hand if the group is semisimple, then any finite dimensional
G-module is a direct sum of irreducible G-submodules and every submodule
has a complementary submodule. This result (also due to Hermann Weyl)
is deeper than the results above about compact groups. (Although Weyl’s
original argument reduces the semisimple case to the compact case by show-
ing that every semisimple group G contains a compact group K that is dense
in the Zarski topology. It follows form this that in any finite dimensional
representation of G on a finite dimensional space F that a subspace V is
a G submodule if and only if it is a K-submodule. However proving the
existence of the compact subgroup K requires a fair amount of work.)

EXERCISE 4.1.6. This is for readers who know a little of the theory of
several complex variables and which want a concrete example of the remarks
of the last paragraph. Let G = GL(n,C) be the group of complex n x
n matrices. Then G is a complex analytic manifold in a natural way. Let
K = U(n) be the subgroup of unitary matrices in G.

(a) Show that any holomorphic (i.e. complex analytic) function on G that
vanishes on K also varnishes on G. Thus two holomorphic functions that
agree on K are equal.

(b) Let E be a finite dimensional complex vector space. Call a representation
p : G — GL(F) holomorphic iff the component functions of the matrices
representing p are holomorphic. If p is a holomorphic representation show
that a subspace V of F is a G submodule if and only if it is a K submodule.
HinT: Let V' be a K-submodule of E, and ¢ : E — C be a linear function
that vanishes on V. Then for any v € V the function £ — £(p(§)) is a
holomorphic function on G that vanishes on K and this it also vanishes on
G. But v was any element of V' and ¢ any element linear functional vanishing
on V.

(c) Show that any holomorphic representation p : G — GL(E) of G is a
direct sum of irreducible representations. HINT: Decompose F under the
action of K and use part (b).

(d) Consider the representation p : G — GL(C?) given by

1 log|det
o) = [ 1 Toslieo)

Then this representation is not a direct sum of irreducible representations.
(But it is not holomorphic. Also the group GL(n, C) is not semisimple. The



44 4. COMPACT GROUPS AND HOMOGENEOUS SPACES

group SL(n, C) is semisimple and thus all of its representations are a direct
sum of irreducibles.) O

Our next goal is to extend theorem E.I.9 to infinite dimensional Hilbert
spaces. The hard part of the proof is to show that a representation on a
Hilbert space must have a finite dimensional submodule:

LEMMA 4.1.7. Let p : G — GL(H) be a strongly continuous represen-
tation of the compact group G on the Hilbert space H and assume that the

inner product () is invariant under the action of G. Then H has a finite
dimensional irreducible submodule.

PROOF. The idea is to find a compact self-adjoint linear A map on H
that commutes with the action of G and then to find the required submodule
as a submodule of one of the eigenspaces of H. Let 0 # v € V. We can
assume that |[v||;y = 1. We normalized the invariant measure d¢ to have
total mass 1. Define A : H — H by

Ar = /G (. p(E)v) de

As the inner product is preserved by G, ||p(§)x||x = ||z||n for all £ € G. As
v has length one it follows ||Az|| < [, |[(z, p(§)v)| dE < ||z||lp. Thus A is
bounded with operator norm ||Al|op < 1.

Ap(g)e = /G (p(g), pE)0) plE)v de
= /G (p(g), p(g&)v)p(g€)vds  (change of variable £ — g&)

- /G (, p(E)0)o(g)plE ) de
= p(g)Az.

Thus A is an intertwining map.

) = [ o p(0loter de.y)
= [t pteorip(ere. s ae

= < | <x,p<5>v>p<£>vd§>

= <‘T7 Ay)
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which shows A is self-adjoint.
(Av,v) = < /| <v,p<5>v>p<5>vd5,v>
= [ wp©0)p(€)v. v} e
G
= [ 1wpt@) P de >0
G

Which shows A # 0.

We now claim A is compact. Let [ - [[op be the operator norm. It is a
basic result (cf. [A:3.9) that if a linear operator can be approximated in the
operator norm by finite rank operators then it is compact. As the group G
is compact there is a bi-invariant Riemannian metric on it. Let d : G x G —
[0,00) be the distance function of the invariant Riemannian. Let ¢ > 0.
Then as G is compact and p : G — GL(H) is strongly continuous there is a
d = 0 so that if £, 7 € G and d(&,n) < ¢, then ||p(&)v — p(n)v||x < e. Again
using that G is compact there is a finite open cover {Uy, ... , Uy} of G so that
if £,n € U;, then d(&,n) < 6 and thus if &, n € U; then [[(p(§) — p(n))v|ln < e.
For each i choose & € U;. Let {¢;}7, be a partition of unity subordinate
to the cover {U;}",, that is each ¢; is continuous and non-negative, the
support of ¢; is contained in U; and )", ¢ = 1. Define a linear operator
Az’ by

Az 1= / (. plE)0) pi(€)p(€ ) de
G

As the ;’s sum to 1

Define a rank one operator B; (with range spanned by p(&;)v) and a finite
rank operator B by

B = / (. plE)) i E)plE:u dé = / (. pE)v)ps(€) dE p(Ei)
G G

If € is in the support of ¢; then both ¢ and & and in U; and thus ||p(§)v —
p&)v|ln < e. As ¢;(€) vanishes for all £ not in the support of ¢; and

lp(€)vlln =1

[{z, p(E)v)pi(§) p(§)v — (x, p(§)v) p(§) v Hpi ()
[(z, p(§)v)wi(§) [l p(§)v — p(&i)vlln < ellzllnpi(§)
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and thus
[Aiz — Bix|ly < /G [[{z, p(&)v)pi(€)p(§)v — (z, p(§)v)pi(§) p(&)v]ln dE

< clalle | i) de
and (using [, 1d¢ =1)

|4z = Ballw < S 14w — Bialln < ellalln Y /G il€) dE = el
i=1 =1

which implies ||[A — Bllop < €. As ¢ was arbitrarily this show A can be
norm approximated by finite rank operators and competes the proof that A
is compact.

A nonzero compact self-adjoint linear operator A has at least one nonzero
eigenvalue . Let E, = {x € H : Az = ax} be the corresponding
eigenspace. If x € E, then Ap(g)x = p(9)Az = ap(g)r and thus E, is
a G-submodule of H. As A is compact and o # 0 the space E, is finite
dimensional (this follows from Theorem [A.2.1 where A is just taken to be
the set of scalar multiplies of A). Let E be a G-submodule of E, of minimal
dimension. Then E will be a finite dimensional irreducible G-submodule of

H. O

THEOREM 4.1.8. Let p : G — GL(H) be a strongly continuous repre-
sentation of the compact group G on the Hilbert space H and assume that
the inner product (,) is invariant under the action of G. Then H is an
orthogonal direct sum

H=EDE.
(0%

of finite dimensional irreducible G-modules F,.

REMARK 4.1.9. I am not sure of the history of this result. When H is
finite dimensional it is due to Weyl and it is likely that Weyl also know the
infinite dimensional. There is a more general version for representations of
compact groups on locally convex topological vector spaces. This can be
found in Helgason [I7, Thm 1.6 p. 392] with some of the history to be found
in the notes [I7, pp. 491-492].

PROOF. Let B be the collection of all subsets &€ = { E,} where each E, is
a finite dimensional irreducible G-submodule of H and so that if F,, Eg € &,
with F, # FE then E,lFz. By the lemma there a finite dimensional
irreducible G submodule E of H and thus £ = {E} € B. So B is not empty.
Order B by inclusion and let C be a chain in B. Then the union |JC is in
B and thus every chain has an upper bound. Therefore by Zorn’s lemma B
has a maximal element & = {Eq : a € A}. Let E = @ 4 Eo U E#H
then E+ # {0} and by proposition E* is a submodule of H. By the
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last lemma E-+ will have a finite dimensional irreducible submodule E’. But
then & := {E'} U &) € B, which contradicts the maximality of &. Thus
E = @aeA E, =M. -

4.1.1. Decomposition of L?(G) and L*(G/K). Let G be a compact
Lie group and K a close subgroup. We can apply the results above to the
special case of the regular representation 7 of G on L*(G/K).

THEOREM 4.1.10. Let G be a compact Lie group and K a closed subgroup
of G. Then there is an orthogonal direct sum

L*(G/K) = P Es
acA
where each E, is a finite dimensional irreducible G-submodule (under the
regular representation 7,f(z) = f(g7'z)).

PROOF. By proposition B-1.7 and theorem B.I.10 and the representation
is strongly continuous and preserves the inner product. Thus this is a special
case of theorem ETR. ]

Let G be a compact Lie group and let 7 : G — GL(L?(G)) be the
(left) regular representation 7, f (&) = f(g71€) of G on L*(G). The following
theorem shows that in at least one sense all the information about finite
dimensional representations of G is contained in the regular representation.

THEOREM 4.1.11. Let G be a compact group and p : G — GL(V') a finite
dimensional representation of G. Then L*(G) contains a G-submodule E
isomorphic to V.

PRrOOF. By averaging we can assume V has in inner product invariant
under GG. Fix any non-zero vector vg € V and define a function ¢ : F —
L*(G) by

(4.1) p(v)(§) = (v, p(§)vo)-

Clearly v — ¢(v) is linear and

2 (p(9))(€) = (p(9): p(€)v0) = (v, (g™ v0) = (T40(v))(€).

Therefore pop(g) = 7409 and thus ¢ is an intertwining map. As p(vp)(e) =
(vo,vo) # 0 the map ¢ is not the zero map. Whence by Schur’s lemma the
¢ V. — ¢[V] is an isomorphism. Thus E := ¢[V] is the required G-
submodule of L?(G). O

Recall that if V' is a G-module, and K is a subgroup of G then V¥ :=
{v € V : av = v} is the subspace of all vector invariant by K.

THEOREM 4.1.12. Let G be a compact group and K a closed subgroup
of G. Let V be an irreducible finite dimensional G-module. Then L*(G/K)
has a submodule isomorphic to V if and only if VX # {0}.
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EXERCISE 4.1.13. Prove the last theorem. HINT: if V& # {0} then we
can assume that V has an invariant inner product and choose 0 # vy € VK.
Define ¢ : V — L%(G/K) by equation ({.1) and use that vy € VE to show
this is well defined and an intertwining map. Then Schur’s lemma shows
E = ¢[V] is a G-submodule of L?(G/K) isomorphic to V.

For the converse assume that G/K has a invariant Riemannian metric
(which exists by .3.12) and let d(z,y) be the Riemannian metric between
xz,y € G/K. For x € G/K and r > 0 let B(z,r) :={y € G/K : d(x,y) <
r} be the ball of radius » about x. For any function f € L?(G/K) if
fB(mo,T) f(x)dx =0 for all xg € G/K and r > 0 then f = 0 almost every-

where. Therefore if V' C L?(G/K) is a non-zero irreducible submodule of
there is fo € V and a ball B(xg, ) so that fB(mo " fo(x)dx #0. AsV is in-

variant under G we can assume that xo = o so that fB(o,r) fo(x)dz # 0
for some fy € V. Define a linear functional A : V. — R by A(f) =
J Blor) S (x)dx. As the metric d(-,-) is invariant under that action of G
we have aB(o,r) = aB(o,r) for all @ € K which implies A(7,f) = A(f) for
all @ € K. Finally we can represent A as an inner product, that there is
an h € V for that A(f) = fG/K f(z)h(x)dx for all f € V (as V is finite

dimensional this only requires linear algebra). Now check 0 # h € VXK. O

4.1.2. Characters of Compact Groups. We now show that for com-
pact groups that finite dimensional representations are determined by their
characters.

If V is a finite dimensional complex vector space with a Hermitian inner
product (,) then U (V) will denote the unitary group of V. Let G be a com-
pact Lie group. Then in this section we will only consider finite dimensional
unitary representations of G. (Note by averaging (cf. Prop. [l.1.1]) any finite
dimensional representation is equivalent to a unitary representation so this
is not a restriction.)

THEOREM 4.1.14. If two finite dimensional representations p1 and p2 of
the compact Lie group G have the same character they are equivalent. (Note
that we are not assuming that the representations are irreducible.)

LEMMA 4.1.15. Let py : G — U(V) and ps : G — U(W) be two irre-
ducible representations of G and let B : U x W — C be a linear with respect
to the first variable and conjugate linear with respect to the second slot. (I.e.
B(cvi + v+ v2,w) = ¢B(vi,w) + B(va, w) and B(v, cui +uz) = ¢B(v,u1) +
B(v,u2)). Assume that for all g € G that B(p1(g)v, p2(g)w) = B(v,w). If
B # 0 then p1 and p2 are equivalent representations. (And thus is p1 and
p2 are not equivalent then any such B is 0.)

EXERCISE 4.1.16. Prove this. HINT: The map w — B(-,w) is a conju-
gate linear map from W to the space V* of conjugate linear maps from V'
to C. Now use Schur’s lemma. U
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If p: G — U(V) is a representation then a representative function
for p any function on G of the form

f(g) == (p(g)v1,v2)

where vy, v9 are any elements of V.

PROPOSITION 4.1.17. Let f1 be a representative function for p; : G —
U(V) and and fa be a representative function for py : G — U(W). If p1 and
p2 are irreducible and inequivalent then

/ £1(9)Fa(g) dg = 0.
G

In particular if x,, and x,, are characters of inequivalent irreducible repre-
sentations then they are orthogonal as elements of L*(G).

EXERCISE 4.1.18. Prove this. HINT: Choose vg € V and wg € W and
define B: V x W — C by

B(v,w) = /G (o(g)v, v0) (p(g)w, wo) dy.

and use the last proposition. O

COROLLARY 4.1.19. If p1 : G — GL(V1) and p2 : G — GL(V2) are irre-
ducible representations of the compact Lie group G then the corresponding
charters satisfy

(4.2) /G x1(9)x2(g) dg = C(p1)dp,p,

where C(p1) is a positive constant only depending on p1 and 6,,p, = 1 if p1
and pa are equivalent and d,,,, = 0 if p1 and pa are inequivalent.

EXERCISE 4.1.20. Prove this. HINT: If p; and ps are inequivalent
representations then the characters are sums of representative functions and
the last proposition applies. If the two representations are equivalent then
x1 = x2 and so x1(9)x2(g9) = |x1(g)|? is a non-negative continuous function
on G with x1(e) = dim(V1) > 0 whose integral over G will thus be positive.

O

PROPOSITION 4.1.21. Let p: G =V =V @ --- @V}, be a direct sum
of representations p; : G — V;. Then the character of p is the sum of the
characters of the p;.

