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1. RINGS.

1.1. The definition of a ring. We have been working with fields,
which are the natural generalization of familiar objects like the real,
rational and complex numbers where it is possible to add, subtract,
multiply and divide. However there are some other very natural ob-
jects like the integers and polynomials over a field where we can add,
subtract, and multiply, but where it not possible to divide. We will

call such objects rings. Here is the official definition:
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1.1. Definition. A commutative ring (R, +,-) is a set R with two
binary operations + and - (as usual we will often write z - y = zy) so
that

1. The operations 4+ and - are both commutative and associative:
r+y=y+z, x+(y+z) = (r+y)+z, zy =yzx, xz(yz) = (zy)=z.
2. Multiplication distributes over addition:
z(y+2) =axy + x2.
3. There is a unique element 0 € R so that for all x € R
r+0=0+z=u1x.

This element will be called the zero of R.
4. There is a unique element 1 € F' so that for all x € R

This element is called the tdentity of R.
5. 0 # 1. (This implies R has at least two elements.)
6. For any x € R there is a unique —x € R so that

r+ (—z) =0.

(This element is called the negative or additive inverse of .
And from now on we write x + (—y) as z — y.) O

We will usually just refer to “the commutative ring R” rather than
“the commutative ring (R, +,-)”. Also we will often be lazy and refer
to R as just a “ring” rather than a “commutative ring”f]. As in the
case of fields we can view the positive integer n as an element of ring R
by setting

n=14+1+---41
—_——

n terms

Then for negative n we can set n := —(—n) where —n is defined by the
last equation. Thatis 5 =14+1+1+1+1and =5 = —(1+1+1+1+1).

'For those of you how can not wait to know: A non-commutative ring satisfies
all of the above except that multiplication is no longer assumed commutative (that
is it can hold that zy # yx for some z,y € R) and we have to add that both the
left and right distributive laws z(y + z) = 2y + 2z and (y + z)x = yx + zz hold. A
natural example a non-commutative ring is the set of square n X n matrices over a
field with the usual addition and multiplication.
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1.1.1. Inverses, units and associates. While in a general ring it is not
possible to divide by arbitrary nonzero elements (that is to say that
arbitrary nonzero elements do not have inverses as division is defined
in terms of multiplication by the inverse), it may happen that there
are some elements that do have inverses and we can divide by these
elements. We give a name to these elements.

1.2. Definition. Let R be a commutative ring. Then an element a €
R is a unit or has an #nverse b iff ab = 1. In this case we write
b=a"t. O

Thus when talking about elements of a commutative ring saying that
a is a unit just means a has an inverse. Note that inverses, if they exist,
are unique. For if b and o' are inverses of a then ab = ab’ = 1 which
implies that ¥ = 0’1 = V/(ab) = (b'a)b = 1b = b. Thus the notation a~!
is well defined. It is traditional, and useful, to give a name to elements
a,b of a ring that differ by multiplication by a unit.

1.3. Definition. If a,b are elements of the commutative ring R then
a and b are associates iff there is a unit v € R so that b = ua. |

Problem 1. Show that being associates is an equivalence relation on
R. That is if a ~ b is defined to mean that a and b are associates then
show

l.a~aforall a € R,
2. that a ~ b implies b ~ a, and
3. a~band b~ cimplies a ~ c. O

1.2. Examples of rings.

1.2.1. The Integers. The integers Z are as usual the numbers
0,£1,£2,43,... with the addition and multiplication we all know
and love. This is the main example you should keep in mind when
thinking about rings. In Z the only units (that is elements with
inverses) are 1 and —1.

1.2.2. The Ring of Polynomials over a Field. Let F be a field and let
F[z] be the set of all polynomials

p(x) = ap + a1z + axx® + - + a,a"

where ag,...,a, € Fandn =20,1,2,.... These are added, subtracted,
and multiplied in the usual manner. This is the example that will be
most important to us, so we review a little about polynomials. First
if p(x) is not the zero polynomial and p(z) is as above with a, # 0
then n is the degree of p(x) and this will be denoted by n = deg p(z).
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The the nonzero constant polynomials a have degree 0 and we do not
assign any degree to the zero polynomial. If p(z) and ¢(x) are nonzero
polynomials then we have

deg(p(z)q(z)) = deg(p(x)) + deg(q(z)).

Also if given p(x) and f(x) with p(x) not the zero polynomial we can
“divide”f p(x) into f(x). That is there are unique polynomials ¢(z)
(the the quotient) and r(z) (the the reminder) so that

f(z) = q(z)p(x) + r(x) where { degr(r) < degp(z) or

r(x)is the zero polynomial.

This is called the division algorithm. If p(z) = x — a for some a € F
then this becomes

f(z) =q(z)(x —a)+r wherer € F.
By letting x = a in this equation we get the fundamental

1.4. Proposition (Remainder Theorem). Ifz—a is divided into f(x)
then the remainder is r = f(a). If particular f(a) = 0 if and only if
x — a diwides f(x). That is f(a) = 0 iff f(x) = (x — a)q(x) for some
polynomial q(z) with degq(z) = deg f(z) — 1. O

I am assuming that you know how to add, subtract and multiply
polynomials, and that given f(z) and p(x) with p(x) not the zero poly-
nomial that you can divide p(x) into f(z) and find the quotient ¢(z)
and remainder r(x).

Problem 2. Show that the units in R := F[z] are the nonzero constant
polynomials. O

The following shows that in our standard examples of rings, the
integers Z and the polynomials over a field F[z], that if two elements
are associate then they are very closely related. associate

1.5. Proposition. In the ring of integers Z two elements a and b are
associate iff b = +a. In the ring Flx] of polynomials over a field two
polynomials f(z) and g(x) are associate iff there is a constant ¢ # 0 so

that g(x) = cf ().

Problem 3. Prove this. |

2Here we are using the word “divide” in a sense other than “multiplying by the
inverse”. Rather we mean “find the quotient and remainder”. I will continue to
use the word “divide” in both these senses and trust it is clear from the context
which meaning is being used.
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1.2.3. The Integers Modulo n. This is not an example that will come
up often, but it does illustrate that rings can be quite different than the
basic example of the integers and the polynomials over a field. You can
skip this example with no ill effects. Basically this is a generalization
of the example of finite fields. Let n > 1 be an integer and let Z/n be
the integers reduced modulo n. That is we consider two integers x and
y to be “equal” (really congruent modulo n) if and only if they have
the same remainder when divided by n in which case we write x = y
mod n. Therefore x =y mod n if and only if x — y is evenly divisible
by . It is easy to check that

ry=1y; modn and =z, =y, modn implies

r1+y2 =21 +ys modn and x1x3 =1y1y2 mod n.

Then Z/n is the set of congruence classes modulo n. It only takes
a little work to see that with the “obvious” choice of addition and
multiplication that Z/p satisfies all the conditions of a commutative
ring. Show this yourself as an exercise.) Here is the case n = 6 in
detail. The possible remainders when a number is divided by 6 are
0, 1, 2, 3, 4, 5. Thus we can use for the elements of Z/6 the set
{0,1,2,3,4,5}. Addition works like this. 3+ 4 = 1 in Z/6 as the
remainder of 4 + 3 when divided by 6 is 1. Likewise 2-4 = 2 in Z/6
as the remainder of 2 - 4 when divided by 6 is 2. Here are the addition
and multiplication tables for Z/6

+10 1 2 3 4 5 012 3 45
0[]0 1 2 3 45 0/j0 00 0O0O0
111 2 3 4 5 0 110 1 2 3 4 5
212 3 45 01 210 2 40 2 4
3134401 2 310 3 0 3 0 3
414 501 2 3 410 4 2 0 4 2
515 01 2 3 4 510 54 3 21

This is an example of a ring with zero divisors, that is nonzero
elements @ and b so that ab = 0. For example in Z/6 we have 3-4 = 0.
This is different from what we have seen in fields where ab = 0 implies
a =0 or b=0. We also see from the multiplication table that the units
in Z/6 are 1 and 5. In general the units of Z/n are the correspond to
the numbers x that are relatively prime to n.

1.3. Ideals and quotient rings. We have formed quotients of vector
spaces by subspaces, now we want to form quotients of rings. When
forming quotient a ring R/I the natural object I to quotient out by is
not a subring, but an ideal.



Ideals and quotient rings. 7

1.6. Definition. Let R be a commutative ring. Then a nonempty
subset I C R is an tdeal if and only if it is closed under addition and
multiplication by elements of R. That is

a,be I implies a+bel
(this is closure under addition) and
a€l, re R implies ar el
(this is closure under multiplication by elements of R). OJ

1.3.1. Principle ideas and generating ideals by elements of the ring.
There are two trivial examples of ideals in any R. The set I = {0} is
an ideal as is I = R. While it is possible to give large numbers of other
examples of ideals in various rings for this class the most important
example (and just about the only one cf. Theorem P.7) is given by the
following example:

Problem 4. Let R be a commutative ring and let a € R. Let (a) be
the set of all multiples of a by elements of R. That is

(a) :={ra:r € R}.
Then show I := (a) is an ideal in R. O

1.7. Definition. If R is a commutative ring and a € R, then (a) as
defined in the last exercise is the principle ideal defined generated
by a. O

More generally given aq,...,a; € R we can define
<a1,,...,ak> :{T1a1+T2a2+"'+Tkak27‘1,T2,...,Tk ER}.

Formally this is very much like taking a span of vectors in a vector
space as it is just the set of linear combinations of elements of the set

{aq,...,a;} with coefficients from R.

1.8. Proposition. if R is a comutative ring and ay,...,ar € R, then
(ay,,...,ag) is an ideal in R called the ideal generated by a4, ..., a;.
Problem 5. Prove this. |

1.3.2. The quotient of a ring by an ideal. Given a ring R and an ideal /
in R then we will form a quotient ring R/, which is defined in almost
exactly the same way that we defined quotient vector spaces. You
might want to review the problem set on quotients of a vector space
by a subspace.
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Let R be a ring and [ and ideal in R. Define an equivalence relation
= mod [ on R by

a=0b mod I ifandonlyif b—ac€l.

Problem 6. Show that this is an equivalence relation. This means
you need to show that a = a mod [ for all « € R, that a = b mod [
implies b = a mod I, and a = b mod I and b = ¢ mod [ implies
a=b mod I. (If you want to make this look more like the notation
we used in dealing quotients of vector spaces and write a ~ b instead
of a =b mod [ that is fine with me.) O

Denote by [a] the equivalence class of @ € R under the equivalence
relation ~;. That is

[a|;={beR:b=a modI}={beR:b—acl}.

Problem 7. Show [a] =a+ [ wherea+1 ={a+7r:7r € I} O

Let R/I be the set of all equivalence classes of ~;. That is
R/I:={la]:a€ R} ={a+1:a€ R}.

The equivalence class [a] = a+1I is the coset of a in R. The following
relates this to a case you are familiar with.

Problem 8. Let R = Z be the ring of integers and for n > 2 let I be
the ideal (n) = {an : a € Z}. Then show that, with the notation of
Section [.2.3 that for a,b € Z

a=b modn if and only if a=0b mod I. [

Exactly analogous to forming the ring Z /n or forming the quotient of
a vector space V/W by a subspace we define a sum and multiplication
of elements of elements of R/I by

[a] + [b] = [a+ 0], and [a][b] = [ab].

Problem 9. Show this is well defined. This means you need to show

la] = [@'] and [b] = [b'] implies [a+b] = [@’ + V'] and [ab] = [a'D'] _

1.9. Theorem. Assume that I # R. Then with this product R/I is a
ring. The zero element of R/I is [0] and the multiplicative identity of
R/ is [1].
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Proof. We first show that addition is commutative and associative in
R/I. This will follow from the corresponding facts for addition in R.
[a] + ([0] + [c]) = [a] + ([0 + ¢]) = [a + (b+ )]
= [(a+b) +c] =[a+ b+ [c] = ([a] + [0]) + [c]
and
[a] + [b] = [a+b] = [b+ a] = [b] + [a].

The same calculation works for multiplication

[a]([b][c]) = la]([bc]) = [a(bc)] = [(ab)c] = [ab]c] = ([a][b])[c]
and
[a][b] = [ab] = [ba] = [b][al].

So both addition and multiplication are associative in R/I.
For any [a] € R/I we have

[a] + 0] = [a + 0] = [a] = [0+ a] = [0] + [q]
and therefore [0] the zero element of R/I. Likewise

[al1] = [a1] = |a] = [1a] = [1]]a]

so that [1] is the multiplicative identity of R/I. Finally all that is left
is to show that every [a] has an additive inverse. To no one’s surprise
this is [—a]. To see this note

la] +[=d] = [a —a] = [0] = [-a + a] = [-a] + [a].

Thus —[a] = [—a]. Finally there is the distributive law. Again this just
follows from the distributive law in R:

[al((b]+[e]) = [a][b+c] = [a(b+c)] = [ab+ac] = [ab]+[ac] = [a][b]+]a][d].

We still have not used that I # R and still have not shown that
[0] # [1]. But [1] = [0] if and only if 1 € I so we need to show that
1 ¢ I. Assume, toward a contradiction, that 1 € I. Then for any a € R
we have a = al € [ as [ is closed under multiplication by elements from
R. But then R C I C R contradicting that I # R. This completes the
proof. O

If R is a commutative ring and I and ideal in R then it is important
to realize that if @ € I then [a] = [0] in R/I. This is obvious from the
definition of R/I, but still should be kept in the front of your mind
when working with quotient rings. Here is an example both of why
this should be kept in mind and of a quotient ring.
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Let R = RJz] be the polynomials with coefficients in the real num-
bers R. Let q(m) = 22+1 and let I = (g(x)) be the ideal of all multiples
of g(x) = 2° + 1. That is

I={(z"+1)f(z): f(=) € R[]}
Clearly 2?41 = 1(2?+41) € I. Therefore in the ring R/I = RJ[z]/(x*+1)
we have that [z + 1] = [0]. Therefore

0] = [ + 1) = %) + 1] = [o + (1.
Therefore [z]> = —[1]. Thus —[1] has a square root in R/I. With a

little work you can show that R/I is just the complex numbers dressed
up a bit.

