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Abstract

We consider the discrete analogue, called the finite Radon transform, of the clas-

sical Radon transform from functional analysis. While others have approached the

invertibility question of the finite Radon transform using techniques from graph the-

ory and lattice theory, we approach the problem by considering spaces, which we call

Gel ′fand spaces in which we can show that finite Radon transforms are invertible.

We start with a vector space and add some group structure, as well as some represen-

tation theory, to build, largely axiomatically, what we call a convolution algebra of a

finite set. The convolution algebra will serve as a foundation for the Gel′fand space.

We also include a few examples of finite Radon transforms and their invertibility

formulæ.
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Chapter 1

Introduction

1.1. The Radon Transform

Recall from elementary linear algebra and analysis that we give the name Hilbert

space to any complete inner product space (See the beginning of Chapter 2 for the

definition of an inner product space). Furthermore, recall that a hyperplane of an

n-dimensional vector space is a subspace of dimension n − 1. Finally, we will call a

subset, A, of a vector space, V, affine if there is a vector subspace, W, of V and an

element, v, in V such that A = v +W. The affine subsets, then, are the translates of

the subspaces, and we call the translate of an (n− 1)-dimensional subspace an affine

hyperplane. Now let φ : R
n 7→ C be a complex-valued function on an n-dimensional

Hilbert space, where R and C denote the real and complex numbers, respectively.

Then we will call Tφ the Radon transform of φ, where Tφ is the complex-valued

transformation, defined on the set of affine hyperplanes in R
n by,

(Tφ)(H) =

∫
H

φ.

We integrate, above, with respect to Lebesgue measure, over the affine hyperplane H.

The Radon transform has enjoyed a position of fundamental importance to many

applied problems in mathematics and physics and questions in functional analysis.

The problems and applications usually appear in some manifestation of the following

question. When can the function, φ, be reconstructed from its Radon transform,

Tφ? The Radon transform gets its name from Johann Radon, who first, in 1917,
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derived an explicit formula for the function on the plane, if integrals over all lines

through the plane are given [18]. Since then applications of the Radon formula have

appeared in radio astronomy, electron micrography, and many other fields of science

and mathematics.

Undoubtedly, however, the most famous application of the Radon transform’s in-

vertibility has been in x-ray tomography. In 1970 G. N. Hounsfield and A. M. Cormack

introduced a computed tomograph, which physicians could use in a clinical setting,

for which, in 1979, they were awarded the Nobel Prize in medicine. For an excellent

introduction to the history of the Radon transform in computed tomography, see

A. M. Cormack’s treatment in [5].

1.2. The Finite Radon Transform

But what if we consider the analogues of the Radon transform in the discrete setting?

To wit, then, can we define the Radon transform on a function space in which the

functions are all defined on a finite set? As the finite analogue of integration is

summation, we can rewrite the above definition of the Radon transform.

Let CCC be a collection of subsets of a finite set, X, and let `2(X) denote the set of

all complex functions defined on X. (See Section 2.1 for a precise definition of `2(X).)

Now if φ is in `2(X), then we will call the linear transformation T : `2(X) 7→ `2(CCC)

the finite Radon transform defined, for C in CCC, by

(Tφ)(C) =
∑
x∈C

φ(x).

Henceforth, when we refer to the Radon transform, we mean the finite Radon

transform as defined immediately above, even if we omit the word finite, inasmuch as

in the following, we work solely with the finite Radon transform.
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According to Joseph Kung in [15], the first to consider the finite Radon transform

was Ethan Bolker circa 1976. Bolker writes in [1] that, asked by a mathematician

working in classical Radon transforms, he began thinking about the Radon transform

on finite sets and looking for structure in order “to motivate theorems about the

classical Radon transform and its relatives.” Bolker’s beautifully written mathematics

in [1] is the most important survey on the topic of the finite Radon transform, and,

as Kung states in [15],

Bolker’s work is focused on finite analogues of the central ideas in the

theory of Radon transforms in analysis: inversion formulas, relation

to the Laplacian and other differential operators, ranges of Radon

transforms, group actions and homogeneous spaces, and relation to

group representation theory.

Kung adds that the importance of Bolker’s work in the field “cannot be overem-

phasized.” In [1], Bolker explores the relationship between finite Radon transforms

and areas of interest to combinatorists, including geometry over finite fields and the

Kirkman schoolgirl problem. Bolker continues his work in this area, first, with Eric

Grinberg and Kung in [2] and then with Patrick O’Neil and Jan Bowman in [3].

Kung’s own work [15] in which he praises Bolker is itself an exceptional overview

of the finite Radon transform. Like Bolker, Kung surveys the work in the finite

Radon transform in combinatorics, and much of the paper he devotes to applications

to lattice theory. Kung ends the paper with an impressive list of unsolved problems,

most—if not all—of which, to our knowledge, remain unsolved.

One approach to solving the injectivity question of the finite Radon transform is

to convert the question “When can a function, φ, be reconstructed from its Radon

transform, Tφ? ” into a question that might be answered through techniques in graph

theory. If we look at the matrix of the linear transformation T, relative to the standard

basis,
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δx(y) =


 1 x = y

0 x 6= y.
,

then we have the incidence matrix with rows indexed by CCC and columns indexed by

C, whose C, x-entry is 1 if x is in C and 0 if x is not in C. Therefore, the study of

finite Radon transforms can be reduced to the study of incidence matrices.

Still, as Bolker writes in [1], the question “When is the Radon transform injec-

tive?” is too hard in its general form. Therefore, we find in the literature answers,

rather, to narrower questions of the following sort: “When is a particular Radon

transform injective?” or “Under what conditions can a function in the image of a

Radon transform be recovered?” We take a different approach here. Our question is

“Can we build a space in which finite Radon transforms are invertible?” The affir-

mative answer to that question we present in the following pages, in a more analytic

approach than others have employed as regards the finite Radon transform problem.

We will consider the case in which we can simplify calculations using symmetry in

the form of group actions.

The first step in the construction of such a space, which we will call a Gel ′fand

space, is to find a suitably structured environment in which to start building. We

find that a vector space is the environment most suitable and flexible to our needs.

Next we will add some group structure, followed by some representation theory to

build what we will call a convolution algebra of a finite set X. We dedicate Chapter 2

to a largely axiomatic construction of a convolution algebra, which will serve as the

keystone for the Gel′fand space, developed in Chapter 3, built on our work with the

convolution algebra. We claim now, and will prove presently, that a Gel′fand space is

a mathematical structure in which the finite Radon transform is, indeed, invertible.

Finally, in Chapter 4, we present our injectivity results in the special case of doubly

transitive group actions. We also present two examples, one a special case of the

other.
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The impetus behind the following pages, as well as, indeed, much of their content,

comes from a set of unpublished notes [13] written by Ralph Howard and a class,

entitled Groups and Graphs, he taught at the University of South Carolina in the fall

of 2000. We try to provide here a largely axiomatic construction of finite Gel′fand

spaces, without assuming that the reader has any prior knowledge of or initiation in

their structure or application. Although all of the representation theory and most of

the group theory and linear algebra used we try to present from the fundamentals

of the definitions that we provide; nevertheless, we do assume that the reader has

experience with a few definitions and results from elementary group theory and linear

algebra. We find the structure behind the analysis of finite Gel′fand spaces and the

proofs supporting that structure, by the nature of the order seemingly inherent in

them, often elegant and surprisingly intuitive, with a touch of what seems, at times,

an eldritch simplicity. We present then, in the words of the great Twentieth-Century

novelist, Salman Rushdie, what we regard as an eff of the ineffable.