EXERCISE 4.1.22. Prove this. O

ProprosITION 4.1.23. If x,, and Xx,, are characters of representations
S0 are Xp; + Xpas Xp1 Xpas and Xp1 -
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EXERCISE 4.1.24. Prove this. HINT:  Consider direct sums, tensor
products, and the “conjugate dual” representation of all conjugate linear
maps. ]

EXERCISE 4.1.25. Prove Theorem E.1.14. HINT: Given two represen-
tations p; and p9, then write the corresponding characters x; and x2 as the
sum of irreducible characters. Then use the orthogonality relations (£.2) to
show that each irreducible character appears in each sum the same number
of times. O

4.2. The L? Convolution Algebra of a Compact Space

As we are assuming that the subgroup K is compact the homogeneous
space G/K is compact if and only if the group G is compact. Recall that
a compact group is unimodular and so the results of Theorem B:3-2 apply.
In this case we show that not only is L!'(G; K) a Banach algebra, but so is
L?*(G; K). Toward this end let L?(G; K) be the set complex valued functions
h:G/K x G/K — C so that h(gz,gy) = h(x,y) with the norm

(43) 3= [ inGo)Pde= [ ihto.0)ds
G/K G/K

where the two integrals are equal by Theorem B.3.2. This norm is a Hilbert
space norm coming from the inner product

(4.4) (p,q) = /G/Kp(w,O)q(x,O) dx = /G/Kp(m y)q(o,y) dy

EXERCISE 4.2.1. Show that the two integrals defining (p,q) are equal
and for any fixed point zy the inner product is also given by

(prq) = /G P o) de = /G PG v dy

HINT: The two integrals both define inner products and by (£.3) these two
inner products have the same norm. Thus (4) follows by polarization. A
change of variable in the integrals shows that o can be replaced by zg. [

THEOREM 4.2.2. If G/K is compact, then L?(G; K) is closed under the
convolution product (p,q) +— p* q and for all h € L*(G; K) the integral
operator Ty, : L?(G/K) — L*(G/K) is compact.

PROOF. Let p,q € L?(G; K) then by the Cauchy-Schwartz inequality

2
[ owrawopas [ ([ o)) i
G/K G/K \JG/K
/ / p(z, z |2dz/ lq(z,0)? dz dx
G/K Ja/K

(4.5) = Vol(G/K)|lpl3ll4ll3
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and G /K is compact and whence has finite volume. Thus p*q is in L?(G; K)
as claimed. If h € L?(G; K) then

/ Ih(x,y)l2dwdy=/ |83 dy = Vol(G/K)|[]3
G/KxG/K G/K

which implies the integral operator T} is a Hilbert-Schmidt operator and
thus compact by Proposition A.2.4. O
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CHAPTER 5

Compact Symmetric and Weakly Symmetric
Spaces

In this section we will assume that the functions in LP(G; K) are all real
valued. Recall (Theorem B.4.3) that the convolution algebra L'(G; K) of a
weakly symmetric space is commutative. So in light of the results above:

PROPOSITION 5.0.3. If G/K is a compact weakly symmetric space then
the space L*(G; K) with the product * is a commutative Banach algebra. If

Thf(z) = fG/Kh(:U,y)f(y)dy then the set A := {T}, : h € LP(G;K)} is a

algebra of commuting compact self-adjoint linear operators on L*(G; K).

PRrOOF. That L?(G; K) is commutative follows form theorem B.4.3. The
rest follows form theorem B2 O

Let ¥ be the set of all non-zero weights of L?(G; K) on L?>(G/K). That
is A is the set of all non-zero linear functions L?(G; K) — R so that the
wetight space

(5.1) Eo:={f:Thf =a(h)f foral hec L*G;K)}
is nonzero. If E is any G-submodule of L?(G/K) then set

EX .= {feE:r,f=f forall aec K} =set of isotropic functions in E.

5.1. The Decomposition of L?(G/K) for Weakly Symmetric
Spaces

THEOREM 5.1.1. Let G/K be a compact weakly symmetric space and ¥
be the set of non-zero weights of L?>(G; K) on L?>(G/K). Then

1. Each E, is a G-submodule of L*(G/K) and

L*(G/K) = @ E, (Orthogonal direct sum,).
acV¥

Each E, is finite dimenstonal and consists of C'*° functions.

Fach E,, is an irreducible G-module.

If o # B then E, and Eg are not isomorphic as G-modules.

Each EX is one dimensional and spanned by a unique element pq,
with pa(0) = 1. This function is called the spherical function in
E,.

Uk N
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6. If E C L*(G/K) is a closed G-submodule then for some subset A C W

E:@Ea.

acA

If E is finite dimensional then the number of irreducible factors in the
direct sum is dim E¥. Thus E is irreducible if and only if dim EX =
1. In particular if E is an irreducible submodule of L*(G/K), then
E = FE, for some a € V.

STEP 1. Parts 1 and 2 of the theorem hold.

Proor. If f € E, then, using that the linear operators T}, with h €
L?*(G; K) commute with the action of G,

Thrgf = 74Thf = tga(h) f = a(h)7,f.

Thus 74 f € Eq so E, is a G-submodule. Let Eg = {f : T,f =0 forall he
L*(G; K)}. By the spectral theorem for commuting compact self-adjoint lin-
ear maps on a Hilbert space (Theorem [A.21]) applied to the family {7}, :
he L*(G;K)}
L*(G/K) = Ey ® P E..
acV¥

So to finish the proof of Step 1 it is enough to show that Ey = {0}. Let
s € L*(G;K) be as in Theorem B.3.5. Then Tp,f = 0 as f € Ep, but
theorem B.3.5 implies

= 1limTy. f = 0.
f im o5

To see f € E, must be in C*°(G/K) note for f € E, that f = lims|o T, f =
a(®s) f and thus lims)g a(Ps) = 1. So for small §, a(6) # 0. But then

0(®0) f () = T () = /G B

By differentiating under the integral we see that f € C°. O

STeP 2. If {0} # E C C(G/K) (the continuous functions on G/K) is
any finite dimensional G' submodule, then there is a p € EX with p(o) = 1.

PROOF. As the functions in E are continuous there is a well defined
evaluation map e : £ — R given by e(f) := f(o). As G/K is compact
C(G/K) C L*(G/K) so again using that E is finite dimensional every linear
function on F can be uniquely represented as an inner product. That is there
is a unique function pg € E so that for all f € E

(5.2) flo) = | @) i
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Ifa € K and f € E then using that the measure dz is invariant and the last
equality

/ (rap) (@) f (z) dx = / pla™2)f () dx
G/K

G/K
_ / p(x) f(az) dz = f(ao) = f(o)
G/K

so by the uniqueness of the element representing the functional e we see
Top = p for all @ € K. Thus p is isotropic. As the action of G is transitive
and E # {0} there are functions f € E with f(o) # 0 which by (5.2) implies
po # 0. Using f = po in (B.2)

po(0) = /G/Kpo(x)Qda: > 0.

Letting p = po#@po completes the proof. O

STEP 3. Each EX is one dimensional. Thus Part 5 of the theorem holds.

PROOF. Form the last step we know there is a p, € EX with p,(0) = 1.
Let hg € EX and set

h= hO - hO(O)pa‘
Then
h(o) = ho(0) — ho(0)pa(o0) = 0.
If we can show h = 0 then hg = ho(0)p, and thus p, spans EX.

As h is isotropic we can use proposition B.4.J to define an element H €
C(G;K) C L*(G;K) by H(z,y) = (Exth)(x,y) = h(¢1y) where £ € G is
any element with £o = x. Form the definition of F, for any f € E,

DI =Taf@) = [ HE W)y, € to=a

Let f = h, = o (in which case we can use { = e) and using h(o) =0
0=althio) = [ hy)Pdy.
G/K

As h is continuous this implies h = 0 and completes the proof U

STEP 4. Each EX is irreducible. Thus Part 3 of the theorem holds.

Proor. If E, is not irreducible then if can be decomposed as a direct
sum E, = F; & Es with each E; a nontrivial G submodule. By step B each
of B and EX is at least one dimensional and therefore EX D FK @ EX is
at least two dimensional which contradicts step B. O
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STEP 5. Let f1, f2 € L?(G/K). Then for each o € U there is a constant
ca(f1, f2) so that

(5.3) / / Filg™ ) falg™Y) dgf(y) dy = calf, f2)F(2)
a/k Ja

PROOF. Write the left hand side of this equation as
| sy
G/K

Wz, y) = /G Filg ) falg™Yy) dg

We may assume that G has a Riemannian metric that is adapted to the
metric of G/K in the sense of proposition P.3.14. Note by the Cauchy-
Schwartz inequality and the formulas of proposition 2-3.15

2
2, . i’y
/G/K|h(x,0)| d:v_/G/K /f1(g 2)fa(g'0) dg

/ /flglx dg/f29 y)* dg do
G/K

= Vol(G/K) Vol(K ) ”f1HL2”f2HL2

< 0

and likewise fG/K |h(0,y)|? dy < Vol(G/K) Vol(K)?|| f1|3:]lf2]|72 < oo. If
¢ € G then

h(éw, €y) = /G f1(g7€x) folg™€y) dg

where

dzx

= / fi (gflw)fQ(gfly) dg (change of variable g — £g)
G
= h(z,y).
Thus h € L*(G;K). As f € E,
| )y = am ).
G/K
Whence the result holds with ¢, (f1, f2) = a(h). O

STEP 6. If a, 8 € ¥ and o # 3 then FE, is not equivalent to Egz as a
G-module. Thus Part 4 of the theorem holds.

PROOF. Let
Ta =Tgle.  78=T4lE,
be the induced representations on E, and Eg. Let x(g) = trace(7,(g)) and
xs(g) = trace(7g(g)) be the corresponding characters. By Proposition B.1.4
Xa = Xp-
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Choose orthonormal basis fa1,..., fa and fg1,..., fagm of Eq and Eg.
In the basis fa1,. .. , fam the matrix representing 7,(g) is [(7gfai, faj)] and
the trace is the sum of the diagonal elements of the matrix. Thus

l

Xa(g) = trace(ta(g)) = Z(Ta(g)faia fai)

i=1
!
=> | failg"'2) failz) da
— Ja/k
and likewise
m
xs(9) = Z/ f3i(g™ ) f3i(y) dy.
=Jarx
Using these relations and interchanging the order of integration

/ Xa(9)x5(9) dg
G

- (g~ ) fp(97" j () dx
B> > </G/K | fea™ ) 1567 ) i) dy) fail®) d

= Zz]: cg(fais £8) /G/K I8;() fai(x) do (by step H)

=0

where fG/K f8j(x) fai(x)dr = 0 as E, and Eg are orthogonal. But if E,
and Ejg are isomorphic then x, = xg this leads to the contradiction 0 =

Joxa(9)xs(9)dg = [ xa(9)?dg > 0. (Note xa(e) = dim Ey s0 xa # 0.)
This completes the proof. O

StEP 7. If {0} # E C L?(G/K) is a finite dimensional irreducible G-
module, then E = E,, for some ay.

PrOOF. Let P, : L*(G/K) — E, be the orthogonal projection of
L*(G/K) onto E,. Then as both E, and its orthogonal complement E are
invariant under the action of G the map P, is a G-map. If P,E = {0} for all
o then E = {0} as L*(G/K) = @,y Ea. Thus for some ag, Pa,Eq, # {0}
The map P,,|g : F — E,, is a nonzero intertwining map, thus by Schur’s
lemma (proposition B.1.1)) Py, | : E — Eq, is an isomorphism. Thus E is
isomorphic to E,, as a G-module. If o # ag then by the last step E, and
E,, are not isomorphic as G-modules and thus Schur’s lemma implies that
P,|g : E — E, is the zero map for a # ag. This implies £ C E,,. An as F
is a nonzero submodule and E,, irreducible £ = E,. O

STEP 8. If E is a closed G-submodule of L?(G/K) then for some A C ¥
E = @aE\II ECV'
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PRrOOF. Let P : L?(G/K) — E be the orthogonal projection. Then
P is a G-map. By Schur’s lemma for each a with PE, # {0} PE, is a G
submodule isomorphic to E, and so by the last step £, = PE, C Image P =
E. If PE, = {0} then E, C E+. Therefore for each « either E, C E or
E, C Et. As L*(G/K) = @ cy Eo it follows that E = @, 4 Eo where
A={aeV:PE, #{0}}. O

STEP 9. If E is a finite dimensional G-submodule of L?(G/K) then the
number of irreducible components in F is dim EX. This completes the proof
to the theorem.

PROOF. If E is finite dimensional it is closed in L?(G/K) and thus thus
by the last step there is a finite set {a,... ,a;} € ¥ so that

E=FE, & - ®E,.
It follows easily that

EX=Ef &---®E}.
But by Part 5 of the theorem each Eéf is one dimensional which finishes the
proof. O

5.2. Diagonalization of Invariant Linear Operators on Compact
Weakly Symmetric spaces

This this section G/ K will always be a compact weakly symmetric space
and we will use the notation of theorem BTl

THEOREM 5.2.1. Let G/K be a compact weakly symmetric space and let
D C L*(G/K) be a G-invariant subspace on that contains all of the subspaces
E,. (For example D = C*(G/K) or D = C(G/K). It is not assume that
D is closed.) Let L : D — L*(G/K) be an invariant operator (in the sense
that Tyo L = Loty and which need not be continuous). Then for each o € ¥

(5.4) LE, C E,
and if po is the spherical function in E, then for f € E,,
(5.5) Lf = (Lpa)(o)f

so formally the operator L is

(5.6) L= P(Lpa)(0)1dg, .

acV¥

Proor. If LE, = {0} then LE, C E, and (b.5) and (5.6) hold. Thus
assume that LE, # {0}. Then by Schur’s lemma L|g, — LE, is an isomor-
phism. Thus by Parts 4 and 6 of theorem p.1.1] this implies LE, = E,. As
the operator L is invariant it maps isotropic functions to isotropic functions
and thus Lp, € EX. By Part 5 of theorem EX is one dimensional and
thus Lp, = cp, for some ¢ € R. Therefore ker(L|g, — cldg,) # {0}. But
ker(L|g, — cldg,) is a G-submodule of E, and by Part 3 of theorem 5.1.1]
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o 1s irreducible. Therefore ker(L|g, —cldg,) = E4 and thus L|g, = cldg,.
To compute ¢ use that p,(0) = 1: ¢ = cpn(0) = (Lpa)(0). This shows that
(6.5) holds and completes the proof. O

5.3. Abelian Groups and Spaces with Commutative Convolution
Algebra

The proof structure theorem of Section B.1l really only used that the
convolution algebra L?(G; K) was commutative. Here we state the more
general result leaving most of the proof as exercises with hints. In this
generality the theory also applies directly to compact Abelian groups and in
particular to S = R/27Z where the expansion of a function f € L?(S!) as
F0) =72 cre™' =10 is the basic example for much of classical harmonic
analysis.

Let G/K be a compact homogeneous space and let C°°(G; K) be the
space of smooth (i.e C°°) complex valued functions h so that h(gzx,gy) =
h(z,y) for all g € G. As is the real valued case this is closed under the
convolution product

hxk(z,y) = /G/K h(zx, 2)k(z,y) dz.