2. EUCLIDEAN DOMAINS.

2.1. The definition of Euclidean domain. As we said above for us
the most important examples of rings are the ring of integers and the
ring of polynomials over a field. We now make a definition that captures
many of the basic properties these two examples have in common.

2.1. Definition. A commutative ring R is a Fuclidean domain iff

1. R has no zero divisorsf]. That is if a # 0 and b # 0 then ab # 0.
(Or in the contrapositive form ab = 0 implies a = 0 or b = 0.)
2. There is a function 6 : (R\ {0}) — {0,1,2,3,...} (that is 6 maps
nonzero elements of R to nonnegative integers) so that
(a) If a,b € R are both nonzero then é(a) < d(ab).
(b) The division algorithm holds in the sense that if a,b € R
and a # 0 then we can divide a into b to get a quotient q
and a reminder r so that

b=aq+r whered(r)<d(a)orr=0
U

2.2. The Basic Examples of Euclidean Domains. Our two basic
examples of Euclidean domains are the integers Z with d(a) = |a|, the
absolute value of a and F|z], the ring of polynomials over a field F with
d(p(z)) = degp(x). We record this as theorems:

2.2. Theorem. The integers Z with 6(a) := |a| is a Fuclidean do-
main.

2.3. Theorem. The ring of polynomials F[x] over a field ¥ with
d(p(z)) = degp(z) is a Fuclidean domain.

3In general a commutative ring R with no zero divisors is called an integral
domain or just a domain.
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Proofs. These follow from the usual division algorithms in Z and F|[z].
]

2.4. Remark. The example of the integers shows that the quotient ¢
and remainder r need not be unique. For example in R = Z let a = 4
and b = 26. Then we can write

26=4-6+2=4¢;+r; and 26=4- -7+ (=2) =4qgs + 2.

In number theory sometimes the extra requirement that » > 0 is made
and then the quotient and remainder are unique. O

2.3. Primes and factorization in Euclidean domains. We now
start to develop the basics of “number theory” in Euclidean domains.
By this is meant that we will show that it is possible to define define
things like “primes” and “greatest common divisors” and show that
they behave just as in the case of the integers. Many of the basic facts
about Euclidean domains are proven by starting with subset S of the
Euclidean domain in question and then choosing an element a in S
that minimizes d(a). While it is more or less obvious that it is always
possible to do this we record (without proof) the result that makes it
all work.

2.5. Theorem (Axiom of Induction). Let N :={0,1,2,3,...} be the
natural numbers (which is the same thing as the nonnegative integers).
Then any nonempty subset S of N has a smallest element. ]

2.3.1. Duvisors, irreducibles, primes, and great common divisors. We
start with some elementary definitions:

2.6. Definition. Let R be a commutative ring. Let a,b € R.

1. Then a is a divisor of b, (or a divides b, or a is a factor of b)
iff there is ¢ € R so that b = ca. This is written as a | b.

2. b is a multiple of a iff a divides b. That is iff there is ¢ € R so
that b = ac.

3. The element b # 0 is a primell, also called an irreducible, iff b
is not a unit and if a | b then either a is a unit, or a = ub for some
unit v € R.

4. The element c of R is a greatest common divisor of a and b iff
¢|a,c|bandifd € Ris any other element of R that divides both
a and b then d | c. (Note that greatest common divisors are not

41 have to be honest and remark that this is not the usual definition of a prime
in a general ring, but is the usual definition of an irreducible. Usually a prime is
defined by the property of Theorem P.I0. In our case (Euclidean domains) the two
definitions turn out to be the same.
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unique. For example in the integers Z there both 4 and —4 are
greatest common divisors of 12 and 20, while in the polynomial
ring R[z] if element the c(z — 1) is a greatest common divisor of
22 — 1 and 22 — 3z + 2 for any ¢ # 0.)

5. The elements a and b are relatively prime iff 1 is a greatest
common divisor of a and b. Or what is the same thing the only
elements that divide both a and b are units. O

2.3.2. Ideals in Fuclidean domains. There are commutative rings
where some pairs of elements do not have any greatest common
divisors. We now show that this is not the case in Euclidean domains.

2.7. Theorem. Let R be a Fuclidean domain. Then every ideal in R
15 principle. That is if I s an ideal in R then there is an a € R so that
I = (a). Moreover if {0} # I = (a) = (b) then a = ub for some unit u.

Problem 10. Prove this along the following lines:

1. By the Axiom of induction, Theorem B.F, the set S := {d(r) : r €
I,r # 0} has a smallest element. Let a be a nonzero element of
I that minimizes §(r) over nonzero elements of /. Then for any
b € I show that there is a ¢ € R with b = aq by showing that if
b=aq+r withr =0 or §(r) < d(a) (such ¢ and r exist by the
definition of Euclidean domain) than in fact 7 = 0 so that b = qa.

2. With a as in the last step show I = (a), and thus conclude I is
principle.

3. If (a) = (b) then a € (b) so there is a ¢; so that a = ¢;b. Likewise
b € (a) implies there is a co € R so that b = coa. Putting these
together implies a = ¢ycea. Show this implies ¢;co = 1 so that ¢;
and ¢y are units. HINT: Use that a(1 — ¢jc2) = 0 and that in a
Euclidean domain there are no zero divisors. OJ

2.8. Theorem. Let R be a FEuclidean domain and let a and b be
nonzero elements of R. Then a and b have at least one greatest com-
mon diwisor. More over if ¢ and d are both greatest common divisors
of a and b then d = cu for some unit u € R. Finally if ¢ is any greatest
common divisor of a and b then there are elements x,y € R so that

c=ax + by.

Problem 11. Prove this as follows:

1. Let I :={az + by : z,y € R}. Then show that [ is an ideal of R.
2. Because [ is an ideal by the last theorem the ideal I is principle
so I = (c) for some ¢ € R. Show that ¢ is a greatest common
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divisor of a and b and that ¢ = ax + by for some z,y € R. HINT:
That ¢ = ax + by for some z,y € R follows from the definition
of I. From this show c is a greatest common divisor of a and b.
3. If ¢ and d are both greatest common divisors of a and b then by
definition ¢ | d and d | ¢. Use this to show d = uc for some unit
U. [

2.9. Theorem. Let R be a FEuclidean domain and let a,b € R be
relatively prime. Then there exist x,y € R so that

ar + by = 1.
Problem 12. Prove this as a corollary of the last theorem. O

2.10. Theorem. Let R be a Euclidean domain and let a,b,p € R with
p prime. Assume that p | ab. Then p | a or p | b. That is if a prime
divides a product, then it divides one of the factors.

Problem 13. Prove this by showing that if p does not divide a then
it must divide b. Do this by showing the following:

1. As pis prime and we are assuming p does not divide a then a and
p are relatively prime.

2. There are x and y in R so that ax 4+ py = 1.

3. As p | ab there is a ¢ € R with ab = ¢p. Now multiply both sides
of ax + py = 1 by b to get abx + pby = b and use ab = cp to
conclude p divides b. O

2.11. Corollary. If p is a prime in the Fuclidean domain R and p
divides a product aias - - - a, then p divides at least one of aq, as, ...,
Q-

Proof. This follows from the last proposition by a straightforward in-
duction. ]

2.3.3. Units and associates in Euclidean domains.

2.12. Lemma. Let R be a Euclidean domain. Then a nonzero element

a of R is a unit iff 6(a) = 6(1).

Problem 14. Prove this. HINT: First note that if 0 # r € R then
d(1) < 4é(1r) = d(r). Now use the division algorithm to write 1 = ag+r
where either §(r) < d(a) = 6(1) or r = 0. O
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2.13. Proposition. Let R be a Fuclidean domain and a and b nonzero
elements of R. If 6(ab) = d(a) then b is a unit (and so a and ab are
associates).

Problem 15. Prove this. HINT: Use the division algorithm to divide
ab into a. That is there are ¢ and r € R so that a = (ab)g + r so that
either r = 0 or 0(r) < d(a). Then write r = a(1 — bg) and use that if =
and y are nonzero d(z) < d(zy) to show (1 — bg) = 0. From this show
b is a unit.) O

2.3.4. The Fundamental Theorem of Arithmetic in Euclidean domains.

2.14. Theorem (Fundamental Theorem of Arithmetic). Let a be a
non-zero element of a Euclidean domain that is not a unit. Then a is a
product a = pipa - - - Pn Of primes p1, P2, ..., Pn. Moreover we have the
following uniqueness. If a = q1qs - - - ¢, is another expression of a as a
product of primes, then m = n and after a reordering of q1,q2,...,qn
there are units uy,us, ..., u, so that ¢; = w;p; fori=1,...,n.

Problem 16. Prove this by induction on §(a) in the following steps.

1. As a is not a unit the last lemma implies 6(a) > §(1). Let k :=
min{d(r) : r € R,d(r) > §(1)}. Show that if §(a) = k than a is a
prime. (This is the base of the induction.)

2. Assume that 6(a) = n and that it has been shown that for any
b # 0 with §(b) < n that either b is a unit or b is a product
of primes. Then show that a is a product of primes. HINT: If
a is prime then we are done. Thus it can be assumed that a is
not prime. In this case a = bc where b and ¢ are not units. a
is a product a = bc with both b and ¢ not units. By the last
proposition this implies §(b) < d(a) and 6(c) < d(a). So by the
induction hypothesis both b and ¢ are products of primes. This
shows a = bc is a product of primes.

3. Now show uniqueness in the sense of the statement of the theo-
rem. Assume a = pips---pPn = G1G2 - - - ¢, Where all the p;’s and
g;'s are prime. Then as p; divides the product ¢¢s - - - ¢, by Corol-
lary B.17] this means that p; divides at least one of q1,qs, ..., ¢m.
By reordering we can assume that p; divides ¢;. As both p; and
q1 are primes this implies ¢ = uyp; for some unit u;. Continue in
this fashion to complete the proof. O

2.3.5. Some related results about Fuclidean domains.
2.3.5.1. The greatest common divisor of more than two ele-
ments.2.3.5.1.  We will need the generalization of the greatest
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common divisor of a pair a,b € R for the greatest common divisor of
a finite set aq, ..., a;. This is straightforward to do

2.15. Definition. Let R be commutative ring and aq,...,a; € R.

1. The element c of R is a greatest common divisor of ay, ..., a
iff ¢ divides all of the elements aq,...,a; and if d is any other
element of R that divides all of ay, ..., a, then d | c.

2. The elements aq, ..., a, are relatively prime iff 1 is a greatest
common divisor of aq, ..., as. O

Note that have aq, ..., a; relatively prime does not imply that they
are pairwise elementary relatively prime. For example when the ring is
R = Z the integers, the 6 =2-3, 10 = 2-5 and 15 = 3 -5 are relatively
prime, but no pair of them is.

2.16. Theorem. Let R be a Euclidean domain and let aq,...,a; be
nonzero elements of R. Then ay, ..., a, have at least one greatest com-
mon divisor. More over if ¢ and d are both greatest common divisors of
ai,...,ag then d = cu for some unit u € R. Finally if ¢ is any greatest
common divisor of ay, ..., a; then there are elements x1,...,x, € R so
that

C = a1T1 + A% + - - - ATk

Problem 17. Prove this as follows:

1. Let I := (al,ag,...,ak> = {alxl + ATy + - ApT P T, ..., T €
R}. Then show that [ is an ideal of R.

2. Because [ is an ideal by Theorem .7 the ideal I is principle so
I = (c) for some ¢ € R. Show that ¢ is a greatest common
divisor of aq,as,...,a, and that ¢ = ajx1 + asws + - - - agxy for
some I1,Ts,...,r; € R. HINT: That ¢ = a1x1 + asxs + - - - apxy
for some x1, 22, ...,z € R follows from the definition of /. From
this show ¢ is a greatest common divisor of aq, ..., ax.

3. If ¢ and d are both greatest common divisors of aq,...,a; then
by definition ¢ | d and d | ¢. Use this to show d = uc for some
unit u. O

2.17. Theorem. Let R be a Euclidean domain and let ay,...,ar € R
be relatively prime. Then there exist x1,...,x; € R so that

a1T1 + Qoo + + -+ + apTr = 1.

Problem 18. Prove this as a corollary of the last theorem. O
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2.3.5.2. Euclidean Domains modulo a prime are fields.2.3.5.2.  We
finish this section with a method for constructing fields.

2.18. Theorem. Let R be a Fuclidean domain and let p € R be a
prime. Then the quotient ring R/(p) is a field. (As usual (p) = {ap :
a € R} is the ideal of all multiples of p.)

Problem 19. As R/(p) is a ring to show that it is a field we only
need to show that each [a] € R/(p) with [a] # [0] has a multiplicative
inverse. So let [a] # [0] and show that [a] has a multiplicative inverse
along the following lines.

1. First show that p and a are relatively prime. HINT: As [a] # [0]
in R/(p) we see that a is not a multiple of p. But p is prime so
this implies that 1 is a greatest common divisor of p and a.

2. Show there are x,y € R so that ax + py = 1.

3. Show for this x that [a|[z] = [1] so that [z] is the multiplicative
inverse of [a] in R/(p). HINT: From ax + py = 1 we have [ax +

py] = [1]. But py € (p) so [py] = [0]. O
3. MATRICES OVER A RING.

In this section R will be any ring, but in the long run we will mostly
need the results in the case that R is an Euclidean domain.

3.1. Basic properties of matrix multiplication. A matrix with
entries on a ring is defined just as in the case of fields.