5



Chapter 2

The Convolution Algebra of a Finite Set X

2.1. Preliminary Definitions

Let V be a vector space over the field of complex scalars, C. Suppose 〈·, ·〉 : V 7→ C is

a function that assigns to each ordered pair of vectors v1 and v2 in V a scalar 〈v1, v2〉
in C. Now suppose that our function has the following properties for each v1, v2, and

v3 in V and for every c1, c2, and c3 in C : 〈c1v1 + c2v2, v3〉 = c1〈v1, v3〉 + c2〈v2, v3〉;
〈v1, v2〉 = 〈v2, v1〉; and 〈v1, v1〉 ≥ 0 with equality precisely when v1 = 0. Then we call

the function, 〈·, ·〉, an inner product. Further, we shall call any vector space equipped

with an inner product an inner product space.

Recall that a basis of a vector space, V , is a linearly independent spanning set of

vectors in V . Also, if the dimension of V is n, then we say that a basis {φ1, φ2, · · · , φn}
is unitary or orthogonal if

〈φi, φj〉 = δij =


 1 i = j

0 i 6= j.

We know from elementary linear algebra that any finite-dimensional vector space has

a basis, which we can make unitary by the famous Gram-Schmidt process or some

similar algorithm.

Let X be a finite set. Then if `2(X) is the set of all complex-valued functions

on X and if we equip `2(X) with the standard inner product, 〈φ, ψ〉 =
∑

x

φ(x)ψ(x),

then `2(X) is an inner product space. As usual, we denote the general linear group,
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the group of invertible linear transformations from V to V , by GL(V ), where V

is a finite-dimensional vector space. We will call a linear operator, T , unitary if

T ∗T = TT ∗ = I. The unitary group, denoted U(V ), is the subgroup of GL(V ) whose

elements are, in addition to being invertible, unitary. Let G be a group and X a set.

If we let g be in G and x in X, then we call a map (g, x) 7→ gx an action of G on X if,

when e is the identity of G, ex = x for all x in X and g1(g2x) = (g1g2)x for every g1

and g2 in G and x in X. Furthermore, if we have an action of G on X, we often write

G acts on X and call X a G-space. If H is a subgroup of G and G/H = {ξH : ξ ∈ G}
is the set of left cosets, then G/H is a G-space via the action g(ξH) = (gξ)H.

Let X be a G-space. Then if x is an element of X we call Gx = {gx : g ∈ G}
the orbit of x under G. Further, we say G acts transitively on X or that there is

a transitive group action of G on X, when all elements of X are in the same orbit

under G, or, what is the same, when for all x1 and x2 in X, there exists a group

element g such that gx1 = x2. Notice that a set X being a transitive G-space makes

no guarantee that the action of a subgroup of G on X will also be transitive. Let

us call the number of orbits of a group or a subgroup, H, on X the rank of H on

X, which we will denote, RankH(X). We next give a name to the set of G-space

members that a group element g leaves fixed, or, in symbols, {x ∈ X : gx = x},
which we shall denote Xg; these fixed point sets of g we extend in a natural way to

subsets of G; hence, when we write XH and H is a subset of G, we mean the set

of members of X that the action of every member of H keeps fixed; in symbols, we

have, then, XH = {x ∈ X : gx = x for all g ∈ H}.

2.2. Representation of a Group on `2(X)

Let G be a finite group and V a finite-dimensional vector space. If ρ : G 7→ GL(V )

is a group homomorphism—that is, ρ(g1g2) = ρ(g1)ρ(g2) for every g1 and g2 in G—

then we call ρ a representation of G or, when there is no confusion about the group
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to which we refer, a group representation. Often we will abuse notation slightly

and write g for ρ(g). Our standard example, which will prove useful, of a group

representation is the following. Let us assume that X is a G-space; then for x in X

and g in G, define τ : G 7→ GL(`2(X)) by (τgφ)(x) = φ(g−1x). Surely, then, the map

τg : `2(X) 7→ `2(X) is linear, as the space `2(X) itself is linear. In addition, τ is a

group homomorphism, inasmuch as (τg1)(τg2φ)(x) = (τg2φ)(g1
−1x) = φ(g2

−1g1
−1x) =

φ((g1g2)
−1x) = (τg1g2φ)(x), and thence we have shown that τ is a representation of

G. Finally, since τ is a group representation, and therefore a group homomorphism,

we have the usual added structural advantage τ−1
g = τg−1 for all group elements g,

because for any representation ρ of a groupG and for any g inG, we have ρ(g−1)ρ(g) =

ρ(gg−1) = ρ(e), which is the identity element in GL(V ). Accordingly, in our example,

τ , of a group representation, we know that every τg has an inverse, namely, τg−1 , in

GL(`2(X)).

We will say that a representation ρ : G 7→ GL(V ) is unitary if there exists an

inner product on V such that 〈ρ(g)v, ρ(g)w〉 = 〈v, w〉 for all v and w in V and g in

G.

Proposition 2.2.1. If ρ : G 7→ GL(V ) is a representation, then there exists an

inner product that makes ρ unitary.

Proof. Let 〈·, ·〉0 be any inner product on V, and define a new inner product on

V by

〈v1, v2〉ν =
1

|G|
∑
ξ∈G

〈ρ(ξ)v1, ρ(ξ)v2〉0

for v1 and v2 in V. We will show, first, that 〈·, ·〉ν is an inner product. Let v1, v2 and

v3 be in V and let c1 and c2 be in C. Then
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〈c1v1 + c2v2, v3〉ν =
1

|G|
∑
ξ∈G

〈ρ(ξ)(c1v1 + c2v2), ρ(ξ)v3〉0

=
1

|G|
∑
ξ∈G

〈ρ(ξ)c1v1 + ρ(ξ)c2v2, ρ(ξ)v3〉0

=
1

|G|
∑
ξ∈G

(〈ρ(ξ)c1v1, ρ(ξ)v3〉0 + 〈ρ(ξ)c2v2, ρ(ξ)v3〉0
)

=
1

|G|
∑
ξ∈G

〈ρ(ξ)c1v1, ρ(ξ)v3〉0 +
1

|G|
∑
ξ∈G

〈ρ(ξ)c2v2, ρ(ξ)v3〉0

= c1
1

|G|
∑
ξ∈G

〈ρ(ξ)v1, ρ(ξ)v3〉0 + c2
1

|G|
∑
ξ∈G

〈ρ(ξ)v2, ρ(ξ)v3〉0

= c1〈v1, v3〉ν + c2〈v2, v3〉ν

and, thus, 〈·, ·〉ν satisfies the first property of inner products. For the second, note

that

〈v2, v1〉ν =
1

|G|
∑
ξ∈G

〈ρ(ξ)v2, ρ(ξ)v1〉0

=
1

|G|
∑
ξ∈G

〈ρ(ξ)v1, ρ(ξ)v2〉0 = 〈v1, v2〉ν

Finally, we find 〈v1, v1〉ν ≥ 0 with equality holding precisely when v1 is the zero vector,

because the inner product 〈·, ·〉0 with which it is defined has the desired property and

because 1
|G| is never zero if G is nonempty.