Let L?(G/K) be the Hilbert space of complex valued function f : (G/K) —
C with the Hermitian inner product

(f1, f2) ;:/ fi(x) fa(z) da.
G/K
As before for each h € C*°(G; K) define a linear operator
Thnf(x) == / h(z,y) dy.
G/K

If h € C*°(G; K) then set h*(z,y) = h(y,z). Then T}~ is the adjoint of T},
in the sense that
(Thf1, f2) = (f1, Th~ f2).
Thus in the complex valued case symmetry h(z,y) = h(y, z) does not imply
T}, is selfadjoint.
A weight for C*°(G; K) is a linear functional a : C*°(G; K) — C so
that corresponding weight space

Eo:={f € L*(G/K) : Ti.f = a(h)a(f)}.
is not the zero space {0}. If E C L?(G/K) is a G-submodule then the set
of isotropic functions E¥ in E is
EX .={f€ F: flax) = f(z) for all a € K}.

We know that if the space G/ K is weakly symmetric then the convolution
algebra C*°(G; K) is commutative. There are other cases where this holds.
For example let G be compact and commutative and let K = {e}. Then
h € C*®(G;{e}) if and only if it is of the form h(x,y) = f(zy~!) for some
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smooth complex valued f : G — C. From this it is not hard to show
C*(G;{e}) is commutative. As a first step toward understanding Fourier
expansions on compact groups prove the following variant of our basic result
about the decompositions of L?(G/K) when G/K is weakly symmetric.

THEOREM 5.3.1. Let G/K be a compact homogeneous space so that the
convolution algebra C*°(G; K) is commutative. Let U be the set of non-zero
weights of C*°(G; K) on L?*(G/K). Then

1. Each E, is a G-submodule of L*(G/K) and

L*(G/K) = @ E, (Orthogonal direct sum,).
I\

Each E, is finite dimensional and consists of C*° functions.

Each E,, is an irreducible G-module.

If o # B then E, and Eg are not isomorphic as G-modules.

Fach Ef 1s one dimensional and spanned by a unique element pg
with po(0) = 1. This function is called the spherical function in
E,.

6. If E C L*(G/K) is a closed G-submodule then for some subset A C W

E:@Ea.

acA

O N

If E is finite dimensional then the number of irreducible factors in the
direct sum is dim EX. Thus E is irreducible if and only if dim EX =
1. In particular if E is an irreducible submodule of L*(G/K), then
E = E, for some a € V.

EXERCISE 5.3.2. Prove this theorem. HINT: The basic analytic tool in
the case of weakly symmetric spaces was the spectral theorem for commuting
compact self-adjoint operators on a Hilbert space. In the case at hand
the operators T}, are no longer selfadjoint but this is not a large problem
as if C*°(G; K) is commutative, then the operator Tj, commutes with its
adjoint Tp«. That is T}, is a normal operator and commuting compact normal
operators have a spectral theory every bit as nice as commuting compact
selfadjoint operators. See Theorem [A-2Z.7 in the appendix. Now go through
the proof of Theorem F.1.1] and make the (mostly straightforward) changes
needed to prove result here. O

Now the proof of the diagonalization result Theorem b.2.1 goes through
just as before:

THEOREM 5.3.3. Let G/K be a compact homogeneous space so that the
convolution algebra C*®(G; K) is commutative and let D C L*(G/K) be a
G-invariant subspace on that contains all of the subspaces E,,. (For example
D =C>®(G/K) or D =C(G/K). It is not assume that D is closed.) Let
L:D — L*(G/K) be an invariant operator (in the sense that oL = Lo,
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and which need not be continuous). Then for each o € ¥
(5.7) LE, C E,

and if po s the spherical function in E,, then for f € E,
(5-8) Lf = (Lpa)(0) f

so formally the operator L is

(5.9) L= (Lpa)(0)1dg, .

acv

EXERCISE 5.3.4. Prove this by making the required modifications to the
proof of Theorem b.2.1l. O

5.3.1. Compact Abelian Groups. In this section we specialize the
results above to the case of G compact and Abelian. Form the point of view
of representation theory the next result shows how compact Abelian groups
differ form general compact groups.

PROPOSITION 5.3.5. Any finite dimensional complex irreducible repre-
sentation of a compact Abelian group G is one dimensional. Any real irre-
ducible representation of G is either one or two dimensional.

EXERCISE 5.3.6. Prove this. HINT: One method (and this is really using
overkill) is to note that if p : G — GL(V) is a finite dimensional represen-
tation of G then (after using Proposition [.I.]] to get an invariant inner
product on V') the image p[G] will be a commuting set of unitary (and thus
also normal) maps. Therefore the spectral theorem for commuting compact
normal operators [A.Z.7 can be used to show that V' decomposes into one
dimensional invariant subspaces. O

When G is Abelian any subgroup K is normal and so G/K is also a
compact Abelian group and we do not lose anything by replacing G by
G/K and assuming K = {e} is the unit subgroup.

THEOREM 5.3.7. Let G be a compact Abelian Lie group and let VU the
the nonzero weights of C*®(G;{e}) on L*(G/K) and

L*(G) = Ea
ac¥
the corresponding decomposition of L*(G/K) = L*(G). Then

1. Fach E,, is one dimensional and thus E, = ng

2. If o s the spherical function in E, (which will be the unique element
of Eo with xo(0) =1), then xo s a group homomorphism xo : G —
TY. (Here T' := {2z € C : |z| = 1} is the group of complex numbers
of modulus one.)

3. If x : G — T is a continuous group homomorphism then x = Xa for
some o € V.
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4. If a # 3, then
{(Xas Xp) = /Gxa(x)xg(m) dex =0
5. Bvery f € L*(G) has an expansion
f= Z ca(f)Xa where ¢ (f) =

1
Vol(G)

/G f(@)xa(@) de

6. Make L?(G) into a Banach algebra with the product fi x fo(x) =
Jo [i(@y™Y) f2(y) dy. Then the maps that sends f € L*(G) to h(z,y) :=
f(zy™1) is an algebra isomorphism of (L*(G),*) and (L*(G; K), *).

EXERCISE 5.3.8. Prove this by showing it is a special case of Theo-
rem B3 O



APPENDIX A

Some Results from Analysis

A.1. Bounded Integral Operators

First we give a useful result about when certain integral operators on LP
spaces are bounded. Let (X, ), and (Y, v) be sigma finite measure spaces.
Let K : X xY — R be a measurable function. Let L*(X,u) be the set
of non-negative measurable functions define on X (where the value oo is
permitted). Then define Px : L1T(X,p) — LT (Y,v) and P} : LT (Y,v) —
L+(X, p) by

Prcf(y) = /X K (2,9)| () du(a)
Py f(z) = /Y K (2,9) |/ () dv(y)

THEOREM A.1.1. Let 1 < p < oo Assume there is a positive function
h e LT(X,pn) and a number A > 0 so that

(A1) Pj(Prh)P~! < ApP1

Then the integral operator Tk defined by

(A2) Ticf )= [ Ko (@) dula)
is a bounded linear map Tk : LP(X, ) — LP(Y,v) and

(A.3) [Tx fllze < A ([ fllze

REMARK A.1.2. The function h need not be in LP. Being able to choose
the function A with it having to be in some L? space is what makes the result
useful.

63
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PRrOOF. Let p’ = p/(p — 1) so that 1/p+ 1/p’ = 1 and p/p’ = p — 1.
Thus by Hoélder’s inequality for any f € LP(X, u)

T f ()] < /X K (2, )|/ ()] dps(z)

- / K (2, 9)|7 h(x)7 |K (2, 9)|7h(z) 7 | £(2)] dp()

(/ 1K (2, ) h() du( ) ([ i) v Vs@p au))

()7 ( [ 1K in P1>|f<x>\pdu<w>)’l’
That is
T < (Peh)) ™ [ 1K) lhia) 0Ol @ duta)
Therefore
Al = [ TP doty
< [ (P [ Kyl @) dule) dv(o)
= [ [ G (P vt b))l )
= [ (Pi(Pichy™) (2)ha) 0V a) P due)

<) / B~ ()~ D £ (@) P dpa(z)
X
= )‘HfHZz,p 0

COROLLARY A.1.3. If K : X xY — R satisfies

(A4) /X K (2,y)| du(z) < A, /Y K (z,9)| dv(y) < B

for constants A, B. Then for 1 < p < oo the integral operator Tk is bounded
and a map from LP(X, u) to LP(Y,v) and

1 p-1
(A.5) [Tk fllr < AP B 7| £l e
PROOF. Let h = 1 in the last theorem. Then the bounds ([A.4) imply

Pg1 < A and so Pj(Pg1)P~! < AP71B1. Thus let A = AP"'B and use the
theorem. 0
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EXERCISE A.1.4. As an example of the use of Theorem [A-T 1] define the
Hardy operator on functions defined on (0, c0) by

/fdt

Show that for 1 < p < oo that H : LP(0,00) — LP(0,00) is bounded linear
map and that

e L

HINT: In this case Px = H and Pj f(z) = [° @ dt. Let ho(x) = t* where
—1 < a < 0 and show P} (Pgha)P™! = Aa)he with M) = —1/(a(a +
1)P~1(p — 1)). Now make a smart choice of a. O

A.2. Spectral Theorem for Commuting Compact Selfadjoint and
Normal Operators on a Hilbert Space

Let H be a real or complex Hilbert space with inner product (-, -). Recall
that a bounded linear operator A : H — H is self-adjoint or symmetric
iff (Az,y) = (x,Ay) for all z,y € H. The linear map A is compact iff
A[B(0,1)] has compact closure in H. (B(0,1) is the unit ball about the
origin in H.) This A is compact iff for any bounded sequence {x,}5° ; from
H the sequence {Ax,}7° | has a convergent subsequence.

Let A be a linear space of compact self-adjoint linear operators on H.
(Note that even when the space H is complex the space A will be a real vector
space as the set of self-adjoint operators is not closed under multiplication
by v/—1.) A linear map « : A — R is a weight iff the corresponding weight
space

(A6) E,:= ﬂ ker(A—a(A)) ={z e H: Az = a(A)z for all Aec A}
AcA

is not the trivial subspace (0).

THEOREM A.2.1 (Spectral theorem for compact selfadjoint operators).
Let A be a vector space of compact selfadjoint linear maps on the Hilbert
space H and assume that any two elements of A commute. Let W be the set
of non-zero weights of A. Then there is an orthogonal direct sum decompo-
sition of H given by

H=FEy® @ E,
acev
where for each a € VU each space E, is finite dimensional. (However the
subspace Ey := {z : Ax =0 for all A € A} can be infinite dimensional.) [

Let ‘H be a complex Hilbert space with inner product (-, -). Recall that
a bounded linear operator A : H — H is normal iff A commutes with
its adjoint A* (i.e. A*A = AA* and where the adjoint A* of A is defined
by (Az,y) = (x,A*y)). The linear map A is compact iff A[B(0,1)] has
compact closure in ‘H. (B(0,1) is the unit ball about the origin in H.) This
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A is compact iff for any bounded sequence {z,}>°, from H the sequence
{Az,}2° | has a convergent subsequence.

Let A be a linear space of compact normal linear operators on H.

a: A — Cis a weight iff the corresponding weight space

E, := ﬂ ker(A — a(A)) ={x e H: Ax = a(A)z for all Ae A}
AeA
is not the trivial subspace {0}.

THEOREM A.2.2 (Spectral theorem for commuting compact normal operators).
Let A be a vector space of compact normal linear maps on the Hilbert space
H and assume that any two elements of A commute. Let U be the set of
non-zero weights of A. Then there is an orthogonal direct sum decomposition
of H given by
H=FEy® @ E,
ac¥

where for each a € VU each space E, is finite dimensional. (However the
subspace Ey := {z : Ax =0 for all A € A} can be infinite dimensional.) O

REMARK A.2.3. This can be reduced to the case of the Spectral The-
orem [A-Z.1] for compact self-adjoint operators. Here is an out line of how
to reduce this to the selfadjoint case. If A is any operator on a Hilbert
space, then write A = U + /—1V where U = U(A) := (A + Ax) and
V =V(a) = 2\/1_—1(14 — A*). Then U and V are self-adjoint and if A is
normal then U and V commute. Also if A is compact, then so are U and
V. Thus B := Span{U(A),V(A) : A € A} is a linear space of commuting
self-adjoint compact operators. This use the spectral in the self-adjoint case
and then translate the result back to the case normal case.

A standard result about when integral operators are compact is:

PRrOPOSITION A.2.4 (Hilbert-Schmidt Operators). Let (X, u) and (Y, v)
be measure spaces and let K : X XY — C be measurable so that

/ K (2, ) dp(e) dv(y) < oo.
XxY

Then the integral operator Tx f(y) := [y K(z,y)f(x) du(x) is compact as a
linear map from L*(X) — L*(Y) and || T fllz2 < | K| r2(x x| fll 2. Inte-
gral operators with kernels of this form are called Hilbert-Schmaidt oper-
ators. U

A.3. Miscellaneous analytic facts.

THEOREM A.3.1 (Uniform Boundedness Theorem). Let X andY be Ba-
nach spaces. Let Ty, : X — Y with oo € A an indezed collection of linear
maps. Assume that for each r € X that

sup || Taz|ly < oo.
acA
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Then there is a constant C so that
[Tazlly < Cllzllx

for all a € A and all x € X. That is there is a uniform upper bound C on
the operator norms || T,||op of the linear maps Ty,.

PRrROOF. See [4, Cor. 21 p. 66] O

Let X and Y be Banach spaces and let Bx be the unit ball of X. Then,
generalizing a definition above for linear maps between Hilbert spaces, call
a linear map 7' : X — Y, a compact operator iff T[Bx] is precompact in
Y. Also recall that a linear map has finite rank iff the dimension of its
image is finite dimensional.

THEOREM A.3.2. Let X and Y be Banach spaces and let Compt(X,Y)
be the set of all compact linear operators from X to Y. Then

1. Compt(X,Y) is linear subspace of the space of all bounded linear
operators from X to Y and is closed with respect to the operator
norm || - |lop. Thus for any linear T that is a limit (in the operator
norm) of compact operators is also compact.

2. All finite rank operators form X to Y are in Compt(X,Y). Thus
any linear map T form X to Y that is a limit (again in the operator
norm) of finite rank operators is a compact operator.

PRrROOF. This is an instructive exercise. Or see [9, §VL.5 pp. 485-487] [
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APPENDIX B

Radon Transforms and Spherical Functions on
Finite Homogeneous Spaces

B.1. Introduction

In this section we look at the actions of finite groups on finite sets from
the point of view of analysis on compact homogeneous and symmetric spaces.
As applications we give conditions for some Radon type transforms to be
either injective or surjective. Let X be a finite set and let ¢?(X) be the
vector of all real valued functions defined on X. Similar applications hold
for Radon transformations on symmetric spaces with actions by Lie groups
and at some point I hope to complete the notes above to include some of
these results. As a good introduction transforms on homogeneous spaces see
Helgason [177].