3.1. Notation. If R is a ring let M,,«,(R) be the m by n matrices
whose elements are in R. (This is m rows and n columns). Thus an
element A € M,,xn(R) is of the form

a1; Q2 - Qin
Q21 Q22 -+  Q2n
A=
Am1 Am2 - Omp
with Qi € R. ]

3.1.1. Definition of addition, multiplication of matrices. If A €
M, sn(R) and 7 € R then A can be multiplied by a “scalar” r € R as
rA is the matrix

rai rai9 e TA1n

rast Ta929 e TAon

rA .=

Tm1 TAm2 - TAmp
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Likewise if A, B € M,,x,(R) with A as above and

bll b12 o bln
. b21 b22 T b2n
bml bm2 e bmn

then A + B is the matrix with elements (A + B);; = a;; + b;;. 1If
A€ Myyn(R) and B € M, y,, say

@11 Q12 - Qi bii big - blp
Q21 d22 -+ dgp bor  bap - b2p

A — . . . . ) B - . . )
m1 Am2  *°° Qmp bnl bn2 e bnp

then the product matrix is defined in the usual manner. That is the
product AB is the m by p matrix with elements

(AB)U = Z aikbkj.
k=1

3.1.2. The basic algebraic properties of matrix multiplication and addi-
tion. The usual properties of matrix addition and multiplication hold
with the usual proofs. We record this as:

3.2. Proposition. Let R be a ring. Then the following hold.
1. Forr,s € R and A € My,xn(R) the distributive law

(r+s)A=rA+sA

holds.
2. Forr € R, and A, B € M,,«n(R) the distributive law

r(A+ B)=rA+rB

holds.
3. If A, B,C € M,«n(R) then

(A+B)+C=A+(B+0O).
4. If r,s € R and A € My,5n(R) then
r(sA) = (rs)A.
5. Ifre R, A€ Myxn(R), and B € M,«p(R) then
r(AB) = (rA)B.
6. If A, B € My,xn(R) and C € M, «,(R) then
(A+ B)C = AC + BC.
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7. If A€ Myxn(R) and B,C € M,«,(R) then
A(B+C) = AB + AC.
8. If A€ Myxn(R), B € M,xp(R), and C € Myy,(R) then
(AB)C = A(BC).

9. If A € Myxn(R) and B € M,x,(R) then the transposes A €
Mysm(R) and B € My, (R) satisfy the standard “reverse of or-
der” under multiplication:

(AB)! = B! A,

Proof. Basically these are all boring chases through the definitions. We
do a couple just to give the idea. For example if A = [a;;], B = [b;;]
then denoting the entries of r(A+ B) as (r(A+ B);; and the entries of
rA+rBas (rA+rB);.

(r(A+ B))ij = r(aij + bij) = ray +rbij = (rA+rB)y;.

Thus shows 7(A+ B) and rA+rB have the same entries and therefore
r(A+ B) = rA -+ rB. This shows P holds.

To see that § holds let A = [a;;] € Myxn(R), B = [bjr] € Mpxp(R),
and C' = [cu] € M,4(R). Then we write out the entries of (AB)C
(changing the order of summation at one point) to get

((AB)C)ZZ = Z AB zkzckl = Z Z Qij ]kckl

kljl

n p
= ay ) bjcu = Z aij(BC)ji
P =1

j=1

—~

= (A(BQ))y.

This shows (AB)C and A(BC') have the same entries and so § is proven.
The other parts of the proposition are left to the reader. O
Problem 20. Prove the rest of the last proposition. O

In the future we will make use of the properties given in Proposi-
tion B.2 without explicitly quoting the Proposition.

3.1.3. The identity matrix and the Kronecker delta. The n by n identity
matrix I, in M, (R) is the diagonal matrix with all diagonal elements
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equal to 1 € R and all off diagonal elements equal to 0:

100 - 0
010 0
I,—=10 01 0
000 - 1

We will follow a standard convention and denote the entries of I,, by
0;; and call this the Kronecker delta. Explictly

T
0, ifi# 7.

Then if A € M,,,«x,(R) is as above then we compute the entries of I, A.

m
(I A)ix = Z 0ij i (all but one term in the sum is zero)
j=1
= a;; = Air (the surviving term).
Therefore I,,A and A have the same entries, whence I,,A = A. A
similar calculation shows Al, = A. Whence

I,A=Al, forall A€ M,x.(R).

So the identity matrices are identities with respect to matrix multipli-
cation.

3.2. Inverses of matrices. As in the case of matrices over a field
inverses of matrices of square matrices with elements in a ring are
important. The theory is just enough more complicated to be fun.

3.2.1. The definition and basic properties of inverses. The definition of
being invertible is just as one would expect from the case of fields.

3.3. Definition. Let R be a commutative ring and let A € M,,..,(R).
Then B is the inverse of A iff

AB =BA=1,.

(Note this is symmetric in A and B so that A is inverse of B.) When
A has in inverse we say that A is tnvertible.

If A has an inverse it is unique. For if B; and B, are inverses of A
then

Bl - Blln = Bl<ABQ) - (BlA)BQ == [nBQ - BQ.
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Because of the uniqueness we can write the inverse of A as A~!. Note
that the symmetry of A and B in the definition of inverse implies that
if A is invertible then so is B = A~! and B~! = A. That is

(AH)1 = A,

Before giving examples of invertible matrices we record some elemen-
tary properties of invertible matrices and inverses.

3.4. Proposition. Let R be a commutative ring.

1. If A, B € M,xn(R) and both A and B are invertible then so is the
product AB and it has inverse

(AB)™' =B7tA™%

2. If A € Myyn(R) is invertible, then for k = 0,1,2,... then A* is
inwvertible and
(A)71 = (A7),
From now on we write A% for (A*)™1 = (A=YH*. (Note this
includes the case of A° =1,,.)
3. Generalizing both these cases we have that if AjAs,... A €
M, «n(R) are all invertible then so is the product AjAy--- Ay and

(AjAg - Ap) P =ATA AT
Proof. If A, B are both invertible then set C' = B~'A~! and compute
(AB)C = ABB A" = ALLA™ = AA' = 1,

and
C(AB) = B'A'AB=B"'I,B=B'B=1,.

Thus C' is the inverse of AB as required. The other two parts of the
proposition follow by repeated use of the first part (or by induction if
you like being a bit more formal). O

3.2.2. Inverses of 2 x 2 matrices. We now give some examples of in-

vertible matrices. First if A := %1 (ﬂ € Msyo(R) is a 2 x 2 diagonal
2
matrix and both a; and as are units (that is have inverses in R) then

afl 0

0 ay'
are not units then A will not have an inverse in Ms,2(R). As a concrete
example let R = Z be the integers and let

-y

A~1 exists and is given by A7! = [ } But if either of a; or ay
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Then if A~ existed it would have to be given by

Lo [to
el

2

but the entries of this are not all integers so A has no inverse in
Msy2(Z). More generally it is not hard to understand when a 2 x 2
matrix has an inverse. (The following is a special case of Theorem [.2]]
below.)

3.5. Theorem. Let R be a commutative ring and let A = Z fl €

Msyo(R). Then A has in inverse in Myxn(R) if and only if det(A) =
(ad — be) is a unit. In this case the inverse is given by

A7 = (ad — be)™! [d ‘b} .

—C a

Proof. Set B = {_d _ab} and compute
[ b [d —b] [ad — be 0 |
(3.1) AB= E d} {—c o = 0 ad — be| = (ad — be) 1,
and
[d  —b]| [a ] [ad — be 0 |
(3.2) BA= —c a} [c d) = 0 ad — bd = (ad — be) 1,

Therefore if (ad — bc) is a unit, then (ad — be)™* € R and so (ad —
be)™'B € Mays(R). Thus multiplying (B:1) and (B.2) by (ad — bec)™*
gives that ((ad — bc)™'B)A = A((ad — be)™'B) = I, and thus (ad —
be) ™' B is the inverse of A.

Conversely if A™! exists then we use that the determinant of a prod-
uct is the product of the determinants (a fact we will prove latter

See [.16) to conclude
1 =det(ATA) = det(A ") det(A)
but this implies that det(A) is a unit in R with inverse det(A™'). [

3.2.3. Inverses of diagonal matrices. Another easy case class of matri-
ces to understand form the point of view of inverses is the diagonal
matrices.

3.6. Theorem. Let R be a commutative ring, then a diagonal matriz
D = diag(ay, as, ..., a,) € Myxn(R) is invertible if and only if all the
diagonal elements ay,aso, . .., a, are units in R.
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Proof. One direction is clear. If all the elements aq, as, ..., a, are units
in R then the inverse of D exists and is given by

D! = diag(a; ' a5, ... at).

» '

Conversely assume that D has an inverse. As D is diagonal its

elements are of the form D;; = a;0;; where 6;; the Kronecker delta. Let
B = [b;j] € M,xn(R) be the inverse of D. Then BD = I,. As the
entries of I,, are d;; the equation I,, = BD is equivalent to

5ik = ZbUDJk = Z bijaj(Sjk = bikak.
j=1 j=1

Letting k = 7 in this leads to 1 = d;; = b;;a;. Therefore a; has an inverse
in R: ai_l = b;. Thus all the diagonal elements aq, as, ..., a, of D are
units. 0

3.2.4. Nilpotent matrices and inverses of triangular matrices.

3.7. Definition. A matrix N € M,, is nilpotent iff there is an
m > 1 so that N™ = 0. If m is the smallest positive integer for which
N™ =0 we call m the index of nilpotency of N.

3.8. Remark. The rest of the material on finding inverses of matrices
is a (hopefully interesting) aside and is not essential to the rest of these
notes and you can skip to directly to Section [l.1 on Page 6. (However
the definition of nilpotent is important and you should make a point
of knowing it.) O

3.9. Proposition. If R is a commutative ring and N € M, x,(R) is
nilpotent with nilpotency index n, then I — N 1is invertible with inverse

(I-N)'=I+N+N?*+... 4+ N™ L

(By replacing N by —N we see that I + N is also invertible and has
muverse

(I+N)'=T-N+N>—N> ... (=) N1

Problem 21. Prove this. HINT: Set B=1+ N + N? + ...+ N™!
and compute directly that (I — N)B=B(I — N) =1 O

3.10. Remark. Recall from calculus that if @« € R has |a| < 1 then the
inverse 1/(1 — a) can be computed by the geometric series

1 o0
S 2 3 :E k.
1 —a +a+a" +a + kzoa



Inverses of matrices. 23

The formula above for (I — N)~! can be “derived” from this by just
letting @ = N in the series for 1/(1 — a) an using that N* = 0 for
k> m. O

We now give examples of nilpotent matrices. Recall that a matrix
A € Myyxn(R) is upper triangular iff all the elements of A below the
main diagonal are zero. That is if A is of the form

11 a2 Az - aA1np—1 A1n
0 az ag --- agp—1 A2
0 0 asg -+ agp— asnp
A=
0 0 0 *tt OGp—1n—1 Qn—1n
0 0 0 - 0 nn |

More formally
A = [a;;] is upper triangular <= a;; =0 for i > j.

Also recall that a matrix B is strictly upper triangular iff all the
elements of B on or below the main diagonal of B are zero. (This being
strictly upper triangular differs from just being upper triangular by the
extra requirment of having the diagonal elmements vanish). So if B is
strictly upper triangular it is of the form

[0 a2 a1z -+ Qinp—1 a1n |

0O 0 Ag23 -+ QA2p—1 a2 n
B— 0 0 0 tee CL3,,‘1_1 asn

0 0 o --- 0 Ap—1n

o 0 0 -~ 0 0 |

Again we can be formal:
B = [b;;] is strictly upper triangular <= b;; =0 for i > j.

We define lower triangular and strictly lower triangular ma-
trices in an exactly analogous manner.

We now will show, as an application of block matirx multiplication,
that a strictly upper triangular matrix is nilpotent.

3.11. Proposition. Let R be a commutative ring and let A €
M, «n(R) be either strictly upper triangular or strictly lower triangu-
lar. Then A is nilpotent. In fact A™ = 0.

Proof. We will do the proof for strictly upper triangular matrices, the
proof for strictly lower triangular matrices being just about idential.
The proof is by induction on n. When n = 2 a strictly upper triangular
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0 a
0 0

> |0 al |0 a| |0 O
A" = {0 o0 Of |0 O
This is the base case for the induction. Now assume that the result
holds for all n x n strictly upper triangular matrices and let A be a

strictly upper triangular (n + 1) x (n + 1) matrix. We write A as a
block matrix
A [B v]

matrix A € Msyo(R) is of the form A = [
then

] for some ¢ € R. But

0 0

where B is n X n, v is n x 1, the first 0 in the bottom is 1 x n and the
second 0 is 1 x 1. As A is strictly upper triangular the same will be
true for B. As B is n x n we have by the induction hypothesis that
B" = 0. Now compute

e[ %)

B v]| [B? Bv B* B%
3442 _ _
e I B

4 5 |B v|[B* B*| [B* B%

AT = AN = [0 0|10 0] |0 0

A Bt B™y _ 100
0 0 0 0"

This closes the induction and completes the proof. O

We can now give another example of invertible matrices.

3.12. Theorem. Let R be a commutative ring and let A € My xn(R)
be upper triangular and assume that all the diagonal elements a;; of A
are units. Then A is invertible. (Likewise a lower triangular matriz
that has units along its diagonal is invertible.)

3.13. Remark. The proof below is probably not the “best” proof, but
it illustrates ideas that are useful elsewhere. The standard proof is to
just back solve in usual manner. In doing this one only needs to divide
by the diagonal elements and so the calculations works just as it does
over a field. A 3 x 3 example should make this clear. Let

11 Aaiz 13
A = 0 92 A923
0 0 as3
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The to find the inverse of A we form the matrix [A I3] and row reduce.

This is

[AL;] =

11 Q12
0 a99
0 0

@13
23
a33

— o O

10
0 1
0 0

Row reducing this to echelon form only involves division by the elments
ai1, Ao, and azsz and as we are assuming that this are units the elements
ayl', ay, and azy exist. If you do the calculation you should get

A7l =

The same pattern holds in higher dimensions.

Proof. Let A be upper triangular and let D = diag(a1, ass, . .

aio (12023 — 13022 |
a11 Q22 11022033
]. ag3
a22 22 0a33
1
0 _
ass |
O
'7ann)

be the diagonal part of A, that is the diagonal matrix that has the
same entries down the diagonal as A. We now factor A into a product
D(I,+ N) where N is upper triangular and thus nilpotent. The idea is
that A = D(D7'A) and a multiplication by on the left by the diagonal

matrix D! multiplies the rows by al17!, ay, , ...

a-! the matrix D1 A

r'mn

will have 1’s down the main diagonal We can therefore write D~1A
as the sum of the identity [, and a strictly upper triangular matrix.