Now we will show that 〈·, ·〉ν makes ρ unitary. For g in G we have

〈ρ(g)v1, ρ(g)v2〉ν =
1

|G|
∑
ξ∈G

〈ρ(ξ)ρ(g)v1, ρ(ξ)ρ(g)v2〉0

=
1

|G|
∑
ξ∈G

〈ρ(ξg)v1, ρ(ξg)v2〉0

=
1

|G|
∑
η∈G

〈ρ(η)v1, ρ(η)v2〉0 if we substitute ηg−1 for ξ
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= 〈v1, v2〉ν

Therefore, our candidate, 〈·, ·〉ν , makes ρ unitary, and we have proven the proposition.

Q.E.D.

By Proposition 2.2.1, then, every representation of a finite group is unitary. Fur-

ther, we can represent any finite group, with a group representation, not only as a

subset of the general linear group but also as a subset of the unitary group. Now let

us reconsider our example, (τgφ)(x) = φ(g−1x), of a group representation using the

claim that every representation of a finite group is unitary. Hence, we can choose to

define our representation, τ , from G to U(`2(X)) instead of to GL(`2(X)).

2.3. The Subgroup Go and G-space Isomorphisms

Now we are ready to provide the basic environment for defining a Gel′fand space, and

we establish the convention that any set, X, and any group, G, mentioned henceforth

we will assume are finite, unless otherwise specified. Let X be a set on which a group

G has a transitive group action. In other words, our set X is a transitive G-space.

Now pick any element of X to serve as the origin, and call it o. If gx = x for a given

x in X and g in G, we shall call g a stabilizer or, in this case, an x-stabilizer, and the

set of x-stabilizers in G we shall denote Gx. Let o be any fixed member of X. Now

consider the set of o-stabilizers, namely, Go, which comprises the set of all elements

of G that leave the origin, o, fixed, or, in symbols, Go = {g ∈ G : go = o}. What

should be unsurprising is that the stabilizers in G are subgroups. If g1 and g2 are

in Gx, we have g1x = g2x = x, and since (g1g2)x = g2(g1x) = g2x = x, we surely

have that Gx is closed. Also, the identity, e, of G is in Gx, as ex = x. Now if we

demonstrate Gx is closed under taking inverses, as well, we have shown that Gx is a
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subgroup. To that end, let g ∈ Gx. Then gx = x, which implies g−1gx = g−1x, and,

thence, x = g−1x, which, of course, gives us g−1 ∈ Gx. Therefore, for any x ∈ X we

know that Gx is a subgroup.

Let X and Y be G-spaces. Then a map φ : X 7→ Y is a G-morphism if φ(gx) =

gφ(x) for all x in X and g in G. Furthermore, if there exists a bijective G-morphism φ

from X into Y , then we call φ an isomorphism and say X and Y are isomorphic as G-

spaces. We find, when G/Go is the quotient of Gmodulo the subgroup of o-stabilizers,

that X and G/Go are isomorphic as G-spaces. To see this, define Φ : G/Go 7→ X

by Φ(gGo) = go, where gGo is a member of the left cosets of the subgroup Go and,

therefore, a member of the quotient G/Go. Surely, Φ is well-defined, for if g1Go=

g2Go for some g1 and g2 in G, then g1 = g2g0 for some g0 in Go. But as g0 is in Go,

we know g1o = g2g0o = g2o, which confirms, indeed, that Φ is well-defined. Now Φ

is a G-morphism, inasmuch as

Φ(g1g2Go) = (g1g2)o = g1(g2o) = g1Φ(g2Go).

Next we must show that Φ is injective. To that end, let Φ(g1Go) = Φ(g2Go), which

means g1o = g2o and, hence, g2
−1g1o = o, which, in turn, evinces that g2

−1g1 is in Go

or, equivalently, that g1Go = g2Go. Thence we have shown that Φ(g1Go) = Φ(g2Go)

implies g1Go = g2Go, which reveals that Φ is injective. To show surjectivity, let x

be an element of X. Then we know there exists a g in G such that go = x, for the

action of G on X is transitive. But then Φ(gGo) = go = x, which guarantees the

surjectivity of Φ and which finishes our justification of the claim that the transitive

G-space, X, and the quotient, G/Go, are isomorphic as G-spaces.

2.4. The G-Space `2(X) and its Isotropic Functions

Now we will reconsider `2(X), the set of all complex-valued functions on a set X and

claim that if G acts on X, then G acts on `2(X) by (τgφ)(x) = (gφ)(x) = φ(g−1x),
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where g is in G and φ(x) is in `2(X). For let φ(x) be in `2(X). Then eφ(x) =

φ(e−1x) = φ(ex) = φ(x), the last equality holding because X is a G-space. Now let

g1 and g2 be members of G. We will show g1(g2φ) = (g1g2)φ. By the definition of

our proposed action of G on `2(X), we have g1(g2φ)(x) = g2φ(g1
−1x) = φ(g2

−1g1
−1x),

which equals φ(g1g2)
−1x = (g1g2)φ(x), and gives us (g1g2)φ. Hence, if X is, then

`2(X) is also, a G-space.

Next we turn our attention to a subspace of the inner product space, `2(X),

namely, the set of all functions onX thatGo keeps fixed—that is, {φ ∈ `2(X) : gφ = φ

for all g ∈ Go}. We call these special fixed points in `2(X) isotropic functions and

write `2(X)Go for the collection of isotropic functions. We note that although X may

be a transitive G-space, and, thus, the action of G on X, by definition, only produces

one orbit; nevertheless, the action of Go, a subgroup of G, on X often produces more

than one orbit. In fact, we will find, in all cases we consider and, furthermore, in all

cases in which |X| ≥ 2, that RankGo(X) > 1, although the number of orbits of X

under the transitive action of G is, by definition, 1.

Proposition 2.4.1. The dimension of the subspace of isotropic functions on X

is equal to the number of orbits that result when Go acts on X, or, what is the same,

in our notation above, dim `2(X)Go = RankGo(X).

Proof. To begin our proof, we claim that the action of a group on a set, X, is an

equivalence relation and, thus, partitions the set. To see this, let ∼O be the relation

such that if X is a G-space, then x1 ∼O x2 exactly when x1 and x2 are in the same

orbit under G, or, equivalently, when gx1 = x2 for some g. We will show that ∼O is

an equivalence relation.

By the definition of group action we have ex = x for all x; thence x ∼O x and,

accordingly, ∼O is reflexive. Next, suppose x1 ∼O x2. Then gx1 = x2 for some

g, which means, after multiplication on both sides by the group element g−1, that

g−1gx1 = g−1x2, which reduces to x1 = g−1x2, which, in turn, tells us g−1x2 = x1;
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hence x2 ∼O x1. We have shown, then, that ∼O is symmetric. Now we check the

transitivity of ∼O. Let x1 ∼O x2 and x2 ∼O x3. We will show x1 ∼O x3. Since

x1 ∼O x2, we know g1x1 = x2, and since x2 ∼O x3, we have g2x2 = x3, whence

x2 = g−1
2 x3. Now substituting this value for x2 into the equation g1x1 = x2, we

get g1x1 = g−1
2 x3, which is the same as (g2g1)x1 = x3 and, since G is a group

and is therefore closed, setting g3 = g2g1 evinces g3x1 = x3. Therefore, x1 ∼O x3.

Reflexivity, symmetry and transitivity hold, and thence, ∼O is, indeed, an equivalence

relation.