As to the results here for finite group actions I don’t think that there
is anything new accept maybe the point of view. For more on finite Radon
transforms from this viewpoint and the problems treated here see Bloker [4],
Bolker, Grinberg, and Kung [5], Kung [20], Grinberg [I&], Diaconis and
Graham [8], Frankel and Graham [T2], and Basterfield and Kelly [2]. In [21]
gives a survey of the finite Radon transform and its applications and in [28]
surveys the relation between discrete orthogonal polynomials and spherical
functions of Chevalley groups with respect to maximal parabolic subgroups.
Finally I am told that many of the results here can be treated in a unified
method by the use of association schemes. My sources tell me that among
the standard sources here are Bannai and Ito [T], Biggs [3], and Brouwer-
Cohen-Neumaier [].

B.2. Finite Homogeneous Spaces

Assume that some finite group G has a transitive action on X then there
is the usual permutation representation of G on ¢?(X) given by 7,f(x) =
f(g~1x). Fix a point a point o € X and let K := {a € G : ao = o} be the
stabilizer of 0. Denote by ¢2(X)X the set {f € (>(X) : 7.f = f, a € K}
of vectors in ¢?(X) fixed by K. It is clear that the dimension of £2(X)¥ is
the number of orbits of K acting on X. We call this the rank of X. (More
precisely this should be the rank of the action of Gon X.) If p: G — GL(V)
is any representation of G then a linear map R : /2(X) — V is invariant

under G iff Rty = p(g)R for all g € G.

69
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PROPOSITION B.2.1. Let R: (*(X) — V be invariant. Then R is injec-

tive if and only if the restriction R‘ZQ(X)K of R to (?(X)X is injective.

PROOF. Assume that R is not injective and let E := {f : Rf = 0}
be the kernel of R. Then as G is transitive on X there is an f € E with
f(o) =1. As R is invariant the function p := ﬁ Y oack Tap isin E. (|S] is
the number of elements in the set S.) Then p € £2(X)X, p # 0 (as p(o) = 1)
and Rp = 0. Thus the restriction of R to ¢2(X)¥ is not injective. The
converse is clear. (Note that £2(X) can be replaced by the set of functions

f X — F where F is any field whose characteristic is relatively prime to
Gl.) O

As an application we consider Radon transforms between finite Grass-
mannians. Let F be a finite field and F™ the vector space of dimension n
over F. Then GL(F") is the group of all invertible linear transformations
of F" and Aff(F") is the group of all invertible affine transformations of
F". We denote by Gi(F™) the Grassmannian of all k-dimensional linear
subspaces of F". (With this notation the n-dimensional projective space
over F is G1(F"*!).) The affine Grassmannian AG(F") is the set all k-
dimensional affine subspaces of F"*. For 0 < k < | < n — 1 define the
Radon transform Ry, : (?(AGL(F")) — (?(AG)(F™)) and its dual by
Ry, : CP(AGI(F™)) — (2(AG(F™))

(B.1) Rif(P):=)_ flx),  R,F(x)=) F(P)

zCP POz

Likewise for 1 < k <l < n — 1 there are projective versions of these trans-

forms Py : 2(Gy(F™)) — 2(Gi(F™)) and Py, : (2(Gy(F™)) — €(Go(F™))

(B.2) Pof(L):=_ flx),  PLF():=Y F()

xCL LCxz

THEOREM B.2.2. Let 0 < k <l < n-—1. (a) If k+1 < n, then
Ry : 2(AGE(F™) — (2(AG(F™)) is injective and the dual map Ry, -
P2(AG(F™)) — (?(AGR(F™)) is surjective.

(b) If k+1 > n then Ry, : (2(AGL(F™)) — (2(AGy(F™)) is surjective and
the dual map Ry : P2(AG(F™)) — 2(AG(F™)) is injective.

THEOREM B.2.3. Let 1 <k <l<n-—1. (a)Ifk+1<n, then Py :
P2(Gp(F™)) — 2(G(F™)) is injective and the dual map Prye 2(Gy(F™)) —
2(GR(F™)) is surjective.

(b) If k +1 > n then Py : (2(Gr(F™)) — 2(G(F™)) is surjective and the
dual map Py, : (GI(F™)) — 2(GR(F™)) is injective.



B.3. INJECTIVITY RESULTS FOR RADON TRANSFORMS 71

B.3. Injectivity Results for Radon Transforms

The group GL(F") has a transitive action on G (F"). Fix Ly € G (F").
Let K :={a € GL(F") : aLy = Lo} be the stabilizer of Ly.

PRrROPOSITION B.3.1. The orbits of K on Gi(F") are
X;={L:dim(LNLy)=1i} for max(0,2k—n)<i<k.

Thus the number of orbits of K isk+1 for 1 <k <n/2 andn—k+1 for
n/2<k<n-—1.

PRrROOF. Straightforward. O

The affine Grassmannians AGy(F™) are somewhat more complicated.
Every P € AG(F") is the translation of some k-dimensional linear subspace
of F". Let L(P) € Gr(F") be the translate of P that contains the origin
(and thus is a linear subspace of F”). Choose Py € AG(F"™) with 0 € P, (so
that L(Fy) = Py) and let K := {a € Aff(F") : aPy = Py} be the stabilizer
of Po.

PROPOSITION B.3.2. The orbits of K on AGL(F™) are

(B.3)
X()’i = {P PN Py= 2, dlm(ﬁ( ) N Po) =1
Xl,i = {P : PN Py # 9, dlm(ﬁ( ) N Po)

Thus the number of orbits of K on AG(F™) is 2(k+ 1) for 0 < k < n/2
and 2(n —k+1) forn/2 <k <n-—1.

}for max(0,2k —n) <i<k.

Proor. This follows form the last proposition by considering the two
cases where PN Py =@ and PN Py # &. O

Define an inner product ¢?(X) in the usual manner:
(fi,f2) =) hi(x
zeX

Then the linear transformations Ry, ; and R}: ; are adjoint in the sense that

(Riuf, F) =Y f(P = (f, R F).
PCQ
Therefore Ry, is injective if and only if RZJ is surjective and Ry is surjective
if and only if Rj ; is injective. Likewise the maps Pj; and P;, are adjoint.

PrOOF OF THEOREM B=22. We first prove (a). Thus let k+1 < n
and 0 < k <l <n—1. As remarked above the group G = Aff(F") acts
transitively on AGi(F"). Choose Py € AGy(F) to use as an origin. We



72 B. FINITE HOMOGENEOUS AND SYMMETRIC SPACES

assume that 0 € Py so that £(Py) = Py and let K be the stabilizer of Fj.
Let Xo,; and X ; be as in (B-3). Define functions f; for 0 <i <2k + 1 by

1, OSigkandPeXoﬂ-,
fZ(P) = 1, k—i—l§i§2k+landP€X1,i_(k+1),
0, otherwise.

Because of the condition k + 1 < n it is possible to choose Q; € AG;(F")
such that Q; N Py = @ and dim(£(Q;) N ) = j for 0 < j < k and
so that when £+ 1 < j < 2k + 1 that ; contains 0 (£(Q;) = Q;) and
dm(PoNQ;) =7—(k+1). If Pe AGL(F"), P € )5, and i > j, then
fi(P) = 0. (For example in k > ¢ > j then P C Q; implies PN Py = @
and L(P)N Py C L(Q) N Py so dim(L(P) N Py) < dim(L(Q;) N Py) =j < i.
Thus P ¢ Xy, so that f;(P) = 0. Similar considerations work in the cases
Jj<k<iand k <j <i.) This implies Ry;f;(Q;) = 0 whenever j < i. On
the other hand when 0 < ¢ < k we have ¢; := [{P C Q; : P € Xo,}| > 0 and
when k41 <4 < 2k + 1 we also have ¢; := {P C Qj : P € Xy ;_(z41)}| > 0.
There for the matrix [Ry,;fi(Q;)] is triangular

[¢v 0 0 0
x ¢4 0 - 0
[Reafi(@))=| * * c - 0
N N N 0
* * * e C2k+1_

and as the ¢; # 0 this matrix is nonsingular. But then the functions Ry f;,
i = 0,...,2k — 1 are linearly independent (if Z?iarl a;f; = 0, then by
evaluating at the ;’s we get a nonsingular system for the a;’s.) As the
functions fo, ..., fory1 are a basis of £2(F")X this implies the restriction of
Ry to ?2(F™)X is injective. Thus Ry is injective, and Rz,l surjective when
k+1<0.

We now assume 0 < k <l <n-—1and &£+ 1 > n and show RZJ is
injective. These conditions imply [ > n/2. Let Qo € AG;(F") be so that
0 € Qo (and thus £(Qo) = Qo) and let K := {a € Aff(F") : aQo = Qo}
be the stabilizer of Qp. Then ! < n/2 implies K has (2l — n + 1) orbits on
AG(F™). To simplify notation let » = 2n — [ be the codimension of Q.
Then proposition B.3.2 implies the orbits of K are

Y0 :={Q: @N Qo # &, dim(L(Q) + Qo) =l + i}

. . <<
Vi ={Q:QNQy=2, dm(L(Q)+ Qo) =1+ (i —r—1)} forO0<éis<r
Define functions F; on AGi(F™) by
1, 0<i<randQ € Yy,
Fi(Q):=14 1, r+1<:<2r+1and P€Y|; (r41),

0, otherwise.

Then Fp,. .., Fy,y1 is a basis of the isotropic functions ¢2(AG;(F"))¥. Be-
cause of the dimension restriction k +1 > n it is possible to choose elements
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Pj € AGL(F™) so that P, N Qo # @, dim(L(Pj) + Qo) =1+ jfor 0 < j<r
and P;NQo =@, dim(L(Pj) + Qo) =1+ (j—r—1)forr+1<j<2r+1.
But then by considering the cases 0 <1 < j <r, 0<i<r<j3j<2r+1
and r+1 < i < j < 2r + 1 it follows that if ¢ < j and @ D P;, then
F;(Q) = 0. Thus i < j implies R} F;(P;) = 0. But clear R}, Fi(F;) # 0.
Whence [R}; ;Fi(Qj)] is a triangular matrix with non-zero elements along the
diagonal and thus is nonsingular. Just as in the last case this implies that
R;’;ZFO, . ,Rz’lerJrl are independent which in turn implies the restriction
of Ry, to the isotropic functions 2(F™)K is injective which by Proposi-
tion @ implies R,’;’l is injective. Then Ry is surjective by duality. O

PrOOF OF THEOREM B273. An easy variant on the last proof. O

B.4. The Convolution Algebra of a Finite G-Space

Let X be a finite set. Let £2(X x X) be the set of real valued function
h : X x X — R. Then for each h € /2(X x X) define a linear map
Ty : 12(X) — 2(X) by

Tif(x) =Y hiz,y)f(y).

yeX

If f € 2(X) is viewed as a column vector with entries indexed by X (in
some ordering) and h as a matrix with entries indexed by X x X then the
linear operator T}, is just matrix multiplication by h. Define the natural
product (corresponding to matrix multiplication) on £?(X x X) by

hxk(x,y) = Z h(z,2)k(z,y).
zeX
Then T}, 0T}, = Thyt, as expected. If b € £2(X x X) then let ht(z,y) = h(y, x)
be the “transpose” of h. Then the linear operator T} is the adjoint of T},
in the sense that
(Thfr, f2) = (f1, The f2)
so that T}, is selfadjoint if and only if Ak is symmetric h(x,y) = h(y, z).

Let G be a finite group and assume that X is a G-space, that is the
group G has an action on X on the left (g,x) — gx. Then there is the
usual permutation representation 7 : G — O(£%(X)) (here O(£*(X)) is the
orthogonal group of £?(X)) given by

Tof(2) = flg™ ).
The group G then has the action g(z, y) = (gz, gy) on X x X. Let £2(X x X)¢
be the subspace of £2(X x X) of functions invariant under G. That is
h € 2(X x X) if and only if h(gz, gy) = h(x,y). These definitions imply:

PROPOSITION B.4.1. If h € (2(X x X)© then the linear operator Ty,
commutes with the action of G, that is Ty, = 141}, for all g € G. The set
2(X x X) is closed under the product x, hxk € (X x X)) if h,k €
(X x X)C. O
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This implies that with the product  the vector space £2(X x X) be-
comes an algebra with identity (the function é(x,y) =1 for x =y and =0
for © # y is the identity). Because of analogues form functional analysis we
call /2(X x X)% the convolution algebra of X. This is of most interest
when the action of G is transitive on X. In this case choose a point 0 € X
to use as an origin and let

K :={a€G:a0=0}

be the stabilizer of 0. In this case let £2(X)® be the set of elements in £?(X)
invariant under K, that is (2(X)X = {f : f(az) = f(x) for alla € K}.
Functions in £2(X)® will be called isotropic or radial. It is clear that the
dimension of £2(X)¥ is equal to the number of orbits of K acting on X.
This is also the dimension of £2(X x X)X because of:

REMARK B.4.2. If the action of G is transitive on X then there is a
linear isomorphism R : 2(X x X)¢ — (X)X given by Rh(y) := h(0,y).
The inverse of R is given by

(B.4) h(z,y) = R f(z,y) = f(€ 1) where £o = .
(This is independent of the choice of £ with éo = x.) Thus
dim (X x X)¢ = dim £2(X)® = number of orbits of K on X

We now would like to give a standard basis of £2(X x X). Let r be
the rank of the action of G on X. That is the stabilizer K of o has r orbits
X1,...,X, and we assume that X; = {o}. Define ¢; € /*(X x X) by

1, “lyeX
ex(x,y) == { 0 é_lz ¢ X];: where 0 = z.

It is easily checked this is defined independently of the choice of £ with o = =
and that er(gx, gy) = ex(x,y). These are clearly linearly independent and
thus form a basis of 2(X x X)¢. Let

fe(y) == ex(o,y) = { (1): z ;ﬁz

be the corresponding functions in £2(X)X and L; the linear operator

(B.5) Lif(z) =) exlz,y)f(y).

yeX

These linear operators have a combinatorial interpretation. For k=1,... ,r
define a directed graph Gj with vertices X and so that there is an edge
point from z to y iff ex(x,y) = 1. Then the matrix [e(z,y)]syex is just
the incidence matrix of the graph Gi. (The linear operator Ly — ¢Id where
c:=|{x : ex(0,z) # 0} is often called the Laplacian of Gi). The operator
Ly, is somewhat analogous to a differential operator f — Df, where D f(x)



B.4. THE CONVOLUTION ALGEBRA OF A FINITE G-SPACE 75

is computed in terms of the points y “infinitely close” to z, for if f € £2(X),
then

Lif(x) = en(x,y)f(y) = > f(y)

yeX y connected to z in Gy

and thus computing Ly f(z) only involves nearest neighbors of = in G.