Explicitly:

(a1 aip

0 ag

0 0

A= .

0 0

| 0 0
(1 as

0 1

0 O

=D|. .

0 0

[0 0

@13
23
a33

a1n—1 a1n
A2n—1 a2n
a3n—1 a3n
Ap—1n—1 An—-1n
0 o
ai n—1/a11 G1n/a11
a2n—1/a22 azn/a22
a3n—1/a'33 a3n/a33
1 anfln/anflnfl
0 1 |
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1 0 0 --- 0 O]
010 --- 00
O01 -+ 00
=D S .
000 --- 10
000 -~ 0 1
[0 a a13/a11 aln—l/all aln/an i
0 0 ag/axn - azp_1/a2 a2/ 022
0 0 0 coo agpet agn/ass
+ : : : . : :
0 0 0 et 0 an—ln/an—ln—l
0 0 0o - 0 0
= D(I, + N)

where the matrix N is clearly strictly upper triangular. The diagonal

matrix D is invertible by Theorem and I, + N is invertible by
Proposition B.11] and Proposition B.9. Thus the product is invertible.
In fact we have (using Proposition B.9)

AV =T, +N)"'D'=(I=N+N>=N¥+... (=)™ 'N""H)D".

This completes the proof. O

4. DETERMINANTS

4.1. Alternating n linear functions on M, (R). We now derive
the basic properties of determinants of matrices by showing that they
are the unique n-linear alternating functions defined on M, (R) that
take the value 1 on the identity matrices. As I am assuming that you
have seen determinants is some form or another before, this presen-
tation will be rather brief and many of the details will be left to the
reader. We start by defining these terms just used.

Let R™ be the set of length n column vectors with elements in the
ring R. Then an element A € M,,(R) can be thought as A =
[Ay, Ao, ..., Ay] where Ay, Ag, ..., A, are the columns of A so that each
A; € R". That is if

ailz Qaiz - Qip
ag1 Q22 -+  Q2p

Qp1 Ap2 **° Anp
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Then A = [Ay, As, ..., A,] where

11 a2 Ay Q1n

21 22 a2; (57
Alz . 7A2: . 7"'7Aj: . 7---aAn:

Gn1 (n2 Anj Qnm,

The following isolates one of the basic properties of determinants,
that they are linear functions of each of their columns.

4.1. Definition. A function f: M, ,(R) — R isn linear over R iff
it is a linear function of each of its columns if the other n—1 columns are
kept fixed. For the first column this means that if A}, A, As,... A, €
M wn(R) and ¢, " € R, then

f(C/All + C/,A/1/7A27 A37 s 7An)
- le(‘A,l? A27 A37 s 7A'n,> + C”f(Alll, AQ, Ag, . 7An>-

For the second column this means that if Ay, A% AJ As,... A, €
M, «n(R) and ¢, ¢’ € R, then

f(Ab C/A/2+C”A/2/, A3, go e 7An)
— C/f<A1, A/2, Ag, e ,An) + C/,f(Al, Ag, Ag, e 7An)
And so on for the rest of the columns. O

One way to think of this definition is that a function f: M, «,(R) —
R is one that can be expanded down any of its columns. Instead of
trying to make this precise we just give a couple of examples. First
consider the 2 x 2 case. That is

a1; a2 CL11- 12 [ 1 0 a2
o= Lon ol =[] o] = o o] oo ] o] )
So if f: Myyo(R) — R is 2 linear over R then
(o3 )
1l |an O a2
=t (|[o)- ] ]) + o ([[2) -]
1 aq _O a1
~onf ([o a]) +enr ([122])

_|an ai2| _ ||an 1 0
A= le a22} B Haﬂ} 2 _0] e {1H

Likewise




28 Determinants
implies that
o a1 1 a1 0
sy ) eor (1)
For n = 3, let A € M;,3(R) be given by

a1 aiz2 a3

A= lax ax ax
az1 a3z as3
Using that
[y, 1 0 0
ast| =ay [0 +ag [1]| + a3z |0
asy 0 0 1

we find that if fi_ngg(R) is 3 linear over R then

ai; Qa2 Qi3
f(A):f Q21 Q22 Q23

az1 asz as3

1 a;n aps 0 aix a3
=anf 0 ag as +as f 1 ax ag
0 az ass 0 az ass

0 app a3

+ azif 0 az a3

1 az asz

with corresponding formulas for expanding down the second or third
columns.
We now isolate another of the determinant’s essential properties.

4.2. Definition. Let f: M,.,(R) — R be n linear over R. Then f is
alternating iff whenever two columns of A are equal then f(A) = 0.
That is if A = [Ay, As,..., A,] and A; = A, for some j # k then
f(A) =0. O

This implies another familiar property of determinants.

4.3. Proposition. Let f: M,x,(R) — R be n linear over R and al-
ternating. Then for A € M,y,(R) interchanging two columns of A
changes the sign of f(A). Explicitly for the first two columns of A this
means that

f([A27A17 A37 A47 s 7An]) = _f([Ala A27 A37A47 s 7An]>
More generally we have

oAk A ) =—f( e A ARy )



Alternating n linear functions on Man(R). 29

where [..., Ag, ..., Aol and [ Ay, Ay, -] only differ by hav-
ing the j-th and k-th columns interchanged.

Proof. We first look at the case of the first two columns. Let A =
[Ay, Ag, A, ..., Ay]. Consider the matrix [A; 4+ Ag, A1+ Ao, As, ..., Ay
which as its first two columns A; + Ay and the rest of its columns
the same as the corresponding columns of A. Then as two columns
equal we have f([A; + A, Ay + As, As,...,A,;]) = 0. Likewise
f([Al, Al, A3, o ,An]) = 0 and f([Ag, AQ,Ag, ce ,An]) USil’lg these
facts and that f is n linear over R we find
0=f([A1 + A2, A1 + Ay, A3, ..., Ay))
f([A17 Al + A27 A37 D) ]) + f([A27 Al + A27 A37 s 7A'n,])
:f([A17A17A37"'7 ]) ([A17A27A3>"'7An])
+f([A27A17A3a"'7 n])+f([A27A2)A37"'7An])
=0 + f([Ala A2> A37 s 7An]) + f([A27 Ala A37 s 7An]) + 0
:f([Ala AQ; A37 .. 7An]) + f([A27 Al) A37 L aATL])
This implies
f([AZa A17 A37 LI 7An]) - _f([A17 AQa A3a o 7An])
as required.

The case for general columns is the same, just messier nota-
tionally. For those of you who are gluttons for punishment here
it is. Let A = [...,A;,..., A, ...]. Then all three of the ma-
trices [...,A; + Ap, ... A, + Ag,...], oA, A, ], and
[..., Ak, ..., Ay, ...] have repeated columns and therefore

=f([-- Ak, Agy...]) =0,

Again using this and that f is n linear over R we have
0=f([....,A; + Ag, ..., Aj + Ay, ...])

—f([ o Ay A+ Ay )+ (L Aj+ A, )
:f([...,A]-,...,A ...])+f([..,A], Ak,...])
(e A A D)+ AL Al A ])
=0+ f([.... A,.. Ak,..])+f([ AL ] +0
:f([...,Aj,...,A R (A ..,Aj,...])

which implies

Foo Ak A D) =—f( A A, )
and completes the proof. O
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4.1.1. Uniqueness of alternating n linear functions on My« (R) forn =
2,3. We now find all alternating f: M, «,(R) — R that are n linear

over R for some small values of n. Toward this end let eq, es,..., e, be
the standard basis of R™. That is
1] 07 (0] [07] (0]
0 1 0 0 0
0 0 1 0 0
el - . bl 62 - . bl 63 == . 9ty en—l == . ) en == .
0 0 0 1 0
0] 0] 0] 0] | 1]

Let’s look at the case of n = 2. Let f: Myyxs(R) — R be alternating
and 2 linear over R. Let A = [Zi Z;j € Msy2(R). Then we can write

A = [A;, As] where the columns of A are
a a
A = LLH] = a1 + aney, Ay = [ 12} = Q1261 + A22€3.
21 22

Therefore, using f(e1,e1) = f(es,e2) = 0 and f(eq,e1) = —f(e1, ea),
we find
f(A) = f([A1, Ag]) = faner + agiez, arzer + axnes)
= a1 f(e1, a12e1 + agaez) + ag f(ea, arzer + ages)
= ajaizpf(er, e1) + anaxnf(er, e)
+ asiainf(ea, €1) + azaxnf(e, e2)

= anaxnf(er, e2) + aznazf(es, er)

= anaxnf(er, e2) — anannf(er, er)

= (ai1as — ag1a12) f(e1, €2).

1 0

Now note that [e, e5] = 01

} = [5. Thus our calculation of f(A) can

be summarized as

4.4. Proposition. Let f: Myyo(R) — R be 2 linear and alternating.
Then

(4.1) f(A) = (a11a22 — ag1a12) f(12) = f(I2) det(A). 0

Let’s try the same thing when n = 3. Let

a1 daiz2 A3
A= |axn ax @23

a31 dazz2 G33
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so that the columns of A = [A;, Ay, A3] are

Ay = ayie; + azes + azes,

Ay = arze1 + ages + agzes,

A3 = a13€1 + a93€2 + a33€3.
Now we can expand f(A) as we did in the n = 2 case. In doing this
expansion we can drop all terms such as f(eq, e1, e3) or f(e, €1, €2) that

have a repeated factor as these will vanish as f is alternating. The reult
will be that there are only 6 terms that survive

f(A) = f(aiier + agiea + agies, arzer + agzes + asges, azer + asses + asses)
= a11a22a33f(61, €2, 63) + a21a32a13f(62, €3, 61) + G31a12a23f(63, €1, 62)
(4.2)
+ agraizass f(ea, €1, e3)aiasass f(e1, €3, €2) + asiazsaisf(es, ez, e1)

We now use the altenating property to simplify farther.

f(€2, 63,61) = —f(€1,€37€2) = f(€1, 62763)
f(63, 61762) = —f(€2,€17€3) = f(€1, 62763)
f(62, 61763) = —f(€1,€2,€3)
f(e1,e3,e9) = —f(er, €2, €3)
fes,e2,e1) = —f(er, €2, €3)

Using these in the expansion (.2) gives

f(A) = (a11a22a33 + a21a32013 + az1a12093
— (21012033 — (11032023 — @31@22G13)f(61, e, €3)

= det(A) f(ey, ea, €3)

But again

[61762763] = = Is.

OO =
O = O
— o O

And so this calculation can also be summarized as

4.5. Proposition. Let f: M3y3(R) — R be 3 linear and alternating.
Then

(4.3) F(A) = F(I) det(A).
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4.1.1.1. Application of the uniqueness result.4.1.1.1.  We now show
that for A, B € Mjy3(R) that det(BA) = det(B)det(A). Toward this
end fix B € M3y3(R) and define fp: M3.3(R) — R by

fB(A) = det(BA) .

Writing A in terms of its columns A = [A;, Ay, A3] the product BA
then has columns BA = [BA;, BAs, BA3s]. Thus fg(A) can be written
as

fB(A) = fB(AI; AQ, Ag) = det(BAl, BAQ, BAg)
We know that det is a linear function of each of its columns. Thus for
d,d" € F and A}, A] € R?® we have
fB(C/All + C/,Alll, AQ, Ag) = det(B(ClAll + C//Alll), BAQ, BAg)
= det(c’BA'l + C//BAlll, BAQ, BAg)
=c det(BA/1+, BAQ, BAg)
+ CH det(BAlll, BAQ, BAg)

= fp(A], Ay, A3) + " fp(A], Az, As).

Thus fp is a linear function its first column. Similar calculations show

that it is linear as a function of the second and third columns. Thus
fp is 3 linear. If two columns of A are equal, say A; = Ajs, then

BAy, = BA3 and so
fB(A) = det(BAl, BAQ, BAQ) =0

as det = 0 on matrices with two equal columns. Thus fp is alternating.
Thus we can use equation (f.3) to conclude that
det(BA) = fp(A) = fp(l3) det(A)
= det(BI13) det(A)
= det(B) det(A)
as required. Once we have the n dimensional version of Proposi-
tion [L.J we will be able to use this argument to show that det(AB) =

det(A) det(B) for A, B € M, x,(R) for any n > 1 and any commutative
ring R.

4.2. Existence of determinants. Before going on we need to
prove that there always exists a nonzero alternating n linear function

f: Mpsn(R) — R. For n = 2 this is easy. We define the usual
determinant for 2 x 2 matrices.

aix a2
dety = 11022 — A21012.
a21 A2
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Then it is not hard to check that f is alternating, 2 linear, and that
det2<12) =1.

Problem 22. Verify these properties of dets. O

Before giving our general existence result we need some notation. If
A€ Mnxn(R) then let A[Zj] € M(n—l)x(n—l)(R) be the (n— 1) X (n— 1)
matrix obtained by crossing on the i-th row and the j-th column. This
(n—1) x (n — 1) is called the ij minor of A. If

11 daiz2 A3
(4.4) A= |an axn a
a31 daz2 a33

then, using the notation ¢y, for indicating that we are deleting the
element ay;, we have:

-¢511 dio  dis Ta .
A[H]: do1  aze asz| = a22 a23 )
_¢31 (32 A33 ] 7oz T
-@11 ¢512 a13_ r 7
A32] = |ag1 dop aos| = Z; Z;g
_?531 3o 52533_ - .
and if
11 a2 13 Aaiq
A — Q21 QAg22 G23 A24
31 dzz (33 34
Qg1 Qg2 A43 Q44
then
a1; Q12 ¢13 Q14
a a a
_ dor  doo  dos  doa . 1 12 1
A[23] = = |as1 a3z a3
aszr 432 52533 34 a a a
Qg1 Q42 %43 Q44 4 12 i

If f: Myxn(R) — Risnlinear and alternating then for 1 <i <n+1
define a function D;f: M 41)xn+1)(R) — R by

(4.5) Dif(A) =) (=1 ay f(Alij]).

j=1

This is not as off the wall as you might think. If D;f is the usual
determinant then this is nothing more than expanding D;f(A) along
the i-th row. For example when n = 2 so that D, f is defined on 3 x 3
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matrices
a1 Gi12 13
A= [axn az a3
az1 a3z 0ass
by

Dy f(A) = a f(A[11]) — a12f(A[12]) 4 a3 f(A[13])
—ons ([o o)) s ([ 22])
rour (2 02])

Dy f(A) = —ag1 f(A[21]) + ax f(A[22]) — axs f(A[23])
—ant ([ o)) ot ([2 22])
ot ([ 22])

D3 f(A) = a3 f(A[31]) — a2 f(A[32]) + ass f(A[33])
=oat (o i]) e ([ 22])
cast ([on 22])

which are the usual rules for expanding determinants along the first
second and third rows.