Therefore, we know that if X1 = {o}, X2, · · · , Xr form a partition of X, then

X1 = {o}, X2, · · · , Xr are disjoint. Now let

φi(x) =


 1 x ∈ Xi

0 x /∈ Xi,

with 1 ≤ i ≤ r. Inasmuch as the sets X1 = {o}, X2, · · · , Xr are disjoint, then,

surely, {φ1, φ2, · · · , φr} are linearly independent, since we can think of each φi0—if

|X| = n, where |X| denotes the number of elements inX—as an n-dimensional column

vector in `2(X)Go with entries of ones and zeros. The set of all such vectors, that

is, {φ1, φ2, · · · , φr}, is linearly independent, inasmuch as X1, X2, · · · , Xr are disjoint

sets. Our column vector interpretation also reveals that the vectors {φi : 1 ≤ i ≤ r}
span `2(X)Go , and because there are r vectors in the linearly independent spanning

set, {φi}, we have shown that {φi} forms an r-dimensional basis for `2(X)Go and, in

so doing, have shown that dim `2(X)Go = r = RankGo(X). Q.E.D.

2.5. G-invariant Subspaces of `2(X)

We call a linear transformation from V into V a linear operator. Let CCC be a collection

of linear operators on a finite-dimensional vector space. Then we say that a subspace,
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W, of V is invariant under CCC if C[W ] ⊆ W for all C in CCC. Furthermore, we say, in a

natural extension of the definition of invariant subspaces above, that, if G acts on V ,

then a subspace W for which gw ∈ W , for all w in W and g in G, is G-invariant. Next

we prove a proposition that guarantees every G-invariant subspace of `2(X) whose

members Go leaves fixed is not the trivial subspace, {0}.

Proposition 2.5.1. Let W 6= {0} be a G-invariant subspace of `2(X). Then

WGo = {φ ∈W : gφ = φ for all g ∈ Go} 6= {0}. In fact, there exists a φ in WGo with

φ(o) = 1.

Proof. If we let φ0 be in W and stipulate that φ0 6= 0, then because W is

G-invariant and the action of G on X is transitive, we can assume, with no loss of

generality, that φ0(o) 6= 0. For if φ0(ξ) 6= 0 for some ξ in Go, then ξ−1φ(o) 6= 0, and,

therefore, we could simply replace φ0 with ξ−1φ0. Now let

φ(x) =
1

|Go|
∑
g∈Go

φ0(g
−1x).

If ξ is in Go, then

(ξφ)(x) =
1

|Go|
∑
g∈Go

φ0(g
−1ξ−1x)

=
1

|Go|
∑
g∈Go

φ0

(
(ξg)−1x

)

=
1

|Go|
∑

(ξ−1g)∈Go

φ0

(
ξξ−1g)−1x

)
,

by substitution of (ξ−1g) for g,

=
1

|Go|
∑
g∈Go

φ0(g
−1x),
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inasmuch as summing over (ξ−1g) is the same as summing over g, since G0 is a

subgroup and is, accordingly, closed. But as

1

|Go|
∑
g∈Go

φ0(g
−1x) = φ(x),

we have shown that φ(x) is in WG0 .

Furthermore,

φ(o) =
1

|Go|
∑
g∈Go

φ0(g
−1o)

=
1

|Go|
∑
g∈Go

φ0(o)

because, as Go is a subgroup of G, g ∈ Go implies g−1 is in Go and thence we know

g−1o = o. But

1

|Go|
∑
g∈Go

φ0(o) = φ0(o),

which, by our construction, is not equal to 0, nor is, in that case, φ, and we have

shown that WG0 6= {0}. Finally, the element 1
φ(o)

φ has the value 1 at o, as required.

Q.E.D.

2.6. Schur’s Lemma

From elementary linear algebra we recall that if T is a linear transformation, then

Im(T ) and Ker(T ) are subspaces, where Im(T ) and Ker(T ) represent the image of T

and the kernel of T , respectively. Now we prove that under certain conditions Im(T )

and Ker(T ) are G-invariant.
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Lemma 2.6.1. If T : V1 7→ V2 is a G-morphism, then Im(T ) and Ker(T ) are

G-invariant subspaces.

Proof. First, we will show that Ker(T ) is G-invariant. Let v1 be in Ker(T ),

which is a subspace of V1. Then Tv1 = 0, as v1 is in Ker(T ). Now we know that, since

T is a G-morphism,

T (gv1) = gTv1 = g0 = 0,

if g is in G. Thence, gv1 is in Ker(T ) and so Ker(T ) is G-invariant. Now to show that

Im(T ) is G-invariant, let v2 be in Im(T ), which is a subspace of V2. Consequently, we

have that, for some v in V1,

gv2 = gTv = T (gv),

which is, indeed, a member of the image of T ; therefore, we have shown that Im(T )

is G-invariant. Q.E.D.

We will call a representation ρ : G 7→ GL(V ) irreducible if the only subspaces

of V invariant under G are {0} and V . If ρ1 : G 7→ GL(V1) and ρ2 : G 7→ GL(V2)

are two representations of G, then we say ρ1 and ρ2 are equivalent if there exists an

invertible linear transformation L : V1 7→ V2 so that Lρ1(g) = ρ2(g)L for all g in G,

or, what is the same, if ρ1(g) and ρ2(g) are similar for all g in G. In this case, we call

L an equivalence between ρ1 and ρ2.

Schur’s Lemma. Let ρ1 : G 7→ GL(V1) and ρ2 : G 7→ GL(V2) be two irreducible

representations of G. Then any G-invariant linear transformation L : V1 7→ V2 is

either the zero transformation, L = 0, or is an equivalence between ρ1 and ρ2. To

wit, L is either an isomorphism or the zero transformation.
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Proof. If L = 0, then there is nothing to prove. Assume, then, L 6= 0. Now by

Lemma 2.6.1, we know Ker(L) is a G-invariant subspace of V1, and, as L 6= 0, we know

Ker(L) 6= V1. Because V1 is irreducible, Ker(L) = {0}, and, thence, L is injective.

Similarly, Im(L) is a G-invariant subspace of V2 and Im(L) 6= {0}, since L 6= 0 and,

thus, L is surjective. Therefore, L is bijective and is an equivalence between ρ1 and

ρ2. Q.E.D.

2.7. An Injectivity Theorem

We use Lemma 2.6.1 to prove the following theorem, which will prove useful when we

try to determine whether or not a linear transformation in general, and, specifically,

when a Radon Transform, from `2(X) to a vector space is injective and, therefore,

invertible.

Theorem 2.7.1. Let ρ : G 7→ GL(V ) be a representation and T : `2(X) 7→ V be

a G-morphism. Then T is injective if and only if T
∣∣
`2(X)Go

is injective.

Proof. That T is injective evidently guarantees that T
∣∣
`2(X)Go

is injective. To

prove the converse, assume to the contrary that T
∣∣
`2(X)Go

is, but T is not, injective.

Then Ker(T ) 6= {0}. From Lemma 2.6.1 we know that the subspace, Ker(T ), is G-

invariant, and, consequently, by Proposition 2.5.1, Ker(T )G0 6= {0}, a result that

produces the following contradiction:

{0} 6= Ker(T )G0 ⊆ Ker
(
T
∣∣
`2(X)Go

)
= {0},

which proves the assertion that T
∣∣
`2(X)Go

is injective implies T is injective. Q.E.D.
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2.8. Radon Transforms Between Finite Grassmanians

As an application, we consider, from [13], Radon transforms between finite Grassma-

nians. Let F be a finite field and F
n the vector space of dimension n over F. Then

GL(Fn) is the group of all invertible linear transformations of F
n and Aff(Fn) is the

group of all invertible affine transformations of F
n. The set of all k-dimensional lin-

ear subspaces of F
n we denote Gk(F

n) and call the Grassmanian of k-dimensional

subspaces. With this notation the n-dimensional projective space over F is G1(F
n+1).