For each kK =1,...,r choose x; € X} to use as a reference point. Then
we define some numbers related to the combinatorics of the action of G on
X, or more precisely to the combinatorics of the graphs G. Let

(B.6) ny = | Xl
and
(B.7) lg?) = number of points in X; connected to z; in Gy,
=y € X s exlwiy) = 13 = > enlwi, ) f5(v)
yex
= L fj(x;).

This definition is independent of the choice of the reference point x; € X;.
The functions f1, ..., f, are basis of £2(X)¥ and each L; maps ¢*(X)¥ into
itself. In this basis the inner product is given by

(B.8) (fis ) = dijni

and the linear operators Lj satisfy
T
k
(B.9) Lefi= > 105,
j=1

This follows easily form B77. Thus in this basis the matrix of L; viewed as
a linear map Ly : £2(X)X — 2(X)K is

0w m
11 12 1r
I I ()
(B.10) L= | 20 27
Bl
O CIC

While we will not use this fact here it is worth pointing out that when
G is transitive on X that the convolution algebra of X is isomorphic to a
subalgebra of the group ring of G. Let R[G] be the group ring of G viewed
as functions f : G — R and let R[G]®*X be the functions that are bi-
invariant under K, that is f(a&b) = f(¢) for all a,b € K. Then R[G)F*K
is a sub-ring of R[G] isomorphic to £2(X x X)& with the product *. (See
Exercise page B2). This is the motivation for calling £2(X x X) with
the product % the convolution algebra, as in the case of locally compact
groups with the Haar measure the analogue of the group algebra is L'(G)
with the convolution product fi * f2(§) = [, f1(En~)(n) dn.
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B.5. Finite Symmetric Spaces

Let X be a finite set and G a finite group acting on X. Call the action
of G on X symmetric if and only if for each pair z,y € X thereisage G
that interchanges xz and y (i.e. gr =y and gy = x). Note that if the action
of GG is symmetric on X, then it is transitive on X.

ProposITION B.5.1. If the action of G on X is symmetric then every
h € (X x X)C is symmetric h(z,y) = h(y,x) and the product x is com-
mutative. Therefore the set of linear maps {T), : h € (X x X)X} is a
commuting set of self-adjoint linear operators.

Proor. If z,y € X then there is a ¢ € G that interchanges them.
Thus by the basic invariance property of elements of £2(X x X)X, h(z,y) =
h(gz,gy) = h(y,z). If h,k € £2(X x X)©, then using the symmetry of h, k
and h x k

hxk(x,y) = Z h(z, 2)k(z,y) = Z k(y, z)h(z, )

z€X zeX
=kxh(y,x) =k« h(z,y).
Which shows * is commutative. O

We now fix some notation. As above we choose an origin o € X and let
K be the stabilizer of o in G. If F is a G invariant subspace of £?(X) then
let

EX ={feE:r,f=fforallac K}

be the isotropic elements of E. As {T}, : h € 2(X x X)%} is a commuting
set, of selfadjoint linear maps then they can be simultaneously diagonalized.
Put somewhat differently this means there is a finite set of nonzero lin-
ear functionals a1, ..., q, : £2(X x X)¢ — R (called weights so that the
corresponding weight space

Eo, ={f € *(X):Tyf = a;(h)f for all h € F*(X x X)“}

is not the zero subspace {0}. Then the spectral theorem implies
'
(B.11) P(X)=Ey® @ E,, (orthogonal direct sum),
i=1

where Eq := {f : T,f = 0 for all h € £2(X x X)%}.
THEOREM B.5.2. Let X have a symmetric action by the group G. Then
T
1 A(X)= EBE&Z. (orthogonal direct sum)
=1

2. Each E,, s irreducible.

3. Fach Eé(l s one dimensional and spanned by a unique element pq,
with pa,(0) =1 called the spherical function in Eéi

4. If i # j then Ey,; and Eq; are not isomorphic as G-modules.
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5. If E is any irreducible G invariant subspace, then E = E,, for some
1.

6. r = number of orbits of K on X = dim 2(X)¥ = dim (X x X)%.
That is v is the rank of the action of G on X.

PROOF. Let f € Ep and let § € £2(X x X)% be the identity matrix.
Then f =Ts5f =0 so Ey = {0}. Using this in equation (B:11]) shows part 1
holds.

If E C ¢?(X) is any nonzero G invariant subspace there is some element
f € E with f(o) = 1. Then the element p(x) = ﬁ > ack flaz) is in EX.
This shows that EX has an element p with p(o) = 1. We now claim that
if fe Effl and f(o) = 0 then f = 0. To see define, as in remark , a
function h € £2(X x X) by equation (B.4). Then h(o,y) = f(y) and

0= a;(h)f(0) = Thf(0) + Y ho,y)f(y) = D f(x)?

yeX yeX

which shows that f = 0 as claimed.

The arguments in the last paragraph imply that Efl is one dimensional
and is spanned by a unique element p,, with p,, (o) = 1. This in turn
implies E,, is irreducible as if not it could be decomposed as a direct sum
E,, = F1 ® Fy and thus Eéi = B @ EX and each FJ is at least one
dimensional, contradicting that EOIZ is one dimensional. This proves parts 2
and 3.

LEMMA B.5.3. Let f1, fo € £2(X). Then there is a constant ca, so that
forall f € E,,

Y hlg o) (g7 ) () = cai(frs fo) ().

geGyeX

PRrROOF. Let h(z,y) = > cq filg™ ') f2(g7'y). Then for any ¢ € G
a change of sum in the sum defining h implies h(éx,&y) = h(z,y). Thus
h € 2(X x X)% and so for any f in E,,, Tyf = a;(h)f. This is equivalent
to the statement of the lemma with cq, (f1, f2) = ai(h). O

We now show that if a, 5 € {a1,... , o} then E, and E3 are not isomor-
phic. Let xa(g) := trace(ry|g,) and x5(g) := trace(ry|g,) be the characters
of the representation restricted to K, and Eg. Then fi,,..., fio be an or-
thonormal basis of E, and fig,..., f;,g an orthogonal basis of Eg. Then
the matrix of 7|g, is [(fia, Tgfja)]- The trace is the sum of the diagonal
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elements so

Z Xa(g)Xﬁ(g) = Z Z(fiav Tgfia><fjﬁ7 Tgfjﬁ>

geG geG i,

=D DD falg ) sl ) fiaw) | Fip(x)

i,j veX \yeX geG

= Z ca( fia, fiB) Z fia(x) f5(z (by the lemma)

zeX
= an fzaaf]ﬁ)(fla’ f]ﬂ>
,J
=0

as E, is orthogonal to Eg. But is E, and Eg are isomorphic then x, =
xs which would lead to the contradiction 0 = > . Xa(g)? > 0. This
proves part 4. The last two parts follow from Schur’s lemma and easy linear
algebra. O

B.6. Invariant Linear Operators on Finite Symmetric Spaces

We use the notation of the last section. That is G has a symmetric
action on the set X and we use the notation of Theorem B5H2.

THEOREM B.6.1. Let X have a symmetric action by G and let L :
(2(X) — (*(X) an invariant linear operator (that is L, = 14,L for all
g € G). Then for each i there holds LE,, C Eq, and L|g,, is multiplication

Llg,, = ¢ ldg, — where ¢; = (Lpq,)(0).

In particular L is invertible if and only if (Lpa,)(0) # 0 for all i. In this
case the inverse is given by

Z Lpal

where m; : 1?(X) — E,, is orthogonal projection.

PRrROOF. This follows form Theorem B.5.3 and Schur’s lemma. (¢; =
(Lpa,;)(0) because py,(0) = 1.) -

Let p: G — V be a representation of G on a real vector space V. Then
a linear operator L : £2(X) — V is invariant iff L, = p(g)L for all g € G.

THEOREM B.6.2. For an invariant linear operator L : (*(X) — V the
following are equivalent:
1. L s injective
2. Lpa, # 0 for all i.
3. The restriction L|pxyx of L to the isotropic functions P(X)K s
injective.
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If L is injective it is inverted by

r 1 .

PRrOOF. The equivalence of the three conditions follows form Proposi-
tion B.2.1 and Theorem B.5.2. The formula (L*Lf, f) = (Lf, Lf) shows
that L : £2(X) — V is injective if and only if L*L : (*(X) — (%(X) is
injective. The inversion formula now follows from the last theorem. O

For these results to be of interest in concrete cases it is clear that meth-
ods for finding the spherical functions are needed. The following gives one
method.

PROPOSITION B.6.3. A function p € (*(X)X is a spherical function if
and only if it is a joint eigenfunction of the operators Ly defined by equa-
tion (B.3) and p(o) = 1. If for some k the restriction of Ly to £2(X)K
has r distinct eigenvalues, then any eigenfunction p of Li|0?( X)X satisfying
p(0) =1 is a spherical function.

PROOF. The functions e, with k =1,... ,r are a basis for £2(X x X)G
and thus any function that is a joint eigenfunction for the Lj = T¢, is a joint
eigen function for all the linear operators Ty, h € £2(X x X)“. Thus the joint
eigenspaces of the L;’s are just the E,,’s. As each E,, contains a unique
isotropic function the first part follows. If L; has r distinct eigenvalues,
then the r linear operators I, Ly, Lz, e ,L};_l are linearly independent and
therefore they span the set {7}, : h € £2(X x X)X}. Thus the eigenspaces
of Ly are the same as the joint eigenspaces of {1}, : h € £2(X x X)X} O

Where the action of G on X is symmetric then for each k ex(x,y) =
er(y, z) which implies the linear laps Ly are self-adjoint. Using the form of
the inner product in the basis f1, ... , f, of £2(X)X the relation (Lyf;, f;) =
(fi, Lif;) becomes
(B.12) (s = njild)

We also note that knowing the spherical functions p,, allows one to
write down the matrix for the orthogonal projections m; : £2(X) — E,,. Let
h; € £2(X x X)Y be the unique element so that

hi(0,y) = pa; (y)-
Then
Thipaj = Z hi(07 y)pa]‘ (y) = Z Po; (y)paj (y) = Hpal H252j
yeX yeX
Thus the projection onto E,,; is
1

TP 1

T =
' ||p01i
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B.7. Radon Transforms for Doubly Transitive Actions

The action of G on X is doubly transitive iff for any two ordered ordered
pairs (z1,41), (x2,y2) € X x X with x; # y; for i = 1,2 there is an element
g € G with gr1 = z9 and gy; = y2. Such an action is clearly symmetric. As
before fix 0 € X to use as an origin and let K = {a € G : a0 = o} be the
stabilizer of 0. Then G is double transitive if and only if K has exactly two
orbits on X, the one element orbit X; = {o} and the orbit X3 := X \ {o}.
This means that G in the decomposition of theorem [B.5.7 that [ = 2 so
that (2(X) = By @ E». As the space of constant functions and and space of
functions that sum to zero are both invariant under G we see

E1 := The constant functions, Es = {f : Z fz) = 0} :

reX
Then the spherical functions are
1, x=o0
pi(z) =1, pofz) = —1
X1 U7
The orthogonal projections of £2(X) onto these F; and Ej are given by

mi(f ’X‘Zf mof(x) = f () ‘X‘Zf

yeX yeX
Let Ly be any nonempty subset of X other than X its self and let

X ={gLo:g€ G}

be the set of G translates of Lo. If K := {g € G : gLy = Lo} then
|X| = |G|/|K|. There is a natural Radon transform R : /2(X) — (?(X)

given by
=> fx)

€L
There is a dual transform R* : /2(X) — (*(X)
=) F(L)
Lz
We note that R* is the adjoint of R in the sense that
(B.13) (Rf,F)pxy =Y fl@ = (f,R"F)p(x)
z€eL

Therefore the map R is injective if and only if the map R* is surjective.
The image of the spherical functions p; and po under R is

| X| — | Lo|
—_ L
X1 ° c
Rpi(L) = |Lo|, Rpso(L) =
—|L
| Lo| 0d L

X -1
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For z € X let m = |{L € X : z € L}| be the number of elements of X that
contain x (this is independent of ). Then by counting the pairs (z, L) with
x € L in two ways (first summing on x and then on L, or first summing on
L and then on x)

| Lo|[X]|
(B.14) =
| X|
Then the images of Rp; and Rps under R* and evaluated at o are
* * X|—|L
R Rpr(0) =mlLol, I Rim(o) = m T

The operator R*R is G invariant thus the results of the last section lead to

THEOREM B.7.1. If the action of G on X is doubly transitive then the
Radon transform R : (2(X) — (*(X) is injective and is inverted by
1

1 x| )
= —(—mR+ - R )R
d m<|L0 B R ) B

where m, m1 and my are as above. Thus [X| < |X|. By duality the transform
R*: 12(X) — (*(X) is surjective. O
By applying this to the characteristic functions of sets A, B C X:

COROLLARY B.7.2. If G has a doubly transitive action on X and with
A,B,Ly C X and Ly # @,X and |ANgLo| = |BNgLy| for all g € G then
A=B. O

For any finite field the action of Aff(F") is doubly transitive on F™ if
x € F" = AG((F"), then the set of P € AG;(F") is isomorphic to G1(F"~1)
thus the above specializes to

COROLLARY B.7.3. The radon transform Rg; : (>(F™) — (2(AG(F™))
is injective and inverted by
1 1 |F"|
=——— | =mR{;+ ———mR;; | Ro.f
1= oty (P + o i) o
There is a corresponding result in the projective case:
COROLLARY B.7.4. The radon transform Py : (*(G1(F™)) — (2(G(F™))
is injective and inverted by

= ! ' [G1(E™) >
B Pry+ Pi ) Piyf.
7= s (e o = o) P
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APPENDIX C

Fiber Integral and the Coarea Formula

C.1. The basic geometry of the fibers of a smooth map

Our first goal is to understand when a fiber of a smooth map is a smooth
manifold. The basic tools here are Sard’s theorem and the implicit function
function theorem. We start by fixing our notation and giving the basic
definitions.

For a smooth manifold M™ (superscripts denote dimension) the tangent
bundle of M will be denoted by T'(M) and the tangent space to M at z will
be is T(M),. If f: M™ — N™ is a smooth map then the derivative map
form T'(M), to T'(N) () will be denoted be fi; or df,. If X € T(M), is a
tangent vector, then the image of X under the derivative of f is denoted by
fexX or df;(X). Often this will be shortened to f, X or df(X).