4.6. Proposition. Let f: M, x,(R) — R ben linear over R and alter-
nating. Then each of the functions D;f: Mui1)xm+1)(R) — R defined
by (({.3) above is (n+ 1) linear over R and alternating. Also

Dif(]n-l—l) = f(IN)
Proof. The function D, f(A) is a sum of terms

(=1)™ai; f(Alig)).
Consider this term as a function of the k-th column. If j # k then
a;; does not depend on the k-th column and f(A[ij]) depends linearly
on the k-th column we see that the term does depends linearly on the
k-th column of A. If j = k then f(A[ik]) dose not depend on the k-th
column, but a;. does depend linearly on the k-th column. Thus our
term depends linearly on the k-th column in this case also. But as the

sum of linear functions is linear we see that D, f depends linearly on
the k-th column. Thus D;f is (n + 1) linear over R.
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Problem 23. Write out the details of this argument when n = 2 and
n = 3. O

If the column Ay and A; of A are equal with k # [ then for j ¢ {k,(}
the sub-matrix A[zj] will have two equal columns and as f is alternating
this implies f(A[ij]) = 0. Therefore in the definition ({.§) all but two
terms vanish so that

Dif((A) = (=1 auf (Alik]) + (=1)an f (A[il]))
(4.6) = ai(—1)"((=1)*F(A[iR]) + (=1) f(ALl))).
(We used that a;, = ay as Ay = A;.) The matrices Aik] and A[il] have
the same columns, but not in the same order. We can assume that
k < 1. It takes [ — k —1 interchanges of columns to make A[il] the same
as Alik]. Therefore as f is alternating this implies that f(A[ik]) =
(=1)=*=1f(Alil]). Using this in ([L.6) gives
Dif(A) = aig(—1) (=) (—1)'* F(ALil]) + (1)} f (AJi1))

= au(=1)"((=1)' 7" f(A[il]) + (1) f(A[il]))

= au(—=1)"" (= f(A[il]) + f(All]))

= 0.
Thus D, f is alternating.
Problem 24. Verify the claims about A[ik] and A[il] having the same

columns and the number of interchanges needed to put the columns of
A[il] in the same order as those of A[ik]. O

To finish the proof we compute D; f(I,,+1). The only element in the
1-th row of I,,.1 that is not zero if the 1 which occurs in the 7 i-th place.
Also I,44ii] = I,. Therefore in the definition (B.5) of D;f we have
that

Dif (Ins1) = (1) Lf (Lna lid]) = f(In)-

This completes the proof. O

4.7. Definition. For each n > 1 define a function det,,: M, x,(R) —
R by recursion. dety([a11]) = aq; and once det,, is defined let det, 1 =
D1 det,,. This is our official definition of the determinant. O

You can use this to check that for small values of n this gives the
familiar formulas:

a11 a2
dety = 11022 — A21012
Q21 A22



36 Determinants

11 Qa12 413
dets Qo1 G2 QA23 = Q11022033 + A21A32013 + (31012023
a31 Aazz2 ass

— (21012033 — (110432023 — A31A22013.
Already n = 4 is not so small and wef] get

11 Qi2 A13 Q14

det, G21 Q22 A23 024

a3z1 G322 (a33 034

Gg1 Q42 A43 O44
= 011022033044 — A11022034 043 — Q11032023 Q44
(4.7) +a11a32024043 + Q11042023034 — Q11 Q42024033
— (21012033044 + 21012034043 + Q21032013 Q44
— (21032014043 — 021042013034 + Q21 Q42014033
+a31a12023044 — Q31 Q12024043 — 31022013 Q44
+a31022014043 + Q31042013024 — Q31 Q42014023
— Q41012023034+ Q41012024033 + Q41022013034

— Q41022014033 — Q41032013024 + Q41032 Q14 023,

This is clearly too much of a mess to be of any direct use. If dets(A)
is expanded the result has 120 terms and det,, (A) has n! terms.
We record that det,, does have the basic properties we expect.

4.8. Theorem. The function det, : M,x,(R) — R is alternating and
n linear over R. Its value on the identity matrix is

det,,(I,) = 1.

Proof. The proof is by induction on n. For small values of n, say
n = 1 and n = 2 this is easy to check directly. Thus the base of the
induction holds. Now assume that det,, is alternating, n linear over
R and satisfies det,(I,,) = 1. Then by Proposition .6 the function
det,.1 = D;det, is alternating, (n + 1) linear over R and satisfies
det,1(I41) = det,(I,) = 1. This closes the induction and completes
the proof. O

5Tn this case “we” was the computer package Maple which will not only do the
calculation but will output it as IHTEX code that can be cut and pasted into a
document.
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4.2.1. Cramer’s rule. Consider a system of n equations in n unknowns
T1yeeoy Ty,

a111 + 122 + -+ A1 Ty — b1

A21T1 + A2 + * + + + Aop Ty = bg
(4.8)

Ap1T1 + Gp2X2 + -+ + AppTy = bn

where a;;,b; € R. We can use the existence of the determinant to give
a rule for solving this system. By setting

@11 A1z -+ Qin 4 by
Q21 Q22 -+  Q2n X2 by
A - . . . . 9 ':U — . 9 b — .
an1 Ap2 - Ann Ty bn

The system (£.8) can be written as
Az =b.

Or letting Ay, ..., A, be the columns of A, so that A = [A1, Ay, ..., Ayl
this can be rewritten as

(49) [ElAl + ZL‘QAQ + ... ann = b.
We look at the case of n = 3. Then this is
IlAl + CL’QAQ + ZE3A3 =b.
Now if this holds we expand dets(b, Ay, A3) as follows:
detg(b, AQ, Ag) = det3<I1A1 + I’QAQ + 133143, AQ, Ag)
=y detz(Ay, Az, A) + w3 detz(Ag, Az, A3)
+ T3 d€t3<A3, AQ, Ag)
=1z det(A)
where we have used that detz(Aj, Ay, A3) = detz(A) and that
det3(Ag, Ay, A3) = dets(As, A2, A3) = 0 as a the determinant of a
matrix with a repeated column vanishes. We can likewise expand
detg(Al, b, Ag) = det(Al, ZL’1A1 + ZL’QAQ + 1’3143, Ag)
=1 detg(Al, Al, Ag) + Zo det(Al, Ag, Ag)
+ T3 detg(Al, Ag, A‘g)
=9 det(A)
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and
dets(Ay, Az, b) = dets( Ay, Ay, 21 A1 + 29 A5 + 2343)
=T detg(Al, A27 Al) + T2 d€t3(A1, AQ, AQ)
+ 3 d€t3<A1, AQ, Ag)
=3 detg(A)
Summarizing

detg(A)ZL'l etg(b AQ,Ag)
detg(A) detg(Al, b Ag)
detg(A) detg(Al,Ag, )
In the case that R is a field and det3(A) # 0 then we can divide by

det3(A) and solve get formulas for xy, x5, x3. This is the three dimen-
sional version of Cramer’s rule. The general case is

4.9. Theorem. Let R be a commutative ring and assume that
T1,. .., Ty 08 a solution to the system (|.8). Then

detn(A)xl = detn(b, AQ, Ag, PN ,An_l, An)
detn<A)$2 = detn(Al, b, Ag, Ce 7An717 An)
detn(A)l’g = detn(Al, Ag, b, N ,An_l, An)

detn<A)[En_1 = detn(Al, AQ, A3, e ,b, An)
detn(A)xn = detn(Al, AQ, Ag, Ce ,Anfl, b)
When R is a field and det,(A) # 0 then this gives formulas for

T1yevny T

Problem 25. Prove this along the lines of the three dimensional ver-
sion given above. O

Problem 26. In the system ([.§) assume that a;;,b; € Z, the ring of
integers. Then show that if det,(A) # 0 then (.§) has a solution if
and only if the numbers

detn(b, AQ, s ,An), detn(Al, b, R ,An) sy detn(Al, AQ, e ,b)
are all divisible by det,,(A). O

4.3. Uniqueness of alternating n linear functions on M, ,(R).
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4.3.1. The sign of a permutation. Our next goal is to generalize the
formulas (f.1) and (£.3) from n = 2,3 to higher values of n. This
unfortunately requires a bit more notation. Let S,, be the group of all
permutations of the set {1,2,...,n}. That is .S, is the set of all bijective
functions o: {1,2,...,n} — {1,2,...,n} with the group operation of

function composition. If ey, es,..., e, is the standard basis of R" then
the matrix [eq, es, ..., €,] is the identity matrix:
1 0 0 -+ 0 O]
010 -+ 00
001 - 00
lev, e, e = . . . | =1L
000 -+ 10
000 -+ 0 1]

For o € S, we set E(0) to be the matrix

E(U) = [60(1)7 €5(2),€o(3)s - - - 750(71)]-

Then F(o) is just I, = [e1,ea, ..., e,] with the columns in a different
order.

4.10. Definition. For a permutation o € S,, define

sgn(o) := det, (E(0)). 0

As the matrix E(o) is just I,, with the columns in a different order
we can reduce to I, by repeated interchange of columns. This can be
done as follows:

1. If the first column of E(c) is equal to e; then do nothing and set
E'(0) = E(0). If the first column of E(c) is not e; then find the
column of E(c) where e; appears and interchange this with the
first column and let E’(o) be the result of this interchange. Then
in either case we have that E'(o) has e; as its first column.

2. If the second column of E’(¢) is ey then do nothing and set
E"(c) = E'(0). If the second column of E’(0) is not equal to ey
then find the column of E'(c) where ey appears and interchange
this column with the second column of E’'(c) and let E”(o) be
the result of this interchange. Then in either case E”(o) has as
its first two columns e; and es.

3. If the third column of E” (o) is ez then do nothing and set E” (o) =
E"(c). If the third column of E”(0) is not equal to e then find the
column of E”(0) where e3 appears and interchange this column
with the third column of E”(¢) and let E" (o) be the result of



40 Determinants

this interchange. Then in either case E”(o) has as its first three
columns ey, eg, and e3.
4. Continue in the manner and get a finite sequence

E(0),FE'(0),...,E®(0),...,E™(0)

so that the first k& columns of E®) are e;,e,...,e; and at each
step either E®) (o) = E®V(g) or E® (o) differs from E*~Y (o)
by the interchange of two columns. The end result of this is that
E™ = ey, e,y,...,e,] = I, and so I,, can be obtained from E(c)
by < n interchanges of columns.

As each interchange of a pair of columns of E(c) changes the sign of
det,, (F (o)) (cf. Proposition f.3) we have

If E(o) can be reduced to I, with an

+1, .
even number of interchanges of columns,

sgn(o) =

If E(o) can be reduced to I, with an

odd number of interchanges of columns.

As the det, (E(0)) has a definition that does not depend on interchang-
ing columns this means given o € S, the number of interchanges to
reduce E(o) to I, is either always even or always odd. Given the many
different ways and we could reduce E(c) to I,, by intechanging columns
this is a rather remarkable fact. This observation has the following im-
medate application.

)

4.11. Lemma. Let f: M,«,(R) — R be alternating and n linear over
R. Then for any permutation o € Sy,

f(lear)s €a(2)s - - - €am)]) = sgu(o) f(I,).

Proof. Recalling that FE(0) = [es1),€s(2),---;€om)] and that the
interchange of two columns in f([A,...,A,]) changes the sign of
f(AL, ..., Ay)) we see that f(E(o)) = f(le1,ea,...,en]) = f(I,) if
E(0) can be reduced to I, by an even number of interchanges of
columns and f(E(0)) = —f([e1,ez,...,e,]) = —f(I,) if E(o) can be
reduce to I, by an odd number of interchanges of columns. That is
f(E(0)) =sgn(o)f(l,) as required. O

4.3.2. Ezpansion as a sum over the symmetric group. We now do the
general case of the calculations that lead to (1)) and (£.3). If A =
la;;] = [A1, Ag, ..., Ap] € My (R) then we write the columns of A in

terms of the standard basis:
n n n

Alz E ailleil, AQZ E aiQQeiQ,... An: E A, nCi,, -

i1=1 =1 in=1
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Assume that f: M, .,(R) — R is n linear over R. Then we can expand
f(A) = f(A17A27' c . aAn) as

n n n n
f(A) = f( E @iy 1€, E 13255, E Ajg3€i - - - 5 E @innez‘n>

i=1 io=1 iz=1 in=1
n
= Z Wiy 10152003 "~ i [ (€31, €y, €igs -+ - €2,
i1,12,3nyin=1
Now assume that besides being n linear over R that f is also alter-
nating. Then in any of the terms f(e;,e;,, €, ..., €;, ) if ip = 4; for
some k # [ then two columns of [e;,, e;,, €, ..., €; | are the same and
so f(ei,,€iy, €5y .. €;,) = 0. Therefore the sum for f(A) can be re-
duce to a sum over the terms where all of iy, 19,13,...,17, are all dis-
tinct. This is the ordered n-tuple (iy,4s,13,...,4,) is a permutation of
(1,2,3,...,n). That if we only have to sum over the tuples of the form
in = o(1),ip = 0(2),i3 = 0(3),...,i, = o(n) for some permutation
o € S,. Thus for f alternating and n linear over R we get

f(A) - Z A(1)100(2)205(3)3 " * * aa(n)nf(ea(l)u €5(2)) €a(3)s - - - 760(71))
O’ESn
Now using Lemma .11 this simplifies farther to
f(A) = Z A5(1)100(2)205(3)3 * * * Go(n)n sgn(o)f(er, ez, e3,...,€p)

gES)y

(410) = ( D 580(0) o (1)10r(@)200(3)3 ao(n)n)f(fn)

O'ESn
This gives us another formula for det,,.