Also, AGk(F
n) is the set all k-dimensional affine subspaces of F

n and is called the

Grassmanian of affine k-planes. Recall from elementary linear algebra that if V and

W are two inner product spaces and T : V 7→ W is a linear transformation, then the

transformation T ∗ : W 7→ V for which 〈Tv, w〉 = 〈v, T ∗w〉 for all v in V and w in W

is the adjoint of T .

For 0 ≤ k < l ≤ n − 1 define the Radon transform Rk,l : `2(AGk(F
n)) 7→

`2(AGl(F
n)) and its dual, R∗

k,l : `2(AGl(F
n)) 7→ `2(AGk(F

n)), by

(Rk,lφ)(P ) =
∑
x⊂P

φ(x)

and

(R∗
k,lF )(x) =

∑
P⊃x

F (P ),

respectively. Likewise, for 1 ≤ k < l ≤ n − 1 the projective versions of these trans-

forms, Pk,l : `2(Gk(F
n)) 7→ `2(Gl(F

n)) and P ∗
k,l : `2(Gl(F

n)) 7→ `2(Gk(F
n)), we define

by

(Pk,lφ)(L) =
∑
x⊂L

φ(x)

and

(P ∗
k,lF )(x) =

∑
L⊂x

F (L),

respectively.
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Define an inner product `2(X) in the usual manner:

〈φ1, φ2〉 :=
∑
x∈X

φ1(x)φ2(x).

Then the linear transformations Rk,l and R∗
k,l are adjoint in the sense that

〈Rk,lφ, F 〉 =
∑
P⊂Q

φ(P )F (Q) = 〈φ,R∗
k,lF 〉.

Therefore, Rk,l is injective if and only if R∗
k,l is surjective and Rk,l is surjective if and

only if R∗
k,l is injective. Likewise, the maps Pk,l and P ∗

k,l are adjoint.

Theorem 2.8.1. Let 0 ≤ k < l ≤ n− 1.

(a) If k + l ≤ n, then Rk,l : `2(AGk(F
n)) 7→ `2(AGl(F

n)) is injective, and the

dual map R∗
k,l : `2(AGl(F

n)) 7→ `2(AGk(F
n)) is surjective.

(b) If k + l ≥ n then Rk,l : `2(AGk(F
n)) 7→ `2(AGl(F

n)) is surjective, and the

dual map R∗
k,l : `2(AGl(F

n)) 7→ `2(AGk(F
n)) is injective.

Theorem 2.8.2. Let 1 ≤ k < l ≤ n− 1.

(a) If k + l ≤ n, then Pk,l : `2(Gk(F
n)) 7→ `2(Gl(F

n)) is injective, and the dual

map P ∗
k,l : `2(Gl(F

n)) 7→ `2(Gk(F
n)) is surjective.

(b) If k + l ≥ n then Pk,l : `2(Gk(F
n)) 7→ `2(Gl(F

n)) is surjective, and the dual

map P ∗
k,l : `2(Gl(F

n)) 7→ `2(Gk(F
n)) is injective.

We defer the proof of Theorems 2.8.1 and 2.8.2 until the next section.

2.9. Radon Injectivity Results for Grassmanians

Continuing our example from [13], we claim that the group GL(Fn) has a transitive

action on Gk(F
n). Fix L0 in Gk(F

n), and let K = {a ∈ GL(Fn) : aL0 = L0} be the

stabilizer of L0.
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Proposition 2.9.1. The orbits of Gk(F
n) under the action of K are

Xi = {L : dim(L ∩ L0) = i} for max(0, 2k − n) ≤ i ≤ k.

Accordingly, the number of orbits of Gk(F
n) under K is k + 1 for 1 ≤ k ≤ n/2 and

2k − n + 1 for n/2 < k ≤ n − 1. In other notation, RankK(Gk(F
n)) = k + 1 if

1 ≤ k ≤ n/2 and RankK(Gk(F
n)) = 2k − n+ 1 if n/2 < k ≤ n− 1.

Proof. We will merely sketch the straightforward proof of the proposition. For

some L1 and L2, say, we can extend a basis of L0 ∩ L1 to a basis, call it {vi}, for

L0. Similarly, we extend a basis of L0 ∩ L2 to a basis, call it {ui}, for L0, keeping,

all the while, the spans of {ui} and {vi} equal. Then we define a unique linear

transformation, H, so that Hvi = ui, whence we determine that H is in K. Q.E.D.

The affine Grassmanians, AGk(F
n), are somewhat more complicated. Every P in

AGk(F
n) is the translation of some k-dimensional linear subspace of F

n. Let LLL(P )

in Gk(F
n) be the translate of P that contains the origin and is, therefore, a linear

subspace of F
n. Choose P0 in AGk(F

n) with 0 in P0 so that LLL(P0) = P0, and let

K = {a ∈ Aff(Fn) : aP0 = P0} be the stabilizer of P0.

Proposition 2.9.2. The orbits of AGk(F
n) under the action of K are

X0,i = {P : P ∩ P0 = ∅, dim(LLL(P ) ∩ P0) = i}
X1,i = {P : P ∩ P0 6= ∅, dim(LLL(P ) ∩ P0) = i}

where max(0, 2k − n) ≤ i ≤ k. Hence, RankK(AGk(F
n)) = 2(k + 1) if 0 ≤ k ≤ n/2

and RankK(AGk(F
n)) = 2(2k − n+ 1) if n/2 < k ≤ n− 1.

Proof. This follows from the last proposition by considering the two cases where

P ∩ P0 = ∅ and P ∩ P0 6= ∅. Q.E.D.

Now we return to the proof of the theorems we deferred from the previous section.
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Proof of Theorem 2.8.1. We first prove (a). Let k+l ≤ n and 0 ≤ k < l ≤ n−1.

Choose P0 in AGk(F) to use as an origin. We assume that 0 in P0 so that LLL(P0) = P0,

and let K be the stabilizer of P0. Let X0,i and X1,i be as in (2.9.2). Define functions

φi for 0 ≤ i ≤ 2k + 1 by

φi(P ) :=




1 0 ≤ i ≤ k and P ∈ X0,i

1 k + 1 ≤ i ≤ 2k + 1 and P ∈ X1,i−(k+1)

0 otherwise.

These are the functions that are 1 on precisely one orbit of K and 0 on all other orbits.

Because of the condition k+ l ≤ n we can choose Qj ∈ AGl(F
n) such that Qj ∩P0 = ∅

and dim(LLL(Qj) ∩ P0) = j for 0 ≤ j ≤ k and so that if k + 1 ≤ j ≤ 2k + 1, then Qj

contains 0 and, hence, LLL(Qj) = Qj and dim(P0 ∩Qj) = j − (k+ 1). If P ∈ AGk(F
n),

P ∈ Qj, and i > j, then φi(P ) = 0. For example, if k ≥ i > j then P ⊂ Qj implies

P ∩P0 = ∅ and LLL(P )∩P0 ⊆ LLL(Q)∩P0; thence, dim(LLL(P )∩P0) ≤ dim(LLL(Qj)∩P0) =

j < i. Thus, P is not in X0,i, so that φi(P ) = 0. Similar considerations work in the

cases j ≤ k < i and k ≤ j < i. Therefore, Rk,lφi(Qj) = 0 whenever j < i. On the

other hand, when 0 ≤ i ≤ k, we have ci = |{P ⊂ Qj : P ∈ X0,i}| > 0 and when

k+ 1 ≤ i ≤ 2k+ 1, we also have ci = |{P ⊂ Qj : P ∈ X1,i−(k+1)}| > 0. Therefore, the

matrix [Rk,lφi(Qj)] is triangular, namely,

[Rk,lφi(Qj)] =




c0 0 0 · · · 0

∗ c1 0 · · · 0

∗ ∗ c2 · · · 0

...
...