If f: M™ — N™is smooth and € M , then f,, has full rank if and
only if rank( f.;) = min(m,n). The function f is said to have full rank at x
if and only if f,, has full rank. Thus if m <n the map f has full rank at =
if and only if f, is injective and if m > n it has full rank at z iff and only
if fip is surjective. A point where f has full rank is called a regular point
of f. Any any other point is called a critical point of f. Therefore x is
a critical point of f : M"™ — N" if and only if rank(f.;) < min(m,n). A
point y € N™ is a critical value of f: M™ — N™ if and only if y = f(z)
for some critical point z of f. A point y € N™ is a regular value of f if
and only if it is not a critical value of f. Therefore y is a regular value of
f if and only if every point of the fiber f~![y] is a regular point of f. Note
this includes the case when f~![y] is empty (this a point y € N™ that is not
a value of f still manages to be a critical value of f). The fibers over regular
values are very well behaved as the following shows:

THEOREM C.1.1 (Geometric Implicit Function Theorem). Ifm > n and
f:M™ — N" is a smooth map, then for every reqular point y the preimage
f~y] is a smooth imbedded submanifold of M™ of dimension m —n. This
includes the case when m = n (where a zero dimensional submanifold is dis-
crete subset of M™ ) and the case where f~[y] is empty (so by convention
the empty set is a submanifold of any dimension we please.)

EXERCISE C.1.2. If this version of the implicit function is new to you,
then use what ever version of it you are used to and prove the geometric
version. Then use the geometric version to prove your standard version. [

83
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Our next goal is Sard’s theorem which says that almost every point in N"™
is a regular value of f : M™ — N™ is a regular point of f. We start by giving
the definition of the sets of measure zero on smooth manifolds. Let M™ be a
smooth manifold and let {(Uy, 2L, ... ,2™)}aca be a countable cover of M™
by coordinate charts (U, ., ... ,2™). In each coordinate domain U, there
is the Lebesgue measure j, defined by the coordinate functions x., ... , 2™.
That is po := dzl ---dz™. A set S C M™ is said to have measure zero if
and only if o (UyNS) =0 for all a. A set P C M™ is has full measure if
and only if it is the complement in M of a set of measure zero. A property
is said to hold almost everywhere on M™ if and only if the set of points
where the property holds is a set of full measure.

EXERCISE C.1.3. Show these definitions are independent of the choice of
the coordinate cover {(Us, z}, ... ,27)}aca. That isif {(Ug, .26}3, s TF) b pen
is another countable set of coordinate charts covering M™, then this leads
to the same collection of sets of measure zero, and thus the same notation
of almost everywhere. Also show that a countable union of sets of measure
zero is a set of measure zero. O

EXERCISE C.1.4. Let g be a Riemannian metric on M™. (In a local co-
ordinate system g = ) gijdxidxj ). Then g determines the usual Riemann-
ian volume measure y, (in local coordinates p, = +/det(g;;)dz! - --dz™).
Show that S C M™ has measure zero if and only if 14(S) = 0. (This also
shows that all Riemannian metrics on M determine the same sets of measure
zero.) O

THEOREM C.1.5 (Sard’s Theorem). If f: M™ — N™ is a smooth map,
then the set of critical values of f has measure zero in N™. Thus if m >
n by the geometric implicit function theorem f~1[y] is a smooth imbedded
submanifold of M™ of dimension m —n for almost all y € N™.

REMARK C.1.6. This result was first given by Sard [24] in 1948 who
shows the result is true under the weaker smooth assumption that f is of
class C* where k > max{l,m —n + 1}. A proof of this can be found
in [27, p. 47]. The bound on k is sharp as is seen from a famous example of
Whitney [30]. O

PROOF. The proof is by induction on m = dim(M). If m < n the result
is not hard and left to the reader . In fact in the case m < n it is true that
f[M™] has measure zero in N" (see the exercise following the proof).

We next note that the result for manifolds for maps f : R™ — R"
implies the result for maps between manifolds. To see thislet f : M™ — N™.
Then it is possible to choose a countable set collection of coordinate charts
{(Uq,28)} on M™ and and {(Va,v.)} on N™ so that f[U,] C V, for each
a. If C' is the set of critical points of f, then by the result for maps between
Euclidean f[C NU,] has measure zero in V,, and thus also in M. Therefore
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f1C) = U, flUa N C] is a countable union of sets of measure zero and thus
is also a set of measure zero.

Now let f: R™ — R"™ and assume that the result holds whenever the
domain has dimension less than m. Write the map as f = (f,..., f")
where the functions f' are the component functions of f in the standard
coordinates on R"™. For any multi-index o = (a1,...,a,) (an m-tuple
of non-negative integers) let 9% = 91952 - - - 9% where 0; = 9/9x" is the
partial derisive by the ith coordinate function of R™.

Let C' C R™ be the set of critical points of f. For each « # 0 and each
le{l,...,n} the set

Doy :={z € R™:9%f(x) =0, thereexistsi 0'0°f'(x) # 0}

is a smooth hypersurface in R™. (This follows by applying the implicit
function theorem to the function 9 f.) By the induction hypothesis the set
of critical values of f|p,, has measure zero in R". But the set of critical
points of f’Da,l contains C; := CN D, ;. Therefore for each pair «, [ the set
f[Ca.] has measure zero. If Cw is the subset of C of all z where 0% f!(z) = 0
for all @« # 0 and all [ € {1,... ,n}, then C = Cx U Ua,l Cq,. As this is
a countable union and each f[Cy ;] has measure zero, it is enough to show
that f[Cso] has measure zero.

Toward this end let P be a closed cube in R with edges parallel to the
axis and with sides of length one. We show f[PNCy] has measure zero. Let
k be a positive integer so that kn—m > 0. The partial derivatives of each f
of all orders vanish at points of Cy, and the k + 1-st partial derivatives are
all continuous and thus bounded on the closed bounded set P. Therefore
using the first k& + 1 terms of the power series expansion of the f!’s about
x € PN Cy there is a constant cg, only depending on f, k and P so that

1f(@) = f@W)| < collz —y||F forallz € PNCx and all y € P

The cube P can be covered by [ closed cubes with sides of length 1/1
and sides parallel to the axis. Let C be the subset of these cubes that have
at least one point in common with Cs, N P. For any P; € C there is a point
x; € P,NCs. As the cube P; has diameter /m/[ the last inequality implies
f[P;] is contained in a ball with radius co(y/m/I)* centered at f(x;). Using
the formula for the volume of a unit ball in R™ this shows there is a constant
c1 = c1(m,n, k,co) so that if H" is the Lebesgue measure on R

C1

1 n
weh <o () =ag:
As the set C contains at most [ elements and it covers P N Cy we have

n m 1 c
H(FIP N Cocl) < IMeroop = Tt

But kn —m > 0 so letting | — oo shows that H"(f[P N Cx]) = 0. But
Cos can be covered by a countable collection of unit cubes, so f[Cs] has
measure zero. This completes the proof. O
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ExXERCISE C.1.7. Use a packing argument like the one in the last part
of the proof of Sard’s theorem to show that if f : R™ — R" is a smooth
map and m < n, then f[R™] has measure zero in R™. Then extend this
to maps f : M™ — N" between manifolds. (This completes the part of
Sard’s theorem omitted above.) Hint: Let P C R™ be a closed cube with
sides parallel to the axis and of length one. As f is smooth and P compact
there is a constant ¢y so that || f(z) — f(y)| < collx — y|| for all z,y € P.
Then for each [ = 2,3, ... the cube P can be covered by a collection C of I
cubes with sides of length 1/I. The image of f[P;] any cube P; € C will be
a subset of a ball of radius c¢gy/m/l, and therefore H"(f[F;]) < ¢1/1™. Thus
thus H"(f[P]) < {™c1/I" — 0 as | — oco. Now cover R™ by a countable
number of such cubes. O

C.2. Fiber Integrals and the Coarea Formula

Let M™ and N™ be smooth Riemannian manifolds. We will usually
denote Riemannian metrics by (,) and trust to the context to make it
clear which Riemannian metric is being referred to. If there is some chance
of confusion the metrics on M™ and N™ will be written as g (,) and
g"(,). The length of a vector X € T(M) is denoted by || X| := /(X, X).
If X1,...,X, € T(M), then the length of the element X; A -+ A X}, €
A T(M), (the k-th exterior power of T'(M)y) is

X1 A A Xg||? = det((X;, X))

The geometric interpretation of this is that || X1 A--- A Xg]| is the volume of
the parallelepiped spanned by X7,..., Xy (that is the set of vectors of the
form 1. X7 + - + ¢, X, where 0 < ¢; < 1)

We now define the Jacobian of f : M™ — N separately in the cases
m < n and m > n (the definitions agree whenm — n). While we are most
interested in the case where m > n we first discuss that case where m <n
as it is more familiar. In the case m < n the Jacobian of f at z is defined
by

Jf(l‘) = ||f*el AREE /\f*emH

where ej,... e, is an orthonormal basis of T'(M),. This is easily seen
to be independent of the choice of the orthonormal basis eq,... ,e,. The
geometric meaning of Jf(x) is the dilation factor of the area element of N
under f,. While this definition is easy to use in proving things about the
Jacobian and makes the its geometric meaning clear it is not the easiest
to use in calculation as one has to find an orthonormal basis of T(M),.
There is another formula for J(f) which gets around this. Let f., be the
transpose of f.,. Thatis f : T(N) () — T (M), defined by gV (X, fLY) =
gM (feaX,Y) for X € T(M), and T(N) ¢(;). We then leave it as an exercise
to show J f(x) is also given by

Jf(x) = /det(fiy fer)-
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This is used, just as various special case of it are in calculus, to compute
the area of submanifolds. Let f : M™ — N™ be an injective map between
Riemannian manifolds manifolds (which implies m < n). Then the m-
dimensional surface area of f[M] is given by

H(F(M]) = /M J () da

where dz is the Riemannian volume measure on M™. When m = 1 this
reduces to the usual formula Length(f) = f; d'(t)|| dt for the length of a
curve f : [a,b] — N™ and if U C R? is an open set and f : U — R3 then the
Jacobian is given by Jf = ||0f/0u x 0f/0v|| so the last displayed formula
reduces to the usual formula for computing the area of surfaces in space.
We now define the Jacobian of f : M"™ — N™ in the case m > n. In this

case the
0, if x is a critical point of f,

if z is a regular value of f and
| fxei A=A fuenll, €1,...,en is an orthonormal

of Kernel(f.;)"*.

Note that Jf(z) # 0 if and only if x is a regular value of f. As before there
it is possible to express this in terms of the transpose of fi.,

(Here the factors are in the opposite order than the case where m < n.)
In the case that N™ is oriented and there is another useful formula for
Jf(z). Let Qn be the volume form of N and z a regular point of f. Let
€1,... ,em_n be an orthonormal basis of Kernel( f.,)*. Then a chase through
the definitions shows that

Jf(l:) = |f*Qf(m)(61, ce 7€m—n)‘ = ]QN(f*el, ve ,f*em_n)]
The basic result on integration over fibers of smooth maps between Rie-
mannian manifolds is

THEOREM C.2.1 (The Coarea Formula, Federer [0, 1959]). Let f: M™ —
M™ be a smooth map between Riemannian manifolds with m > n. Then for
almost every y € N™ the fiber f~1[y] either empty or a smooth imbedded
submanifold of M™ of dimension m —n. For each reqular value y of f let
dA be the m — n-dimensional surface area measure on f~'[y]. Then for any
Borel measurable function h on M™

/ / hdAdy = h(zx)J f(z)dz
mJ Y] pmm

where dy is the Riemannian volume measure on N" and dx is the Riemann-
ian volume measure on M™. If H™ "(f~[y]) is the m — n-dimensional
surface area measure of f~1[y] then letting h = 1 implies

) dy = [ @)

Jf(z) =

N©™
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Before giving the proof we state some special cases where the result
should look either familiar or at least more concrete. First if M = P™™" x
N™ is a product manifold and f(x,y) = y is the projection onto the second
factor, then Jacobian is easily seen to be Jf = 1 and in this case the coarea
formula just reduces to Fubini’s theorem on repeated integrals. Thus one
way to view the coarea formula is as a generalization of Fubini’s theorem to
the curved setting.

As another example note if f: M™ — R and Vf is the gradient of f.
(That is the vector field so that for and vector tangent to M™ there holds
(Vf,X)=df(X)). Then Vf is perpendicular to the fibers (level sets) of f
and thus at regular points V f/|||V f|| is an orthonormal basis of T'(f~![y])*
(where y = f(z)). Thus Jf(x) = df(Vf/IIVf]l) = IVfIl. So in this case
the coarea formula with A = 1 becomes

/Oo Area{z : f(z) =t} dt = /M IVl dA.

This formula is useful proving inequalities of Sobolev type.

REMARK C.2.2. Federer proves the coarea formula in a much more gen-
eral setting where f : M™ — N™ is Lipschitz. The simpler proof for smooth
functions is taken from [T9, Appendix pp. 66—68]. O

C.3. The Lemma on Fiber Integration

Let f : M™ — N™ be a smooth map between manifolds with M™
and N" oriented. If m > n then near any regular point x of f the fiber

fy] (with y = f(z)) will be given the orientation so that local near z the
manifold M™ looks like

M™ =~ fiber x base.

To be more precise let v1,...,v, be the an oriented basis of T'(NV), and
let Vi,...,V, € T(M), be any vectors so that f.V; = v;. Then a basis
X1, Xonen of T(f"H[y])e = Kernel(f.,)" is oriented if and only if the
basis X1,...,Xm—n,V1,...,V, agrees with the orientation of M".

LeEMMA C.3.1 (Lemma on fiber integration). Let f : M™ — N™ be a
smooth map between oriented manifolds with m > n. Let a be a smooth
compactly supported (m —n) form on M™ and 3 a smooth n form on N™.
With the above convention on the orientation of fibers

/. (/Hy] a> = [ anss.

Proor. We first consider the case M™ = R™, N® = R” and

flzt,. .. 2™y = (@™ ™).



C.3. THE LEMMA ON FIBER INTEGRATION 89

That is f is projection onto the last n coordinates. In these coordinates
a= Z iy, (2 2™ A A datmn
i1 < <ln—m
where each a;,..;,, , is smooth and compactly supported. Likewise [ is
given by
B=0byt, ..., y")dy A--- A dy"
Then for y = (y!,...,y") € R™ the restriction of o to the tangent bundle
of 71y is
alp-1[y) = A1...(m—n) (..o ™yt ) dat A A da™T
Thus

/ o= / 1...(m—n) (..., 2™yt yM)dat - da™ T
Hy] men

which implies

[ ( [ a) 50

X b( y N )dyl--~dy”
(C1) = /Rm al...(m_n)(xl,... L 2™)b(z™ T ™) dat - da™
On the other hand
f*B=bam " ™) de™ A A da™

and

aAl f B = al,,l(m_n)(xl, . ,xm)b(:l:m_”H, co,x™) de' Ao A da™

/ al f 3= det - da™.
m Rm™

Comparing this with equation ([C.1]) shows the lemma holds in the special
case.