4.12. Proposition. The deteminant of A = [a;j] € Myxn(R) the det,
s given by

det,(A) = Z SgN(0) U (1)100(2)200(3)3 * * * o(n)n

oc€Sn
= Z sgn(o) Hag(i)i
oESh i=1

Proof. We know (Theorem [L.§) that det,, is alternating, n linear over
R and that det,(l,) = 1. Using this in ({.I() leads to the desired
formulas for det,,(A). O

4.13. Remark. It is common to use the formula of the last proposition
as the definition of the determinant. The problem with that from the
point of view of the presentation here is that we defined sgn(o) in
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terms of the determinant. However it is possible to give a definition of
sgn(o) that is independent of determinants and show that sgn(o7) =
sgn(co)sgn(r) for all o, 7 € S,. It is then not hard to show directly that
det,, with this definition is n linear over R and alternating. While this
sounds like less work, it is really about the same, as proving the facts
about sgn(o) requires an amount of effort comparable to what we have
done here. O

4.3.3. The main uniquness result. We can now give a complete descrip-
tion of the alternating n linear functions f: M, «,(R) — R.

4.14. Theorem. Let R be a commutative ring and let f: My«,(R) —
R be an alternating function that is n linear over R. Then f is given
in terms of the determinant as

f(A) = det,,(A) f(1n).

Informally: Up to multiplication by elements of R, det,, is the unique
n linear alternating function on M, x,(R).

Proof. If f: M,«n,(R) — R is an alternating function that is n linear
over R, then combining the formula (f.1() with Proposition [l.19 yields
the theorem. O

4.15. Remark. While this has taken a bit of work to get, the basic idea
is quite easy and transparent. Review the calculations we did that lead
up to (1) on Page B( and (£.3) on Page Bl (which are the n = 2 and
n = 3 versions of the result). The proof of Theorem [.14 is just the
same idea pushed through for larger values of n. That some real work

should be involved in the general case can be seen by trying to do the
“bare hands” proof in the cases of n =4 or n =5 (cf. (7). O

4.4. Applications of the uniquness theorem and its proof. It
is a general meta-theorem in mathematics that uniqueness theorems
allow one to prove properties of objects in ways that are often easier
than direct calculational proof. We now use Theorem .14 to give some
non-computational proofs about the determinant. The first is the basic
fact the the determinant is multiplicative.

4.16. Theorem. If A, B € M, x,(R) then det,(AB) = det,(A) det,(B).
Proof. We hold A fixed and define a function f4: M, «x,(R) — R by
J4(B) = det,(AB).

If the columns of B are By, Bs,..., B, so that B = [By, By, ..., B,
then block matrix multiplication implies that AB = [AB;, ABs, ..., AB,].
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Therefore we can rewrite f4 as
fA(B) = detn(ABl, ABQ, c. ,ABn)

As a function of B this is n linear over R. For example to see linearity
in the first column let ¢, ¢” € R and B} B} € R".

fa(d By +'BY,Bs, Bs, ..., B,)
= detn(A(c’Bi + C//Bil), ABQ, ABg, Ce ,ABn)
= det,(AB} + "ABY, ABy, ABs, ..., AB,)
= CI detn(ABi, 14327 Bg, e ,ABn)
+ c”’ detn(ABf, ABQ, AB3, ce ABn>
= C/fA<B17 BQ, Bg, ey Bn)
+ C//fA(Bila B27 B37 R Bn)
So fa(B) is an R linear function of the first column of B. The same
calculation shows that f4(B) is also a linear function of the other n —1
columns of B. Therefore fa: M,,(R) — R is n linear over R.
If two columns of B are the same, say B, = B; with £ < [ then
as AB = [ABy,ABs,...,ABy, ..., AB,,..., AB,| we see that the k-th
and [-th column of AB are also equal. Therefore, using that det,, is

alternating, fa(B) = det,,(AB) = 0. This shows that f, is alternating.
We can now use Theorem BT4 and conclude

det,(AB) = fa(B) = det,(B) fa(ly,)
= det,(B) det, (AL,) = det,(B) det, (A)
= det,,(A) det,(B).
This completes the proof. O

Here is another application of the uniqueness result.

4.17. Theorem. The determinant can expanded along any of its rows.
That is for A = [a;j] € Myxn(R)
n+1
(4.11) det,,(A) = > " (—1)"ay; det,, 1 (A[ij])
j=1
which is the formula for expansion along the i-th row.

Proof. Using the notation of equation (f.5) we wish to show that =
det, = D;det, ;. But if set f = D;det,_; then Proposition [L.§ (ap-
plied to the function det,,_1) implies that f is alternating, n linear and
that f(I,) = det,_1(I,—1) = 1. Therefore by Theorem f.14 we have
f(A) = det,(A). This completes the proof. O



44 Determinants

We now show that the determinant of a matrix and its transpose
are equal. If we use of Proposition to compute we get a sum of
products

Sg1(0) o (1)100(2)200(3)3 * * * Ao(n)n-
If (¢,7) = (0(j),j) then have i = o(j), or what is the same thing

j =071(i), so that a;; = a,(;); = Qo 1, So we reorder the terms in

the product so that the first index in a@;; is in increasing order. Then
we have
Sgn(a)aa(l)laa(2)2a0(3)3 ©Qo(n)n
= Sgﬂ(U)amfl(1)<l2rl(2)a3071(3) ©rt Apg—1(n)-
(This is a product of exactly the same terms, just in a different order.)
But we also have
Problem 27. For all o € S,, show sgn(c™!) = sgn(o). O

and therefore
SgH(U)ao(1)1ag(2)2aa(3)3 *r o Qo(n)n
= Sgn(ff*l)am—l(1)0620—1(2)&30—1(3) © Opg=1(n)-

Using this in Proposition f.14 and doing the change of variable 7 =
o~ ! in the sum gives for A = [a;;] € M,,x,(R) that

det, (A) = Z Sgn(o-_l)alafl(l)a25igma*1(2)a30*1(3) © Opo—1(n)
oESy

= Z SgH(T)CL1T(1)a2T(2)G37(3) ©r Qnr(n)
TESK

= sgn(T)braibr@)br)s - briayn

TESK
= det,(B)
where b;; = aj;. That is B = A, the transpose of A. Thus we have

provemn:

4.18. Proposition. For any A € M,x,(R) we have det,(A") =
det, (A). As taking the transpose interchanges rows and columns of A
this implies that det,(A) is also a alternating n linear function of the
rows of A. O

Note that applying Theorem f.I7 to the transpose of A = a;; gives
n+1

(4.12) det,,(A) = > " (—1)"ay; det,, 1 (A[ij])
i=1
which is the formula for expanding A along a column.
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Problem 28. Show that (f.12) can also be derived directly from the
facts that det,, alternating and an n linear functions of its columns. [

4.5. The classical adjoint and inverses. If R is a commutative
ring and A = [a;;] € Myxn(R) the classical adjoint is the matrix
adj(A) € M, xn(R) with elements

adj(A);; = (1) det,,_1(A[ji]).

Note the interchange of order of 7 and j so that this is the transpose
of the matrix [(—1)""7 det,,_1(A[ij])]. In less compact notation if

A 21 G?Q A2n,
then
+det(A[11]) —det(A[21]) +det(A[31]) —det(A[41])
—det(A[12] +det(A[22]) —det(A[32]) + det(A[42])
adj(A) = | + det(A[13] —det(A[23]) +det(A[33]) —det(A[43])
—det(A[14] +det(A[24]) —det(A[34]) + det(A[44])

(where det = det,,_1).
This is inportant because of the following result.

4.19. Theorem. Let R be a comutative ring. Then for any A €
M, sn(R) we have

adj(A)A = Aadj(A) = det,(A)L,.
Proof. Letting A = [a;;], the entries of Aadj(A) are

(Aadj(A))a = Z a;j adj(A)

= Z(—l)j+kaij det,,—1 (A[kj]).

Now if we let k = ¢ in this and use (f.IT]) (the expansion for det, (A)
along the i row) we get

(Aadj(A))i = Y (=1)""a;; det, 1 (Alig]) = det, (A).
j=1
If k& # i then let B = [b;;] have all its rows the same as the rows of
A, except that the k-th row is replaced by the i-the row of A (thus A
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and B only differ along the k-the row). Then B has two rows the same
and so det,(B) = 0. (For the transpose B* has two columns the same
and so det,(B) = det,(B") = 0). Now for all j that Blkj] = A[kj]
as A and only differ in the k-th row and A[kj] and B[kj] only involve
elements of A and B not on the k-row. Also from the definition of B
we have by; = a;; (as the k-th row of B is the same as the i-row of A).
Therefore we can compute det,, (B) be expanding along the k row
0 = det,(B) = > (—1)"y; det,_1 (B[kj])
j=1

= Z(—l)j+kaij det,,—1(A[kj])

= (Aadj(A)).
These calculations can be summarized as
(Aadj(A))ix = det,, (A)dik.
But this implies A adj(A) = det,,(A)I,.

A similar computation (but working with columns rather than rows)

implies that adj(A)A = det,,(A)1,.
Problem 29. Write out the details that adj(A)A = det,,(A)I,. O
This completes the proof. O

4.20. Remark. 1t is possible to shorten the last proof by proving di-
rectly that Aadj(A) = det,(A)I, implies that adj(A)A = det,(A)I,
by using that on matrices (AB)" = B'A'. Tt is not hard to see that
adj(A") = adj(A)". Replacing A by A" in Aadj(A) = det,(A)I, gives
that A’ adj(A") = det, (A", = det,(A)I,. Taking transposes of this
gives

det, (A)I, = (det,(A)L,)" = (A" adj(A"))*
= adj(4")"(4")" = adj((A")")(A")" = adj(4)A
as required. O

Recall that a unit @ in a ring R is an element that has an inverse.
The following gives a necessary and sufficient condition for matrix A €
M, «n(R) to have an inverse in terms of the determinant det,,(A) being
a unit.

4.21. Theorem. Let R be a commutative ring. Then A € My, (R)
has an inverse in M, (R) if and only if det,(A) is a unit in R. When
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the inverse does exist it is given by

1

-1 .
= dj(A).
det, () 2

(A slightly more symmetric statement of this theorem would be that A

has an inverse in M,y (R) if and only if det,,(A) has an inverse in R.)

(4.13)

4.22. Remark. Recall that in a field F that all nonzero elements have
inverses. Therefore for A € M, ,(F) this reduces to the statement
that A1 exists if and only if det,,(A) # 0. O

Proof. First assume that det,(A) € R is a unit in R. Then
(det,(A))™' € R and thus (det,(A)) 'adj(A) € M,x,(R). Using
Theorem ET9 we then have
((det,(A)) " adj(A))A = A((det,(4))"" adj(A))
= det,,(A) " det, (A1, = I,,.

Thus the inverse of A exists and is given by (£.13).

Conversely assume that A has an inverse A~' € M,,(R). Then
AA~' =1, and so

1 = det,(I,,) = det,(AA™) = det, (A) det,, (A1)

But det,,(A4) det,,(A™') = 1 implies that det, (A) is a unit with inverse
(det,,(A))~! = det,(A™!). This completes the proof. O

The following is basically just a corollary of the last result, but it is
important enough to be called a theorem.

4.23. Theorem. Let R be a commutative ring and A, B € M, «n(R).
Then AB = I,, implies BA = 1I,,.

4.24. Remark. It is important that A and B be square in this result.

For example if
10
a0l m-oa)
0 0
0
1
0

then

10

AB:%1

1 0
]:h but BA= |0 1 0| #1.

0 0 =
Proof. If AB = I,, then 1 = det,,(1,,) = det,(AB) = det,,(A) det,(B).
Therefore det,,(A) is a unit in R with inverse det,,(A4)™! = det,,(B). But

the last theorem implies that A~! exists. Thus B = [,B = (A7'A)B =
A7YAB) = A7, = A”'. But if B= A~! then clearly BA=1,. [
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4.6. The Cayley-Hamilton Theorem. We now use Theorem F.19
to prove that is likely the most celebrated theorem in linear algebra.
First we extent the definition of characteristic polynomial to the case
of matrices with elements in a ring.

4.25. Definition. Let R be a commutative ring and let A € M, v, (R).
Then the characteristic polynomial of A, denoted by chara(x), is

chary(z) = det, (I, — A). 0

Maybe a little needs to be said about this. If R is a commutative
ring the set of polynomials R[x] over R is defined in the obvious way.
That is elements f(z) € R|x] are of the form

f(x) = ap + a1 + apx® + - - - + a, 2"

where aq,...,a, € R. These are added, subtracted, and multiplied
in the usual manner. Therefore R[z] is also commutative ring. If

A € Myyn(R) then x1,— A € My, (R[z]). In the definition of char 4(x)
the determinant det,,(zI,, — A) is computed in the ring R[z].

4.26. Proposition. If A € M, «,(R) then the characteristic polyno-
mial chara(x) is a monic polynomial of degree n (with coefficients in
R).