...
. . . 0

∗ ∗ ∗ · · · c2k+1




and, as the ci are nonzero, this matrix is nonsingular. But then the functions Rk,lφi,

when i = 0, · · · , 2k−1, are linearly independent (If
∑2k+1

i=0 aiφi = 0, then by evaluating

at the Qjs we get a nonsingular system for the ais). As the functions φ0, · · · , φ2k+1 are

a basis of `2(Fn)K , the restriction of Rk,l to `2(Fn)K , or, in other notation, Rk,l

∣∣
`2(Fn)K ,
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is injective. Therefore, by Theorem 2.7.1, Rk,l is injective, and R∗
k,l surjective, when

k + l ≤ n.

Now assume 0 ≤ k < l ≤ n − 1 and k + l ≥ n. We will show R∗
k,l is injective.

These conditions imply l ≥ n/2. Let Q0 in AGl(F
n) be so that 0 is in Q0 and, thus,

LLL(Q0) = Q0. Also, let K = {a ∈ Aff(Fn) : aQ0 = Q0} be the stabilizer of Q0. Then

l ≤ n/2 implies K has (2l − n + 1) orbits on AGl(F
n). To simplify notation let

r = 2n− l be the codimension of Q0. Then proposition 2.9.2 implies that the orbits

of K are

Y0,i = {Q : Q ∩Q0 6= ∅, dim(LLL(Q) +Q0) = l + i}

Y1,i = {Q : Q ∩Q0 = ∅, dim(LLL(Q) +Q0) = l + (i− r − 1)}

for 0 ≤ i ≤ r. Define functions Fi on AGl(F
n) by

Fi(Q) :=




1 0 ≤ i ≤ r and Q ∈ Y0,i

1 r + 1 ≤ i ≤ 2r + 1 and P ∈ Y1,i−(r+1)

0 otherwise.

Then F0, · · · , F2k+1 is a basis of the isotropic functions `2(AGl(F
n))K . Because of

the dimension restriction, k + l ≥ n, we can choose elements Pj in AGk(F
n) so

that Pj ∩ Q0 6= ∅, dim(LLL(Pj) + Q0) = l + j for 0 ≤ j ≤ r and Pj ∩ Q0 = ∅,
dim(LLL(Pj)+Q0) = l+(j− r− 1) for r+1 ≤ j ≤ 2r+1. But then by considering the

cases 0 ≤ i < j ≤ r, 0 ≤ i ≤ r < j ≤ 2r+ 1 and r+ 1 ≤ i < j ≤ 2r+ 1, we determine

that if i < j and Q ⊃ Pj, then Fi(Q) = 0. Thence, i < j implies R∗
k,lFi(Pj) = 0.

But clearly R∗
k,lFi(Pi) 6= 0; whence, [R∗

k,lFi(Qj)] is a triangular matrix with non-zero

elements along the diagonal and is, accordingly, nonsingular, which implies, just as in

the previous case, that R∗
k,lF0, · · · , R∗

k,lF2r+1 are independent which, in turn, implies

the restriction of R∗
k,l to the isotropic functions `2(Fn)K , or, equivalently, R∗

k,l

∣∣
`2(Fn)K ,
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is injective. Therefore, Theorem 2.7.1 implies R∗
k,l is injective, and Rk,l is surjective

by duality. Q.E.D.

Proof of Theorem 2.8.2. An easy variant on the last proof. Q.E.D.

2.10. Convolution in `2(X ×X)

Let k be a a function from X ×X into C, the complex scalars, or, equivalently, let k

be in `2(X ×X). Now define TTTk : `2(X) 7→ `2(X) by

(TTTkφ)(x) =
∑

y

k(x, y)φ(y).

If we view φ in `2(X) as a column vector and k as a matrix with entries indexed by

X ×X, then the linear operator TTTk is matrix multiplication by k.

The following observation will help us prove the subsequent proposition.

Lemma 2.10.1. If TTTkφ = 0 for all φ in `2(X), then k = 0.

Proof. To see this, let TTTkφ = 0. Then TTTkφ =
∑
y

k(x, y)φ(y) = 0. If we let z be

in X and set

φ(y) =


 1 y = z

0 y 6= z,

then

0 = (TTTk)(x)

=
∑

y

k(x, y)φ(y) = k(x, z).

Hence, k(x, z) = 0 for all x and z in X, which guarantees k = 0. Q.E.D.

23



Now define Ψ : `2(X × X) 7→ Hom (`2(X), `2(X)) by Ψ(k) = TTTk. Note that

Hom (`2(X), `2(X)) represents the set of all linear operators on `2(X). If Ψ(k) = 0,

then TTTk = 0, which means TTTkφ = 0 for all φ in `2(X). Then, by Lemma 2.10.1, we

know that k = 0. Furthermore, without difficulty we see not only that Ψ(k) = 0

implies k = 0, but also that the converse holds: namely, k = 0 implies Ψ(k) = 0.

That Ψ(k) = 0 and k = 0 are equivalent reveals Ker(Ψ) = {0}. Now we make a

claim about TTTk. If LLL is a linear operator on `2(X), then there exists a unique k

such that LLL = TTTk. The truth of the claim we show by noting that dim `2(X ×X) =

dim Hom (`2(X), `2(X)) = |X|2.
Further, from our remarks above, we know that Ker(Ψ) = 0 and, therefore, since

`2(X) is finite-dimensional, the dimension of Im(LLL) is |X|2, by a famous theorem from

elementary linear algebra, and, thus, we have shown that LLL is surjective. Thence come

the existence and uniqueness of k.

Next, define

k1 ∗ k2(x, z) =
∑

y

k1(x, y)k2(y, z).

We will call the operation, ∗, convolution because of analogues from functional

analysis, a good treatment of which can be found in [17] and [4]. If we compose TTTk1

with TTTk2 , then we have exactly the operator TTTk1∗k2 on `2(X), a claim which we prove

easily. Let φ be in `2(X). Then

(TTTk1 ◦ TTTk2φ)(y) = TTTk1(TTTk2φ)(y)

=
∑

y

k1(z, y)(TTTk2φ)(y)

=
∑

y

k1(z, y)
∑

x

k2(y, x)φ(x)

=
∑

y

∑
x

k1(z, y)k2(y, x)φ(x)
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=
∑

x

(∑
y

k1(z, y)k2(y, x)

)
φ(x)

= (TTTk1∗k2φ)(y).