In the general case of a smooth map f : M™ — N" between oriented
manifolds, let M* be the set of regular points of f. Then M™ is an open
subset of M™ and if x ¢ M* then x is a critical value of f and (f*(), = 0.
Thus a A f*3=0on M\ M* and

/oz/\f*ﬁz aN frB.
M M*

By Sard’s theorem f~![y] C M* for almost all y € N™ so

o ()
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At every point zg € M™* we can use the implicit function theorem to find
coordinates (x!,...,2™) centered at zo and (y',...,y") centered at yg =
f(zg) so that these coordinates agree with the orientations of M™ and N™
and in these coordinates f is given by

f(zt, .. 2™ = (@™ 2™

(which to be absolutely correct should be written as y*(f(p)) = 2™ "% (p)).
Thus if the support of a is in the domain of the chart (z!,...,2™), then
then lemma holds as it reduces to the special case we have already consid-
ered. The general case now follows by a partition of unit argument and the
observation that we only need to integrate over the set of regular points. [

ProOOF OF THE COAREA FORMULA. We first consider the case where
both of M™ and N™ are oriented, the map f : M™ — N is a submer-
sion, and the function A is smooth and compactly supported. Let Qs
and Qu be the volume forms of M and N. As f is a submersion every
point x € M™ is a regular point of f. Thus it is possible to choose and
orthonormal basis e1,... e, of T(M), so that ej,...,en—y is a basis of
Kernel(fiz) = T(f'[y])z (where y = f(x)) and the vectors e, _ni1,- .. ,em
are an orthogonal basis of Kernel( f,;)* such that the orientation of the ba-
sis felm—nt1-- - fxem of T(N)g(,) agrees with the orientation of N. Let
ol,... 0™ be the one forms dual to ey, ... ,en,. Define an (m — n)-form wy
and an n-form wy by

Wi =0 A g™" wy = o™ A LA™,

These forms are defined independent of the choice of the choice of the or-
thonormal basis eq,... , e, and thus they are smooth forms on all of M™.
Also, form our convention on the orientation of fibers, the restriction of wy
to a fiber is the volume form on the fiber.

Either from a direct calculation or an earlier formula

T ON(em—nt1s - em) = On(febmoni1, ..., fsem) = Jf(2)
and f.e; =0 if ¢ < m —n. Thus
[ QN = (J fws.

But w; Awg =0 A--- Ad™ = Qyy is the volume form on On M. Therefore
the last formula implies

w1 A ffwy = (Jf)QM = J(f) dV,

which is an infinitesimal version of the coarea formula. Now apply the
lemma on fiber integration to the forms a = hw; and 8 = Qn and rewrite
the integral [y ff*l[y] hdAdy and [,, h(z)J f(x)dV in terms of these forms



C.4. REMARKS ON THE COAREA FORMULA AND FIBER INTEGRATION 91

// hdAdy—// hwi Qn (y)
NSyl NIy

= /M hwt A f*Qn
_ /M W) () dz

which is exactly the coarea formula in this case.

In the case of a general smooth map f : M™ — N" between smooth
Riemannian manifolds let, as in the proof of the lemma on fiber integration,
M* ={x: Jf(x) # 0} be the set of regular points of f. Then

/M h(z)J f(z)dx = / ) h(z)J f(z) dx

Also as f~1[y] € M* for almost all y € N"

// hdAdy—// hdAdy
M*Nf=1y] 1]

Thus we can replace M by M* and assume that f is a submersion. If U
is an open orientable open subset of M™ so that f[U] for some orientable
open subset V' of N™ and h is smooth and compactly supported inside of
U, then the coarea formula follows form the case we have already done. As
M can be covered by such open sets U, a partition of unity argument shows
that the coarea formula holds for general smooth h. The extension to Borel
measurable functions now follows by standard approximation arguments.

O

to get

C.4. Remarks on the coarea formula and fiber integration

The restriction to smooth function in the coarea formula is not necessary
and in many contexts not natural. For a general version that covers most
case that we would need is for Lipschitz maps. Recall that if f: M™ — N"
is a Lipschitz map between Riemannian manifolds then by a theorem due
to Rademacher the derivative f, of f exists almost everywhere on M™.
(This follows from the usual version of Rademacher’s theorem for Lipschitz
maps between Euclidean spaces.) Thus the Jacobian J(f) is defined almost
everywhere on M. The following general result is due to Federer (who was
the first to state the coarea formula).

THEOREM C.4.1 (Lipschitz coarea formula [T0, 1959]). Let f : M™ —
N™ be a Lipschitz map between Riemannian manifolds with m > n. Then
for almost all y € N™ the fiber f~'[y] has local finite (m — n)-dimensional
Hausdorff measure and for any Borel measure function h on M™

/n /fl[y] hdH™ " (y) = /Mm h(z)J f(x) dx
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where H™™™ is the (m — n)-dimensional Hausdorff on M™.

There will be times in the next section where the coarea formula is
applied to functions that are not smooth. In these cases the last result will
always apply. We can use approximation arguments to prove results about
non-smooth functions by applying the coarea formula to smooth functions
and taking limits when we are done. As this gets tedious and there are no
real ideas involved, we will just apply the coarea formula directly to what
ever seems appropriate. As an example of this let f be a smooth compactly
supported function on R"™ smooth function. Then we will want to use the
coarea formula in the form

| a0t i@ = = [ i@l = [ 195 d

where dA is the surface area measure on the boundary of {z : |f(x)| > t}.
As |f| is not smooth our form of the coarea does not apply directly. But
| f| is a Lipschitz function it is covered by Federer’s result. Similar remarks
hold for the lemma of fiber integration which can be proven in much more
generality.



APPENDIX D

Isoperimetric Constants and Sobolev Inequalities

D.1. Relating Integrals to Volume and Surface Area

Let M™ be Riemannian manifold. If f is a smooth function on M™
denote by V f the gradient vector field of f. In this section our goal is to
understand when inequalities of the type

(1) ( /le!quf <c [ vsjav

or more generally of the form

(f flqdvf o[ IIVprdV>%

hold for all f in the space C3°(M) of infinitely differentiable functions with
compact support.

The basic idea behind the proofs are as follows. Let V be the Riemannian
volume measure on M and A is the surface area measure on hypersurfaces.
Then for any measurable function A on M there is the basic identity

(D.2) /M b dV = /OO Vi [h(z)| > s} ds.

0

and there is also the coarea formula which we write in the form
[ Ivslaa= [~ atir@) = )

Using these formulas it is possible to relate isoperimetric type inequalities
V(D) < cA(0D)® directly to integral inequalities of the type (D.1]). It even
turns out that the best constant in the isoperimetric inequality gives the
best constant in the corresponding analytic inequality.

EXERCISE D.1.1. Prove the formula (D.3). O

Let M™ be a non-compact Riemannian manifold. As one of the cases
of interest is when M™ is a domain in R" we do not assume that M™ is
complete. Say that M™ satisfies as isoperimetric inequality of degree o
if and only if there is a constant ¢ so that for all domains DCCM with
smooth boundary

V(D) < cA(dD)".

93
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(DCCM means that the closure of D is a compact subset of the interior of
M .) If such an inequality holds then the smallest such constant hy, = hqo (M)
is the isoperimetric constant of degree o for M™. That is

V(D)
ho(M)= sup ———
+(M) pccum A(OD)*
when this is finite. Fix € M and let B(z,r) be the geodesic ball of

radius r about z. For small r we have V(B(z,r)) = c17™ + O(r™*!) and
A(0B(z,7)) = cor™ 1 4+ O(r™). Using this in the definition of h, (M) yields

ha(M) < oo implies «a < (m = dim(M)).

The most obvious example of a manifold that satisfies an isoperimetric
inequality is R™ where the usual isoperimetric inequality implies
V(B™
ho (R = B
m—1 A(Sm 1) pr—

EXERCISE D.1.2. Use the last equation to show that if M is a domain
in R™ of finite volume Vj (but not necessary bounded) then for all 0 < o <

m/(m — 1)

(m=a _ (m=1Da

ha(M) < (hon (R)) 7 Vg
Thus M satisfies isoperimetric inequalities of all degrees a with 0 < a <
m/(m —1). O

EXERCISE D.1.3. If M™ satisfies isoperimetric inequalities of degree «
and of degree [ then it also satisfies isoperimetric inequalities of degree ~
for all « <y < G and

he(M) < ho(M)a=5 hg(M)a=7

D.2. Sobolev Inequalities

THEOREM D.2.1 (Federer-Fleming [I1, 1960], Yau 3T, 1975]). Assume
M™ satisfies an isoperimetric inequality of degree v with 1 < aw < m/(m—1).
Then for f € C§°(M) the Sobolev inequality

[ e av <naon ([ iwsav)

holds. More over this is sharp in the strong semse that if an inequality
[1fleaV < c([|IVf|dV)® holds for all f € C§°(M) then M satisfies an

isoperimetric inequality of degree o and ho(M) < c.

REMARK D.2.2. Federer-Fleming [IT] gave this result (and proof) in the
case M is Euclidean space. Yau [31] showed that the same proof extends
to Riemannian manifolds.
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PrROOF. Let f € Cg°(M) and set V(t) = V{z : |f(z)| > t}. Then
equation (D.2) and a change of variable

Jisimav = [ vizs i@l = 5 as
_ a/ooo Vie : (@) ot} d

= a/ V(£ tat.
0

By the coarea formula and that M satisfies an isoperimetric inequality of
degree a

[1vsiav = [~ At ()= ) ar
0
1 o0 1
- ho(M)a /0 Vi) dt

So it is enough to show

(D.3) a /OOO V() dt < (/OOO V(t)idt)

Let
Fs) = a / V(e dt
0

so that
F'(s) = aV(s)s* L.

G(s) = (/Osva)é dt> .

Using that V(t) is monotone decreasing (so that [ V(t)é dt > sV(s)é) and
a>1

Also let

G'(s)=a (/0 V(t)a dt) o V(s)a

a—1
>a(sV(s)7) V()
=F'(s)
As F(0) = G(0) = 0 this implies F(s) < G(s) for all s > 0. Letting
s — oo then shows that (D.3) holds and completes the proof of the Sobolev

inequality.
To see that h, (M) is the sharp constant assume an inequality

(D.4) Jurav<e( fiwsav)

R~
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holds for all f € C§°(M). Then by approximation this inequality also holds
for all compactly supported Lipschitz functions. Let DCCM have smooth
boundary and let pp(x) = dist(z, D). Define a function a Lipschitz f. by

1, ifxe D,
Jo@) = 1= pola)fe, 10 < pp(z) <,
0, if e < pp(z)

Let 7.(D) :={x € M™ :0 < pp(x) < e}. Then

l, ifZEGTs(D)
VLI ={ & ioie

Also V(72(D)) + eA(OD) + O(£?). Thus letting ¢ \, 0
[Iv£1av = 2v (o) @D, [ |f1av V(D).

Using these relations in (D-4) implies V(D) < cA(0D)®. Thus hy(M)
¢ < oo. This completes the proof.

L IA

D.3. McKean’s and Cheeger’s lower bounds on the first
eigenvalue

THEOREM D.3.1 (Cheeger [@, 1970]). If hi(M) < oo then for each 1 <
p < oo and every f € C5°(M)

(D.5) (/ \flpdV>; <o) ( [ HwnpdV)’l’

In particular when p = 2 this implies

IVfI?dV > f2av
/ e |

Thus 1/(4h1(M)?) is a lower bound for the ﬁrst Eigenvalue for the Laplacian
on M.

REMARK D.3.2. The number 1/h;(M) is often called the Cheeger con-
stant of the manifold.

PRrOOF. We first consider the case p = 1. Set u € CJ°(M) and set
V(t) =V{x: |u(z)| >t} and A(t) = A(O{zx : |u(z)| > t}). By the definition
of hi(M) the inequality V' (t) < hi(M)A(t) holds. Using the equality ([D.2)
and the coarea formula

/M | dV = /OOO V(t)dt < hy (M) /Ooo A(t) di = /M Iul| av.

If 1 <p<ooletu=|fP. Then ||[Vul = p|f|P~Y|Vf||. Use this u in the
last inequality and Holder’s inequality with the conjugate exponents p and
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/
p'=p/lp-1).

[ apav <phan [ (s-vsay
M M

SpMM@(Aﬂﬂ%W);(AANﬂWMQ;

Dividing by ([ |f|PdV)'/?" completes the proof. O

ProOPOSITION D.3.3. If M™ is a complete simply connected Riemannian

manifold with all sectional curvatures < —Kgy < 0 the isoperimetric constant
hi(M) satisfies
1
(MM < ————
(m — 1)\/ K[)
This estimate is sharp on the hyperbolic space of constant sectional curvature
—Kjy.

ProoOF. Let DCCM have smooth boundary and let xp € M™ with
xo9 € D. Then the function p smooth on D. As p is the distance from a
point ||Vp|| = 1. From the Bishop comparison theorem the Laplacian Ap of

p satisfies

Ap > (m — 1)/ K.
Let 1 be the out ward unit normal to dD. Then by the last inequality and
the divergence theorem

m — 1)KoV (D) < /D ApdV = /8D<Vp, n) dA < A(8D).

Thus hi(M) <1/((m —1)v/Kp) as claimed.

To verify the claim about hyperbolic H™ space we normalize so that
Ko = 1. If B(r) is a geodesic ball in the hyperbolic space of dimension m,
then

e(m=1)r
2m(m —1)
(m—1)r

V) = A [t ) de = A7) +O(elm=2r)
0
A(OB(r)) = A(S™ VY sinh™ ! (r) = A(S™ 1)< +O(elm=2)r),

Therefore lim, ., V(B(r))/A(0B(r)) = 1/(m—1) so that hy(H™) > 1/(m—
1). As we already have the inequality hi(H™) < 1/(m — 1), this completes
the proof. O

THEOREM D.3.4 (McKean [22, 1970]). Let M™ be a complete simply
connected manifold with sectional curvatures < —Ky < 0. Then for any
feCge(M) and1 <p < oo

/ !f!pdV< / IVFIPdV
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and thus the first eigenvalue of any DCCM™ satisfies
—1)?K,
M (D) > w

ProoOF. This follows at once from the previous results. O

REMARK D.3.5. It is worth noting that the basic Sobolev inequality

(/ yu\adv>a < C/HVquV

implies a large number of other inequalities just by use of the Holder in-
equality and some standard tricks. For example if in the last inequality we
replace u by |f|® where 3 > 1 is to be chosen latter,

([ dv)é <cs( 1w sav)

L

<op ( [ g0 dV) ’ ( / \Vf\lpdV> g

now choose (3 so that (8 — 1)p’ = af3, that is 8 = p/(p — a(p — 1)). Then
the last inequality reduces to

p—a(p—1)

_aaz_l ap Cp %
(/‘f’” ( )dv) S (/”W‘pdv> |

For this to work we need # > 1 which implies p < a/(a —1). When
a=m/(m —1), as it is in Euclidean space R, the restriction on p is then
p < m. It is not hard to check that all dilation invariant inequalities of the
1 1

form ([ |f]?)s < Const.([ ||V f|?)? can be derived form the basic Sobolev
inequality [ Iflm1dV < P jm—1) (S IV FI|dV) ™= in this manner. How-
ever, due to the application of the Hoélder inequality, the constants in the
resulting inequalities are no longer sharp.