Proof. Letting ey, ..., e, be the standard basis of R" and Aq,..., A,
the columns of A we write

$In — A= l’[@l,eg,. . .,en] — [Al,AQ,. .. ,An]
= [xe; — Ay, zes — Ay, ... e, — A,
Then expand det,,(xI, — A) = det, (ze; — Ay, xes — Ag, ..., xe, — Ay)
and group by powers of x. Each factor in the product is of first degree
in z, so expanding a product of n factors will lead to a degree n ex-
pression. The coefficient of 2" is det,(ey, €9, . .., e,) = det,(I,) = 1 so
this polynomial is monic. This basically completes the proof. But for
the skeptics, or those not use to this type of calculation, here is more

detail.
We first do this for n = 3 to see what is going on

charg(z) = detg(ze; — Ay, weg — Ag,e3 — A3)
= 2° dets(ey, €2, €3)
— Z‘Q(detg(Al, ea, e3) + detz(er, Ag, e3) + dets(ey, e, A3))
+ z( dets(Aq, Aa, e3) + detz( Ay, ea, Ag) + detg(eq, Az, As))
— detg (A, Ay, A3)

=3 +a2x2+a1x—|—a0
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where
az = —(dets(Aq, ez, e3) + dets(eq, Az, e3) + detz(er, €2, A3))
a; = detz(Ay, Ag, e3) + dets( Ay, e, A3) + dets(er, As, A3)
agp = — detg(Ay, Ay, Az) = — detz(A).
Now we do the general case.
charq(z) = det, (ze; — Ay, wes — Ay, ... e, — Ay)

n
= z" det,(e1,€e9,,...,6,)
n
-1
— " Edetn(el,eg,...,Aj,...,en)
=1

j=
+$n_2 Z detn<€1a€2a-"7Aj17""Aj2""’en)

1<j1<g2<n

(—1)"det, (A1, Agy ..., Ap)
= 2" 4+ A 12" Qo™ 4 (—1)"ag
where
g = (—1)F > detp (..., Aj o Ay Ay, ).,
1<j1 <jo<-<jp<n

(The term in this sum the term corresponding to j; < jo < -+ <
Jx has for its columns in the k places ji, jo, ..., Jr the corresponding
columns of A and in all other places the corresponding columns of I,, =
le1, ..., e,].) This shows chara(z) = 2" +a, 12" '+ a, 22" 2+ -+ag
which is a polynomial of the desired form. O

Now consider what happens when we use the matrix I — A in The-
orem .T9. We get
adj(z1l, — A)(zl, — A) = (x1, — A) adj(zl, — A)
(4.14) = det,(xI, — A)I,, = chary(z)1,.

The matrix adj(xzl, — A) will be a polynomial in z with coefficients
which are n x n matrices out of R. Write it as

adj(zl, — A) = "By + 2" By + -+ By

with 2% # 0. Then leading term of adj(zI, — A)(zI, — A) is 2" By, +

. so we have that adj(zI, — A)(xl, — A) is of degree k + 1 but
then adj(xl,, — A)(zl, — A) = chary(x)I, implies that k +1 = n (as
char 4 (z)1, has degree n. Thus adj(zl, — A) has degree n — 1. (This
could also be seen using the definition of adj(xI, — A) as a matrix
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whose elements are determinant of order n — 1 and using an argument
like that of the proof of Proposition .26.) If n = 4 and we let the
characteristic polynomial of A be

char4(7) = 2* + az2® + agr® + a17 + ap
and
adj(xly — A) = Bsz® + Byx® + Bix' + By.
Then
(z1; — A)adj(xly — A) = (z1y — A)(Bsz® + Bya® + Bia' + By)
= Bya* + (By — B3 A)2® + (B) — BoA)a* + (By — BiA)x — ByA

But by (£.14)
(xly — A) adj(zly — A) = chary(2) Iy = (* 4 a3x® + asx® + ayx + ag) Iy
Equating the coefficients in the two expressions for (xI; — A) adj(xl, —
A) gives

aoly = —ByA

a1y = By — B1A

asly = By — By A

asly — By — BsA
(4.15) I = By

Multiply the second of these on the right by A, the third on the right
by A2, the forth by A% and the last by A*. The result is

aply = —ByA
m A = ByA — B, A?
ayA? = B1A? — By A?
asA® = By A® — ByA*
At = By A*

Now add these equations. On the right side the terms “telescope” (i.e.
each term and its negative appear just once) so that after adding we
get

A4 + a3A3 + CZQAQ + CLlA + (10[4 = 0.
The left side of this is just the characteristic polynomial, char4(z), of
A evaluated at z = A. That is

chars(A) = 0.

No special properties of n = 4 were used in this derivation so we
have the linear algebra’s most famous result:
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4.27. Theorem (Cayley-Hamilton Theorem). Let R be a commuta-
tie ring, A € Mux,(R) and let chars(x) = det,(xl, — A) be the
characteristic polynomial of A. Then A is a root of chars(z). That is

chary(A) = 0.

Problem 30. Prove this along the following lines: Write the charac-
teristic polynomial as

char4(x) = 2™ + ap_ 12" " + @p_ox™ 2+ -+ a12 + ag
and write adj(zl, — A) as
adj(zl, — A) = By_12" ' + B, 92" 4+ --- Bix + By.

Show then that equating coefficients of x in (21, — A) adj(zI, — A) =
char4(z) (cf. (B14)) gives the equations

a()[n = —BoA
(llln = B() — BlA
CLQ[n = Bl — BQA

ap—oly = By_3 — Bn72A
an11ly = By_g — Bn—lA
In = anl-

Multiply these equations on the right by appropriate powers of A to
get

(lo[n = —B()A
alA = B()A — BlA2
(IQAQ = BlA2 — B2A3

aanAn_Q = Bn73An_2 - anQAnfl
anflAnfl = an2An71 - anlAn
A" =B, 1A".

Finally add these to get
A"+ ap AV a, AV a0 A%+ a A+ agl, = 0.

as required. O
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Problem 31. Assume that A € M, ,(R) and that det,(A) is a unit
in R. Then use the Cayley-Hamilton Theorem to show that the inverse
A~1is a polynomial in A. HINT: Let the characteristic polynomial be
given by chara(z) = 2" + a,_12" ' + -+ 4+ ag. Then evaluation at
x = 0 shows that ay = chary(0) = det,(—A) = (—1)"det,(A). The
Cayley-Hamilton Theorem yields that
A"+ a, A" 4 a, A2+ A+ agl, =0

which can then be rewritten as

A(Anil + an,lAnJ 4+t a1[n> — _a0[n = (—1)” detn(A)[n 0

Problem 32. In the system of equation ({.I7) for By, By, By, B3 in
the n = 4 case we can back solve for the By’s and get

Bs=14

By =as3ly+ BsA=a3l,+ A

By = aply + BoA = ayly + azA + A®

Bo = a1l4 + B1A = a1, + as A + az A? + A3
Show that in the general case the formulas B, | = I,, and

By, = aperln + oA+ apisA® + - 4 g AVFTE 4 AP

n—k—1
= Z apr14547
§=0
hold for £k =10,...,n — 2. (|

5. THE SMITH NORMAL FROM.

5.1. Row and column operations and elementary matrices in

M, »n(R). Let R be a commutative ring and A € M,,«x,(R). Then we

wish to simplify A by doing elementary row and column operations.
A type I elementary matriz is a square matrix of the form

1 0

Where v is a unit in
the (i,4) position.
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Then is easy to check that the inverse of E is also a type I elmentary
matrix:

= |: _1 . Where v ! exists as
T : U . . .
4 18 a unit.

0 1

We record for future use the effect of multiplying on the left or right
by a type I elmentary matrix.

5.1. Proposition. Let E € M,x,(R) be an elementary matriz of
type I as above. Then the inverse of E is also an elmentary matrix
of type 1. If A € M,x,(R) and B € M,,x,, then EA is A with the i-th
row multiplied by v and BE is BE with the i column multiplied by
u. U

To be more explicit about what multiplication by E does if

ay v A
by - b - b
A= la; - Qip and B = .
[An1 r Onp |
then
B a1 e alp 7
: : bu - uby o b
FA= ua;y - UGy and BE =
: : bml mez‘ bmn
[ dn1 **t dnp |

Also if we take v = 1 in the definition of an elementary matrix of type I
we see that the identity matrix I,, is an elementary matrix of type I.

An elementary row operation of type I on the matrix A is mul-
tiplying one of the rows of A by a unit of R. Likewise an elementary
column operation of type I on the matrix A is multiplying one of
the columns by a unit. Note that doing an elementary row or column
operation of type I on A is the same as multiplying A by an elementary
matrix of type L.
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An elementary matrix of type II is just the identity matrix with
two of its rows interchanged. Let 1 <i < 7 <n and E be the identity
matrix with its ¢-th and j-th rows interchanged. Then

i-th j-th
i col. col. i
1
0 1 i-th row
1 0 j-th row
- 1_

Note that E is can also be obtained from interchanging the i-th and
j-columns of I,,, so we could also have defined a type II elementary
matrix to be the identity matrix with two of its columns interchanged.
When n = 2 we have

0 1" _fo 1]fo 1] _ [t 0] _,
1 0/ |1 o0f|1T o |01 ™*
This calculation generlizes easily and we see for any elmentary matrix

of type II that £? = I,. Thus E is invertible with E~! = E. We
summarize the basic properties of type II elmentary matrices.

5.2. Proposition. Let E € M,x,(R) be an elementary matriz of
type II. Then the inverse of E is its own inverse. If A € M,x,(R)
and B € My« then EA is A with the i-th and j-th rows interchanged
and BE s B with the i-th and j-th columns interchanged. O

An elmentary row operation of type II on the matrix A inter-
changing is interchanging two of the rows of A. Likewise an elmentary
column operation of type II on the matrix A is interchanging two
of the columns of A. Thus doing an elmentary row or column operation
of type II on A is the same as multiplying A by an elmentary matrix
of type II. Note that interchanging the ¢-th and j-th rows of a matrix
twice leaves the matrix unchanged. This is another way of seeing that
for an elmentary matrix of type II that £? = I.

An elementary matrixz of type III is differs from the identity
matrix by having one one off diagonal entry nonzero. If the off diagonal
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element is r appearing at the ¢ j place then E is
j-th

col.

r i-th row.

1

(This is the form of £ when i < j. If j < ¢ then then r is below the
diagonal.)
If A€ M,x,(R) then A has n rows. Let A' ..., A" be the rows of
A so that
Al
A2
A= .
An
If E is the n x n elmentary matrix of type III that has r in the i j place

(with ¢ # j) then multiplying A on the left by E adds r times the j-th
row of A to the i-th row and leaves the other rows unchanged. That is

Al
Al 4+ r A
EA = :
AJ

A?’L

For example when n =4, ¢ =3 and j = 1 this is

1 0 0 0] [A? Al
010 0 |A2 A2
EA:r01o A3 T | A3 Al
000 1| ]A4 Al

If B € Mpxn(R) then B has n columns, say B = [By, By, ..., B,].
Then multiplcation of B on the right by F adds r times the i-th column
of B to the j-th column and leaves the other columns unchanged. That
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is
BE = [By,...,B;,...,Bj,...,B,|E
=[By,...,B;,...,Bj+7rB;,...,B,]
Again looking at the case of n =4, i =3 and j = 1 this is
0
BE = [By, By, Bs, By]

o3 O
oo = O
O = OO
_— o O

- [Bl + TB37 B27 B37 B4]

As to the inverse of this 4 x 4 example just change the r to a —r:

100 0 1 000 1 000
0100 0 100 (0100
r 0 1 0f|— 010 |00T10
00 01 0 001 0 001

In general if F is the elementary matrix of type III with r in the 7 j-th
place (with i # j) then the inverse, E~1, of E is the elementary matrix
of type III with —r in the ¢ j place. This can also be seen as follows.
Multiplication of A on the left by E adds r times the j-th row of A to
the i-th row and leaves the other rows unchanged. If A’ is the resulting
matrix, then subtracting r times the j-th row of A’ to the i-th row of
A'is A (as the j-th row of A" is A; and the i-th row of A’ is A; +1A4;).

An elementary row operation of type III on the matrix A in-
terchanging is adding a scalar multiple of one row to another. Likewise
an elementary column operation of type III on the matrix A is
adding a scalar multiple of one column to another column. So doing
an elementary row or column operation of type III on A is the same as
multiplying A by an elementary matrix of type III.

Problem 33. Show the following:

1. An elementary matrix of type I is the result of doing an elementary
row operation of type I on the identity matrix I,,.

2. An elementary matrix of type II is the result of doing an elemen-
tary row operation of type II on the identity matrix I,,.

3. An elementary matrix of type III is the result of doing an elemen-
tary row operation of type III on the identity matrix I,,. O

5.3. Definition. An elementary matrix is a matrix that is an el-
ementary matrix of type I, I1, or III. type III. O
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5.4. Definition. An elementary row operation on a matrix is ei-
ther an elementary row operation of type I, II, or III. An An elemen-
tary column operation on a matrix is either an elementary column
operation of type I, II, or III. O

5.1.1. Equivalent matrices in M,,«x,(R). We now with to see how much
we can simply matrices by doing row and column operations.

5.5. Definition. Let A, B € M,,x,(R). Then

1. A and B are row-equivalent iff B can be obtained from A by a
finite number of elementary row operations.

2. A and B are column-equivalent iff B can be obtained from A
by a finite number of elementary column operations.

3. A and B are equivalent iff B can be obtained from A by a finite
number of of both row and column operations. We will use the
notation A = B to indicate that A and B are equivalent. O

Our discussion of the relationship between elementary row and col-
umn operations and multiplication by elementary matrices makes the
following clear.

5.6. Proposition. Let A, B € M,,xn(R).

1. A and B are row equivalent if and only if there is a finite sequence

P, P, ... P, elementary matrices of size m X m so that B =
P.P._1---PA.

2. A and B are row equivalent if and only if there is a finite sequence
Q1,Qo,...,Q elementary matrices of size n X n so that B =
AQ1Q2 -+ Q-

3. A and B are equivalent if and only if there is a finite sequence
Py, P, ..., P, elementary matrices of size m X m and a finite se-
quence Q1,Qs, ..., Q; elementary matrices of size n X n so that
B = PP,y - PLAQ1Q2--- Q. [

5.7. Proposition. All three of the relations of row-equivalence,
column-equivalence, and equivalence are equivalence relations.