2.11. The Convolution Ring of X

Now we confirm a few properties of convolution, which afford to the space `2(X×X)

much algebraic structure. The first property is that for all k1, k2, and k3 in `2(X×X)

we have (k1 + k2) ∗ k3 = k1 ∗ k3 + k2 ∗ k3 and k1 ∗ (k2 + k3) = k1 ∗ k2 + k1 ∗ k3. In other

words, we must show that convolution distributes over addition. If k1, k2, and k3 are

in `2(X ×X), then

k1 ∗ (k2 + k3)(x, y) =
∑

z

k1(x, z)(k2 + k3)(z, y)

=
∑

z

k1(x, z) (k2(z, y) + k3(z, y))

=
∑

z

k1(x, z)k2(z, y) +
∑

z

k1(x, z)k3(z, y)

= k1 ∗ k2(x, y) + k1 ∗ k3(x, y)

Now for the second distributive property:

(k1 + k2) ∗ k3(x, y) =
∑

z

(k1 + k2)(x, z)k3(z, y)

=
∑

z

(k1(x, z) + k2(x, z)) k3(z, y)

=
∑

z

k1(x, z)k3(z, y) +
∑

z

k2(x, z)k3(z, y)

= k1 ∗ k3(x, y) + k2 ∗ k3(x, y)

25



For justification of associativity, recall from above that TTTk1 ◦ TTTk2 = TTTk1∗k2 , which we

use to show that

TTT(k1∗k2)∗k3 = TTTk1∗k2 ◦ TTTk3 = (TTTk1 ◦ TTTk2) ◦ TTTk3 = TTTk1 ◦ (TTTk2 ◦ TTTk3) = TTTk1∗(k2∗k3),

and TTT(k1∗k2)∗k3= TTTk1∗(k2∗k3) reveals that, indeed, (k1∗k2)∗k3 = k1∗(k2∗k3). In addition

to the structure that convolution adds to `2(X ×X), we also know that `2(X ×X)

is a group under function addition, which we will not prove here. The properties and

structure we have detailed above evince that (`2(X × X),+, ∗) form a ring, which

we will call the convolution ring of X. Of course, we have merely disguised matrix

multiplication in a form that will prove useful for later computations.

If V and W are two inner product spaces and T : V 7→ W is a linear transfor-

mation, then the transformation T ∗ : W 7→ V for which 〈Tv, w〉 = 〈v, T ∗w〉 for all

v in V and w in W is the adjoint of T . Furthermore, if T ∗ = T , then we say that

T is self-adjoint. When a linear transformation is defined on finite inner product

spaces, its adjoint always exists and is always unique, although we will not provide a

proof here. We can also extend the definition of self-adjoint to make sense in terms

of a collection of linear operators. Thus, if AAA is a collection of linear operators on

a finite-dimensional inner product space, then AAA is self-adjoint if A is a member of

AAA if and only if A∗ is in AAA. Finally, we will call a linear operator, T , unitary if

T ∗T = TT ∗ = I.

Next we define, if k is in `2(X × X), a sort of transpose of k, denoted k∗, such

that k∗(x, y) = k(y, x). Now since TTTk is a linear operator on `2(X), we know that TTTk,

because dim `2(X) <∞, must have an adjoint. We will prove that TTT∗
k = TTTk∗ . For the

proof, let φ1 and φ2 be in `2(X). Then, using our standard inner product,

〈TTTkφ1, φ2〉 =
∑

x

(TTTkφ1) (x)φ2(x)
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=
∑

x

(∑
y

k(x, y)φ1(y)

)
φ2(x)

=
∑

y

φ1(y)
∑

x

k(x, y)φ2(x)

=
∑

y

φ1(y)
∑

x

k∗(y, x)φ2(x)

=
∑

y

φ1(y)(TTTk∗φ2)(y) = 〈φ1,TTTk∗φ2〉

We have already shown that if X is a G-space, then `2(X) is also a G-space.

We extend the action of G, presently, a step further by asserting that if `2(X) is a

G-space, then `2(X × X) is likewise. For if X is a G-space, then so is X × X via

g(x, y) = (gx, gy). Thus, `2(X ×X) is a G-space by (gk)(x, y) = k(g−1x, g−1y).

2.12. The Convolution Algebra `2(X ×X)G

Finally, we are in a position to consider the set `2(X ×X)G, which is

{k ∈ `2(X ×X) : k(gx, gy) = k(x, y) for all x, y ∈ X and g ∈ G}.

In words, then, `2(X ×X)G is the subspace of `2(X ×X) of functions invariant

under the group action of G. We conclude easily that `2(X × X)G is closed under

convolution. For if k1 and k2 are in `2(X ×X)G, then

(k1 ∗ k2)(gx, gy) =
∑

z

k1(gx, z)k2(z, gy)

=
∑
gz

k1(gx, gz)k2(gz, gy)

=
∑

z

k1(gx, gz)k2(gz, gy)

=
∑

z

k1(x, z)k2(z, y) = (k1 ∗ k2)(x, y).
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Therefore, the convolution of two functions in `2(X × X)G is again in `2(X × X)G.

We present, next, a proposition that guarantees that the action of G commutes with

TTTk if k is in `2(X ×X)G, or, symbolically, TTTkgφ = gTTTkφ for all g in G and for every

φ in `2(X).

Proposition 2.12.1. Let k be in `2(X×X), g in G, and x and y be in X. Suppose

X be a G-space. Then the following are equivalent.

(1) TTTk ◦ τg = τg ◦ TTTk

(2) k(gx, gy) = k(x, y)

(3) k(gx, y) = k(x, g−1y)

Proof. Suppose, first, that (3) holds. Then

k(x, y) = k(g−1gx, y) = k(gx, (g−1)−1y) = k(gx, gy);

thence, we have shown that (3) implies (2). Next, we suppose that (2) holds. Then

k(gx, y)=k(g−1gx, g−1y)=k(x, g−1y), and we see that, indeed, (3) holds. Finally, we

will show that (1) and (3) are equivalent. Let φ be in `2(X) and g in G. Note, first,

that

(TTTk ◦ τg)φ(x) = (TTTk(τgφ))(x)

=
∑

y

k(x, y)τgφ(y)

=
∑

y

k(x, y)φ(g−1y)

=
∑

y

k(x, gy)φ(g−1gy)

=
∑

y

k(x, gy)φ(y)

= TTTk1φ(x)

where k1(x, y) = k(x, gy). Likewise,

28



(τg ◦ TTTk)φ(x) = (TTTkφ)(g−1x)

=
∑

y

k(g−1x, y)φ(y)

= TTTk2φ(y)

where k2(x, y) = k(g−1x, y). Therefore, TTTk ◦ τg = τg ◦TTTk if and only if TTTk1 = TTTk2 . That

is, (1) holds if and only if k1 = k2, which implies (1) and (3) are equivalent, and we

have completed our proof. Q.E.D.

Proposition 2.12.1, in addition to proving that the action, τ , of G commutes

with TTTk for k in `2(X ×X)G, gives us different ways to characterize that the action

of G commutes with TTTk. Considering our work above, we note that the subspace,

`2(X ×X)G, of `2(X ×X), inasmuch as it is closed under convolution, is an algebra

in which the function

δ(x, y) =


 1 x = y

0 x 6= y.

serves as the identity. We call the algebra `2(X ×X)G the convolution algebra of X.

2.13. The Relationship Between `2(X)Go and `2(X ×X)G

Let us review our basic structural setup so far. We have a finite set, X, which is a

transitive G-space. Further, we have fixed a point, call it o, in X as our origin. Then

`2(X)Go is the subspace of `2(X) consisting of functions that are fixed by the elements

of Go, the o-stabilizers in G. Recall from 2.4.1 that dim `2(X)Go = RankGo(X), which

is the number of orbits that result when Go acts on X.