D.4. Holder Continuity

In applications a very important fact about the various Sobolev space
WLP(M™) (this space is the completion of the space of smooth functions

with the norm || f[ly10 = ([ |f]? V)7 +([ | V]|7 dV)¥) are continuous when
p > m. For functions defined on the line R this is easy to see from Holder‘s
inequality:

(@) — ()] < / FOldt < |e -yl (/ If’(t)lpdt>%-

We will now show that by an appropriate integral geometric trick this proof
can be extended to higher dimensions. The idea is to connect two points
in the domain of the function in question by an (m — 1)-dimensional family
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of curves, do exactly the above calculation on each of the curves, and then
integrate over the space of parameters. The coarea formula (in this case
really only the change of variable formula in an integral) is used in computing
the integrals.

THEOREM D.4.1. Let M™ C R™ be an open set and P,QQ € M. Let
C = L(P+Q) be the center of the segment between P and Q let r = || P—Q)||
and B(C,r) the ball with center C and radius v (this is the smallest ball
containing both P and Q. Assume B(C,r) C M and that p > m. Then for
every f € C>®(M)

(D.6) 1f(P) = f(@Q] <c|P-Q|' (/ IV fIP dV)
C,r
where
m—1y221 p—m p—m I%

Here A(B™~1) is the (m — 1)-dimensional volume of the unit ball in R™~!
and B(a, B) = fol to=1(1 — t)#=1 dt is the Beta function.

Proor. If P = @ then there is nothing to prove so assume that P # Q.
Let B™~! be the unit ball in the hyperplane (P — Q)+ orthogonal to the
vector P — Q. Define a map ¢ : [0,1] x B™~1 — R™ by

ot,z) =tP+ (1 —t)Q +t(1 —t)|P — Q||

It is easily checked that the image Im ¢ of ¢ is contained in B(C,r). Think
of [0,1] x B™ ! as a subset of R™ = R x (P — Q)*. Ifer,... ,epm 1 is

an orthonormal basis of (P — Q)+ then 9/0t,e1,... ,emn_1 is an orthogonal
basis of T([0,1] x B™1); ;) and
0 _0¢

=t =P 1-20)||P - Q||z,
pos =L =P-Q+(1-2)|P-Qls

pxei = ||P — Qe
As z is in the span of ey, ... ,e,_1 this implies the Jacobian of ¢ is
J(p) = |IP = Q™ (1 — 1))

Thus for any function h defined on the image of ¢ the change of variable

formula implies
1
/ hdV = / / h(p)J(p)dt dx
Im ¢ Bm—1.Jo

We also note as [|z|| <1 that

Iy
%] < vair-a.
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For each € B™ ! the curve t + o(t,z) starts at Q and ends at P and
therefore by the fundamental theorem of calculus fol 0/otf(p(t,x))dt =
f(Q) — f(P). Using the formulas and inequalities above and the Hélder
inequality with exponents p and p’ =p/(p — 1):

AB™ P - F@1= [ 1P - Q)|

o
S/Bml /01 %f(@)‘ dt du

1
ok

1
<valp-ql [ [V

V/(p) - ‘z—f‘ dt d

m

m 1 m —1 m—1
—1p=aQlF [ [ Ivaie - QiFea - )T @ - o) s

. 1 :
<var-QE ([ [iwspateaas)

p—1
p

X <A(Bm—1) /Ol(t(l ) dt)

1

—valp-QF ([ ivspav)’
m ¢

(e (555))

As Imp C B(C,r) this implies the inequalities (D.G) and (D.7) and com-
pletes the proof. O

Problems

PROBLEM 1. Let M™ be a manifold and g;, go two Riemannian metrics
on M™. Let V,, be the volume measure of g;, Ay, the surface area measure
induced on hypersurfaces by g;, Vg, f the gradient with respect to g; etc.
For a > 1 show that a “mixed” Sobolev inequality of the type

[ s, < ( / ||vg2f|rdvg2)
M M

holds if and only if a “mixed” isoperimetric inequality of degree «
VQ1 (D) < CQAQQ (aD)a'

holds for all DCCM. What is the relationship between the sharp constants
in the two inequalities? (The next problem will show that this problem is
not as pointless as it may seem.)
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PROBLEM 2. Let M be an open set in R™ and wi, wy positive C*
functions defined on M. In analysis weighted Sobolev inequalities of the

type 1 1
</ |f|qw1dv>q§0(/ |nyy|Pw2dv>”
M M

are important. While the theory here does not say much about this problem
when p > 1 in the case p = 1 use the last theorem to give necessary and
sufficient conditions for the inequality

(/ | f1%wr dV>q < c/ |V fllwse dV
M M

to hold for all f € C§°(M). Hint: Consider metrics conformal g; conformal
to the standard flat metric g, that is g; of the form ¢g; = v;9. Your final
condition should not make any explicit mention of the metrics g;.

PROBLEM 3. For a domain D in the plane with area A and 0D of
length L the isoperimetric inequality is 4t A < L?. There is a generalization
of this, due to Banchoff and Pohl, to closed curves with self intersections.
Let ¢ : [0,L] — R? be a C! unit speed curve with ¢(0) = ¢(L). For any
point P € R? let w.(P) be the winding number of ¢ about P. Then the
Banchoff-Pohl inequality is

2 2
4w /R2 we(P)*dA(P) < L*.

Prove this inequality from the Sobolev inequality 47 [ |f|*dA < ([ |V f|| dA) 2
which holds for all f € C§°(R?).

PROBLEM 4. A subset A of R has width < w if and only if is there
are orthonormal coordinates z',...,z™ on R™ so that A is contained in
the set defined by —w/2 < 2! < w/2. Let M be an open subset of R™ of

width < w. Then show for any DCCM that
V(D) < FA@D)

and that this inequality is sharp. This shows that the isoperimetric constant
hi(M) < w/2 for any domain of width < w. Remark: The Cheeger inequal-
ity then implies that the first eigenvalue of M satisfies A1(M) > 1/w?. The
sharp inequality is A\; (M) > 2 /w?.
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Index

Notation: Other than a few standard
symbols put at the beginning of this
list, it is ordered more or less as to
when the symbol is first used in the
text. Some symbols appear more
than once as (due to bad planing
on my part) they have been used in
more than one way in the text.

R the field of real numbers.

C the field of complex numbers.

D the four dimensional division alge-
bra of quaternions

R the multiplicative group of nonzero
real numbers.

T(M) tangent bundle of the manifold
M.

T(M), tangent space to M at x € M.

GL(n,R) The groups of n X n matrices
over the real numbers R.

GL(V) general linear group of the vec-
tor space V.

[« is the derivative of the smooth func-
tion f.

f+z is the derivative of f at the points
x.

[X,Y] is the Lie bracket of the vector
fields X and Y.
e € (G is the identity element of the

group G.

&1 is the inverse of &

Ly left translation [q

Ry right translation [

exp the exponential of a Lie group B

A5

A¢ the modular function of G [0

G/H is the space of cosets {H of H in

G

we/n [

o € G/H is the coset of H (the origin

of G/H) [[1

E(2) the group of rigid orientation pre-

serving motions of the plane R? 1l

105

p: G — GL(V) is a representation of
G 3

X, the character of the representation
p

VE subspace of the space V fixed by
all elements of K

79 B9

||A]lop operator norm of A P71

M(G; K) B3

L (G; K)

LP(G; H)

T}, integral operator defined by the ker-
nel k

h * k the convolution of h and k B0

- l.s B3

Lg B3

Jixf2 B3

Resy, B3

Resr B3

Extr, B3

Extr B3

0f

Lz geodesic symmetry at x B1

Pa spherical function b3,

£%(X) the vector of all real valued func-
tions defined on X on the finite set
X

£%(X)¥ elements of £2(X) fixed by the
group K

F a finite field [

GL(F"™) general linear group of F" [[Q

Aff(F™) the group of all invertible affine
transformations of F" [0

Gr(F") the Grassmannian of all k-dimensional

linear subspaces of F™ [[Q

AG(F™) the set all k-dimensional affine
subspaces of F" [

Ry, Ry, [0

Py, Py, [0

(X x X)3

Ty I3

hxk 3
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Tof 3
(X xX)° 3
R A
ex(z,y) 4
Ly 4
1R
i
X
K
Jf Jacobian of f when the dimension
of the domain is smaller than dimen-
sion of target
J f Jacobian of f when the dimension
of the domain is at least the dimen-
sion of the target B1.
V f gradient of f
H™"
ha = ha(M) isoperimetric inequality
of degree «
=
action of a group on a set
action of a group on a vector space 23
adapted Riemannian metric
almost everywhere

character (of a representation) P4
Cheeger constant
Cheeger’s lower bound on the first eigen-
value 08
closed subgroup theorem [2
coarea formula K7
Lipschitz coarea formula
compact operator B3, 63, 61
convolution algebra
definition and basic properties §8-2
relationship to group algebras
convolution algebra on weakly symmet-
ric spaces B§
L?(G; K) as convolution algebra for com-
pact G
L*(G; K) commutative on compact
weakly symmetric spaces b3
spaces with commutative convolution
algebra §p-3
decomposition of L?(G/K) for com-
pact G/K with commutative convo-
lution algebra
diagonalization of invariant linear op-
erators on compact spaces with com-
mutative convolution algebra
convolution algebra of a finite homo-
geneous space [(4
critical point of a map B3
critical value of a map B3

equivalent representations 23
exponential map of a Lie group B

fiber integrals §C3
lemma on fiber integration
finite rank operator 1
finite symmetric space [[@
commutativity of {T, : h € £2(X x
X)X} for finite symmetric space
decomposition theorem on finite sym-
metric spaces [(@
diagonalization of invariant linear op-
erators on finite symmetric spaces
=
full measure E4

general linear group 3
geometric implicit function theorem
geometric symmetry B4
group
action of group on a set [4
coset spaces of Lie groups by closed
subgroups are manifolds. [[4
derivatives of group operations §
general linear group B3
Lie group [
matrix groups [9
multiplicative group of non-zero real
numbers [
multiplicative group of positive real num-
bers M
Riemannian metrics on Lie groups [1
adapted Riemannian metrics [§, inte-
gration with respect to adapted met-
ric @
unimodular group
compact groups are unimodular

Hilbert-Schmidt operators
Holder continuity of Sobolev functions
§D-4
homomorphism
G-module homomorphism 23

implicit function theorem, geometric form
B3
intertwining map g3
invariant
invariant Riemannian metrics §€-3.3[[1
for compact K the space G/K has
invariant Riemannian metric [4



left invariant metrics on Lie groups
ra
use of Riemannian metrics in con-
struction invariant measures I3
invariant measures
invariant volume forms §2.3.2
existence theorem for invariant vol-
ume forms [@
invariant volume forms and the mod-
ular function §2-2
left and right invariant volume forms
related by modular function [[J]
effect of 1(€) = ¢€7* on left invariant
volume form [
left invariant form [0
existence of left invariant forms on
Lie groups
effect of exterior derivative d and
right translation R4 on left invari-
ant forms [
left invariant vector field @
right invariant form
irreducible
irreducible module 23
irreducible representation 23
isomorphic representations
isoperimetric constant of degree o P4 (See
also Cheeger constant.)
isoperimetric inequality of degree «
isotropic function (= radial function) B3,
a
isotropy subgroup [4
basic properties, Exercise £-3-1, [[4

Jacobi identity g
Jacobian of a map

Laplacian (on a graph) [4
left invariant form [0
left invariant vector field @
left regular representation (=regular rep-
resentation) G
left translation @
Lie algebra g
Lie algebra of a Lie group. §
Lie group [ cf. group
coset spaces (= homogeneous spaces)
of Lie groups [[4
Lie subgroup [F cf. subgroup
closed subgroups of Lie groups are Lie

subgroups [J

map
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G-map 23
matrix groups §Z:34
McKean’s lower bound for the first eigen-
value B4
measure zero
modular function [
module 23 23
submodule 23

nicely transverse [
norm
operator norm E1
norm continuous representation g7
normal operator B9

one parameter subgroup B
as integral curves of invariant vector
fields B
operator norm 7, E1

Radon transform [
injectivity and surjective conditions for
affine Radon transform over finite
fields [0
injectivity and surjective conditions for
projective Radon transform over fi-
nite fields [0
Radon transforms for doubly transi-
tive actions of finite groups §B-1
rank of a finite homogeneous space
radial function (= isotropic function) B3,
a
regular representation
regular point of a map B3
regular value of a map B3
representation 23
character of a representation
equivalent representations 23
isomorphic representations g3
left regular representation (=regular rep-
resentation) G
norm continuous representation 27
regular representation
representative function
Riemannian metric
adapted
integrals over groups with adapted
Riemannian metrics 9
existence on isotropy compact spaces
ra
exponential map of a Riemannian met-
ric B4
invariant §:3°3 [1
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right invariant form
right translation [

self-adjoint operator B9
Sobolev inequality
spherical function b3, B0, [[@
strongly continuous £1
subgroup
closed subgroup theorem [[2
isotropy subgroup [4
basic properties, Exercise 2.3.1, [4
one parameter subgroup B
as integral curves of invariant vector
fields B
stabilizer subgroups [[4
basic properties, Exercise B.3.1, [4
submodule 23
symmetric action of a finite group [[@
Sard’s Theorem B4
symmetric space
definition B4
functions in M(G; K) Bq
convolution algebra is commutative Bg,
B3
if G/K is symmetric them G is uni-
modular
decomposition of L?(G/K) for com-
pact symmetric spaces b3
diagonalization of invariant linear op-

erators on compact symmetric spaces

finite symmetric space [[G
commutativity of {Tp, : h € £*(X x
X)®1 for finite symmetric space
ras}

INDEX

decomposition of L?*(G/K) for com-
pact weakly symmetric spaces b3
diagonalization of invariant linear op-
erators on compact weakly symmet-
ric spaces
weight pY, B3,
weights ip3, [[G
weight space b3, bY, [4, B4,

decomposition theorem on finite sym-

metric spaces [

diagonalization of invariant linear op-

erators on finite symmetric spaces
rez}
symmetry at = B7

translation
left translation [@
right translation [q

weakly symmetric space
definition B4
convolution algebra is commutative BY,
B3
if G/K is weakly symmetric them G is
unimodular
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