Proof. We prove this for the case of equivalence, the other two cases
being similar and a bit easier. We use the version of equivalence
in terms of multiplication by elementary matrices given in Proposi-
tion b.6. As I,, and I, are elementary matrices and A = I,,Al, we
have that A =2 A. Thus = is reflective. If A = B then there are ele-
mentary matrices Py, ..., P, and @, ..., Q,; of the appropriate size so
that B = PyPy_1--- PLAQ1Q> - - - Q);. But we can solve for A and get
A=P'Pyt - POBQ - Q5 'Qr . As the inverse of an elementary
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matrix is also an elementary matrix, this implies B = A. Therefore
= is symmetric. Finally if A = B and B = C then there are ele-
mentary matrices Py,..., Py, P{,..., P, Q1,...,Q;, and Q,...,Q}
so that B = PyPy_1--- PLAQ1Q2---Qand C = P, --- P{BQ} -+ - Q.
Therefore

C:P}:;""P{szpkz—l"'PlAQlQQ"'QlQll"'Q;/

which shows that A = C'. This shows that 2 is transitive and completes
the proof. O

5.1.2. Existence of the Smith normal form. Our goal is to simplify ma-
trices A € M,,«n(R) as much as possible by use of elementary row
and columns. For general rings this is a hard problem, but in the
case that R is a Euclidean domain (which for us means the integers,
Z, or the polynomials, F[z], over a field F) this has a complete solu-
tion: Every matrix A € M,,«,(R) is equivalent to a diagonal matrix.
Moreover by requiring that the diagonal elements satisfy some extra
conditions on the diagonal elements this diagonal form is unique. This
will allow us to understand when two matrices over a field are similar
as A, B € M,x,(F) are similar if and only if they have the matrices
xIl,—A and xI,, — B are equivalence in M, (F[z]) (cf. Theorem refsim-
equ).

Before stating the basic result we recall that if R is a commutative,
and a,b € R then we write a | b to mean that “a divides b” (cf. R.4).

5.8. Theorem (Existence of Smooth normal form). Let R be an Eu-
clidean domain. Then every A € Mm x n(R) is equivalent to diagonal
matriz of the form

h

f2

This is m X n and
f all off diagonal el-

0 ements are 0.

where fi | fo |- | fr=1 | fr-

5.9. Remark. It is important that R is a Euclidean domain in this
result. It can be shown that this theorem for matrices over a commu-
tative ring R if and only if every ideal in R is principle (such rings
are called, naturally enough, principle ideal rings). This is a very
strong property on a ring. (|
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Proof. We use induction on m + n. The case case is m +n = 2 in
which case the matrix A is 1 x 1 and there is nothing to prove. So let
A € Mp«n(R) and assume that the result is true for all matrices in
any M, (R) where m' +n’ < m+n. If A =0 then A is already in
the required form and there is nothing to prove, so assume that A # 0.
Let 6: R — {0,1,2,...} be as in the definition of Euclidean domain
and let A be the set of all entries of elements of matrices equivalent to
A, and let f; € A be a nonzero element of A that minimizes 6. That
is 6(f1) < d(a) for all 0 # a € A. (Recall that 6(0) is undefined, so
we leave it out of the competition for minimizer.) Let B be a matrix
equivalent to A that has f; as an element. If f; is in the ¢, j-th place
of B, then we can can interchange the first and ¢-th row of B and then
the first and j-th column of B and assume that f; is in the 1, 1 place of
B. (Interchanging rows and columns are elementary row and column
operations and so the resulting matrix is still equivalent to A.) So B
is of the form

f 1 b bz - b
bay  baa Doy - by,
B = bsi  bzy bsz - by,
bml bm2 bm3 e bmn

We can use the division algorithm in R to find a quotient and remainder
when the elments bay, b3y, ..., by, of the first column are divided by f;.
That is there are g9, ..., Gm,72,...,mm € R so that b;; = ¢; f1 +1r; where
either 7, = 0 or 6(r;) < 0(f1). Then r; = by — ¢;f1. Now doing the
m — 1 row operations of taking —¢; times the first row of A and adding
to the i-th row we get that B (and thus also A) is equivalent

bEl bia biz -+ b, Ji bz bz - biy
bor —qafit  * ok --- % Ty k% -e- %
bsi —qzfi  x k..o x| —|r3 %k k-0 %
b1 — qmfi x ok --- % Ty %k cee %

where * is use to represent unspecified elments of R. As this matrix
is equivalient to A and by the way that f; we must have ro = r3 =
-1y = 0 (as otherwise 6(r;) < d(f1) and fi was choosen so that
d(f1) < 4(b) for any nonzero elment of a matrix equivalent to A). Thus
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our matrix is of the form

fi bz biz - bip
0 * % - %
0 =« ¥ e ok
0 *x % *

We now clear out the first row in the same manner. There are p; and
s; so that by; = p;fi + s; and either s; = 0 or d(s;) < (f1). Then by
doing the n —1 column operations of taking —p; times the first column
and adding to the j-th column we can farther reduce our matrix to

J1 a12—p2f1 a13—p3f1 aln_pnfl fi s2 83 - sy
0 * * * 0 * = .

0 * * * — 10 * *

0 * * * 0 * *

Exactly as above this the minimulity of §(f;) over all elments in ma-
trices equivalent to A implies that s; = 0 for j = 2,...,n. So we now
have that A is equivalent to the matrix

fi O fi O 0O --- 0

0 =* * 0 Cog Co23 ++° Cop
C=10 = = |0 c32 33 -0 a3

0 x = * 0 cn2 Cms " Cun

If either m =1 or n = 1 then C is of one of the two forms
fi
0

[f1,0,0,...,0], or |0

and we are done.

So assume that m,n > 2. We claim that every elment in this matrix
is divisable by fi. To see this consider any elment ¢;; in the i-th row
(where 4,j > 2). Then we can the i-th row to the first row to get the
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matrix:
f 1 CGi1 Cga -+ Cip
0 ¢ ca3 -+ cCop
0 ¢ c33 -+ C3p
0 Cm2 Cm3 - Cmn

which is equivalent to A. We use the same trick as above. There
are tj,p; € R for 2 < j < n so that ¢;; = t;f1 + p; with p; = 0 or
d(p;) < 0(f1). Then add —t; times the first column of to the j-th
column to get

fi aip—tafi aiz—1t3f1 - am —tufi fi p2 p3s - pn
0 * * * 0 * % .

0 * * * — [0 x %

0 * * * 0 * % -+ %

As this matrix is equivalent to A again the minimality of d(f;) implies
that d(p;) = 0 for j = 2,...,n. Therefore ¢;; = t; fi which implies that
c;j is divisiable by f.

As each elment of C'is divisable by fi we can write ¢;; = ficj;. Factor
the fi out of the elments of C' imlies that we can write C' in block form
as

(5.1) C = H)l fl()C’}

where C" is (m — 1) x (n —1).

Now at long last we get to use the induction hypothesis. As (m —
1) + (n — 1) < m + n the matrix C’ is equivalent to a matrix of the
form

- ]
/5

where f5, f4, ..., flsatisfy f5 | fi|---| fl. (We start at f; rather than
f1 to make latter notation easier.) This means thereis a (m—1)x(m—1)
matrix P and an (n — 1) x (n — 1) matrices @) so that each of P and @
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are products of elmentary matrices and so that

BE
f5
PC,Q = f/
"0
This in term implies
BE
f5
PHC'Q = HPC'Q = fi
i _
fifs
- fily
0

The block matrices

o 7] = sl
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are of size m x m and n xn respecitively and are products of elementary
matrices. Using our calculation of Pf;C'Q in equation (b.1) gives

b Aol o=l #1 sells ol

i
0 PfHLC'Q
- _
fifs
h ity
0
s 1
f2
- fr
0

where fo = fifs, fs = fifs, ..., fr = fif/. As this matrix is equivalent
to A to finish the proof it it enough to show that fi | fo | f3--- f. As
fa = fifs it is clear that f; | fo. If 2 < j < r — 1 then we have that
fi | fj41 so by definition there is a ¢; € R so that f7,, = c¢;f;. Multiply
by fi and use f; = flfj{ and fj41 = flf]/'+1 to get fj41 = f1fjl-+1 =
ficjfj = c¢;f;. This implies that f; | fj11 and we are done. O

5.1.3. An application of the existance of the Smith normal form. Theo-
rem b.§ lets us guve a very nice characterization of invertible matrices.

5.10. Theorem. Let AM, v, (R) be a square matriz over an Euclidean
domain. Then A is invertible if and only if it is a product of elementary
matrices.

Proof. One direction is clear: Elementary matrices are invertible, so
product of elementary matrices is invertible.

Now assume that A in invertible. Then by Theorem B-8 A is equiv-
alent to a diagonal matrix

D= diag(fl,fg,...,fr,O,...,O).

There is here are matrices P and (), each a product of elementary
matrices, so that
A=PDQ.
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As A, P and @ are invertible their determinants are units (Theo-
rem [.21)) and therefore from det(A) = det(P) det(D) det(Q) it follows
that det(D) = det(A)det(P) 'det(Q)~! is a unit. But the deter-
minant of a diagonal matrix is the product of its diagonal elements.
Thus in the definition of D if » < n there will be a zero on the di-
agonal and so det(D) = 0, which is not a unit. Thus r = n and so
det(D) = fifo-+- fn. But then fi(fo--- fdet(D)™!) =1 so that f; is
a unit with inverse f;' = (fa--- fudet(D)™!). Likewise each f; is a
unit with inverse f, ! = det(D)™* [1; . fj- But then letting Ej be the
diagonal matrix

Ek:diag(l,l,...,fk,...,l)

(all ones on the diagonal except at the k-th place where f; appears)
we have that E} is a an elementary matrix and that D factors as

D:ElEgEn

Thus D is a product of elementary matrices. But then A = PDQ is a
product of elementary matrices. This completes the proof. O

6. SIMILARITY OF MATRICES AND LINEAR OPERATORS OVER A
FIELD.

6.1. Similarity over R is and equivalence over R[z].

6.1. Theorem. Let R be a commutative ring and A, B € Mxn(R).
Then there is an invertible S € M, x,(R) so that B = SAS™! if and
only if there are invertible P,Q € M,x,(R[x]) so that P(xI, — A) =

(xI, — B)Q.

Proof. One direction is easy. If B = SAS™! then SA = BS. But
then S(zl, — A) = 2S — SA = xS — BS = (¢1, — B)S. So letting
P = @ = S we have that P and ) are invertible elements of M,,y,,(R[z])
and P(zI, — A) = (zI, — B)Q.

Conversely assume that P,Q € M,y,(R[z]) are invertible and
P(zl, — A) = (I, — B)Q. Write

P=z"P,+z™'P, 1+ ---+zP+ P
and

Q=2"Qp +2"'Qp 1 + -+ 2Q1 + Qo

where P,, # 0 # Q. Then the highest power of z that occurs in
P(z1l,—A) is m+1 and the highest power of  that occurs in (x1,,—B)Q
is k 4+ 1. As these must be equal we have k = m.
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The next part of the argument looks very much like the proof of the
Cayley-Hamilton Theorem. Write out both P(z1, —A) and (1, — B)Q
in terms of powers of  we find

P(xl, — A) = (2™ Py + 2™ 'Py 1+ -+ 2P, + Py)(zl, — A)
= 2" P, + 2" (Pt — PpA) + 2" Py — P A)
—|——|—Q?2(P1—P2A>+$(PO—P1A)—P0A
and

(zI, — B)Q = (xI, — B)(z™Qm + 2™ Q-1 + - + 2Q;1 + Qo)
= xm—HQm + xm<Qm—1 - BQm) + xm_l(Qm—Q o BQm_l)
+ o 23(Q — BQs) + 2(Qo — BQy) — BQo.

Comparing the coefficients of powers of x gives

Pm = Qm
mel_PmA:mel_BQm
Pm—2 - Pm—lA = Qm—Z - BQm—l

P —PBA=Q1—BQ:
Py — PA=Qy— Bl
P[)A - BQO
Multiply the first of these on the right by A™! the second by A™, the
third by A™! etc. to get
PmAm+1 _ QmAm+1
P, 1 A™ — P, A" = Q,,_1A™ — BQ,, A™
Pm—2Am_1 — P A" = Qm—2Am_1 - BC)m—lAAm_1

P1A2 - P2A3 - Q1A2 - BQ2A2
PyA — P A* = QA — BQ, A
P()A - BQO

Adding these equations we see that the terms on the left each term and
its negative occurs exactly once to the sum will be zero. Grouping the



66 Similarity of matrices and linear operators over a field

terms on the right of the sum that contain a B together:
0= (QuA™ ™ + Q1 A™ + -+ + Q1A% + QpA)
— B(QmA™ + Q1 A" -+ QA+ Q1A + Qo)
= (QmA™ + Q1 A" 4+ Q1A% + QoA+ RA)A
— B(QmA™ + Qum_1 A" 4 4+ QA + Q1A + Qo)
=SA—- BS
where
S =QuA™ + Q1 A"+ QA% + Q1A+ Qo.

Thus for this S
SA = BS.

We now show that S is invertible. First, using that SA = BS, we find
SA? = BSA = B%S, and that generally SA* = B*S. Let G = Q' ¢
M, «n(R[x]) be the inverse of Q). Write

G = Z‘lGl + xl_lGl_l + -+ 2G + Go.

Then in the product GQ = I, the coefficient of xP is Ziﬂ.:p G;Q; and
therefore GQ) = I,, implies

Ina = 07
Z GiQi:(sOpIn: {0 p%o
i+j=p P ’

Let
T=GB +GB™" + - +GB+G,.
Then (using at the third step that B*S = A*S)

TS = (GB'+GB"™ +---+GiB + Gy)S
=GB'S+GB"'S+ ...+ GBS+ GyS
=G SA + GSAT -+ G1SA+ GyS

_ Z GleAl+k + Z GlileAl71+k
k=0 k=0

++iG1A1+k+iGOAk
k=0 k=0

S (x0a)x

p=0 \i+j=p

m+1
— (Z 50pln> AP
p=0
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=A"=1,.

Therefore T'S = I,. By Theorem {23 this implies that ST = I,
and so S is invertible with inverse 1. To finish the proof we note that
SA = BS now implies B = SAS™L. O
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