We will proceed to show that the RankGo(X) = dim `2(X)Go = r is also equal to

the dimension of our convolution algebra, `2(X×X)G. To demonstrate this, we define
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a linear transformation E : `2(X)Go 7→ `2(X ×X)G by (Eφ)(x, y) = φ(ξ−1y), where

ξ is in G and ξo = x. We see straightaway that E is well-defined, for if ξ′o = x = ξo,

then surely ξ−1ξ′ = g0 for some g0 in Go, which gives us ξ′ = ξg0. To finish our

demonstration that E is well-defined, we remark that φ(ξ′−1y) = φ((ξg0)
−1y) from

our work above. But φ((ξg0)
−1y) = φ(g0

−1ξ−1y) = φ(ξ−1y), the last equality holding

because g0, and therefore g0
−1, is in Go. Next, consider the linear transformation

F : `2(X ×X)G 7→ `2(X)Go defined by (Fk)(y) = k(o, y), for k in `2(X ×X)G. We

will show that F does, in fact, send k to an isotropic function. To that end, let g0 be

in Go and consider (Fk)(g0y)=k(o, g0y)=k(g0
−1o, y)= k(o, y) = (Fk)(y), and so F

behaves correctly. We are in a position, now, to prove a proposition about the linear

transformations F and E.

Proposition 2.13.1. F and E, as defined above, are inverses to each other.

Therefore, dim `2(X)Go = dim `2(X ×X)G = RankGo(X).

Proof. Let φ be in `2(X)Go , and consider (FEφ)(y) = Eφ(o, y) = φ(ξ−1y),

where ξ is in Go. Next, if we set ξ equal to e, the identity in G, which, as Go is a

subgroup of G, is also in Go, we get φ(ξ−1y) = φ((e)−1y) = φ(ey) = φ(y). Accordingly,

(FEφ)(y) = φ(y). What remains to be shown is that (EFk)(x, y) = k(x, y). Let k

be in `2(X × X), our convolution algebra, and consider (EFk)(x, y) = (Fk)(ξ−1y)

with ξo = x. Then (Fk)(ξ−1y) = k(o, ξ−1y) = k(ξo, y) = k(x, y). Thence, we have

shown that F and E are inverses to each other, and, as dim `2(X)Go = RankGo(X),

by Proposition 2.4.1, the present proposition holds. Q.E.D.
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Chapter 3

Finite Gel
′
fand Spaces

3.1. Collections of Linear Operators

Let T be a linear operator on a vector space V and λ a complex scalar. If there exists

a vector v in V for which the equation Tv = λv holds, then we will call λ an eigenvalue

and v and eigenvector of T . We will always associate eigenvectors to corresponding

eigenvalues, and accordingly, we will call the set of all eigenvectors of an eigenvalue,

λ, the eigenspace of λ. Without proof, we comment that eigenspaces are subspaces.

The preceding definitions direct us to the following observation. Let T1 and T2 be

linear operators on a vector space V . If T1 and T2 commute, then any eigenspace

of T1 is invariant under T2. The claim is easily proven, for if Eλ is the eigenspace

corresponding to λ, an eigenvector of T1—that is, Eλ= {v ∈ V : T1v = λv}, then

T1T2v = T2T1v = T2λv, which evinces that T2v is, indeed, in Eλ.

Recall from Chapter 2 that if AAA is a collection of linear operators on a finite-

dimensional inner product space, then AAA is self-adjoint if A is a member of AAA if and

only if A∗ is in AAA.

Proposition 3.1.1. Let AAA be a set of commuting linear operators on a vector

space, V . Then AAA has a common eigenspace, or, in symbols, there exists an eigenspace

E corresponding some λ in V , with E 6= {0}, such that every v in E is an eigenvector

for all A in AAA.
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Proof. We proceed with induction on dimV. If dimV = 1, the result is clear.

Let us assume, then, that the proposition is true for all spaces of dimension less than

dimV. If every A is of the form A = αI, where I is the identity in V, then every v in

V is an eigenvector of every A in AAA. In that case, we use E = V. Else, there exists an

A with an eigenspace, EA = {v ∈ V : Av = λv}, such that dimEA < dimV. Now let

AAA
∣∣
EA

= {B∣∣
EA

: B ∈ AAA}. By our claim in the preceding paragraph, EA is invariant

under each B in A, and, therefore, AAA
∣∣
EA

is a commuting set of linear operators on

EA. By the induction hypothesis, AAA
∣∣
EA

has a common eigenspace, which will also be

a common eigenspace for AAA. Q.E.D.

Let S be a subset of a vector space V . Then we call {v ∈ V : 〈v, s〉 = 0 for all s

in S} the orthogonal complement of S, which we denote S⊥.

Proposition 3.1.2. Let AAA be a self-adjoint collection of linear operators on a

finite-dimensional inner product space, V . If a subspace, W, of V is invariant under

AAA, then W⊥ is also invariant under AAA.

Proof. Let w0 be in W⊥, w in W , and let A be any member of AAA. Then

〈Aw0, w〉 = 〈w0, A
∗w〉 = 0, as A∗ is in AAA, and, thus, A∗w is in W. Accordingly,

〈Aw0, w〉 = 0 for all w in W . Thence, we know that Aw0 is in W⊥, and, because we

chose A arbitrarily from AAA, we have shown that W⊥ is invariant under AAA. Q.E.D.

Proposition 3.1.3. If ρ : G 7→ GL(V ) is a unitary representation, then the set

of all ρ(g) such that g is in G is self-adjoint collection of linear operators on V .

Proof. Let AAA = {ρ(g) : g ∈ G}. We will show that for all g in G, we have

ρ(g)∗ = ρ(g−1) = ρ(g)−1. Note that ρ(g−1) = ρ(g)−1, as ρ is a representation and,

therefore, a homomorphism. Thence,
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〈ρ(g)w1, w2〉 = 〈ρ(g−1)ρ(g)w1, ρ(g
−1)w2〉

= 〈ρ(g−1g)w1, ρ(g
−1)w2〉

= 〈ρ(e)w1, ρ(g
−1)w2〉

= 〈ew1, ρ(g
−1)w2〉

= 〈w1, ρ(g
−1)w2〉

which implies ρ(g)∗ = ρ(g−1). Now ρ(g) is a member of AAA if and only if ρ(g−1) = ρ(g)∗

is in AAA. Therefore, AAA is self-adjoint. Q.E.D.

As a corollary to the above proposition, we note that if ρ : G 7→ GL(V ) is a

unitary representation and W is a subspace of V invariant under ρ, then W⊥ is

invariant under ρ.

Let V be an inner product space, and suppose V can be written as a direct sum,

V = V1 ⊕ V2 ⊕ · · · ⊕ Vr with the added property that if vi is in Vi and vj in Vj, then

〈vi, vj〉 = 0 when i 6= j. Then we will call

V1 ⊕ V2 ⊕ · · · ⊕ Vr =
r⊕

n=1

Vn

the orthogonal decomposition of V . We now present the following formulation of the

Spectral Theorem from elementary linear algebra.

Spectral Theorem for Commuting, Self-Adjoint Linear Operators.

Let V be a finite-dimensional inner product space, and let AAA be a self-adjoint and

commutative collection of linear operators on V. Then there exist nonzero functionals,

α1, · · · , αr : AAA 7→ C, so that if

Vαi
= {v ∈ V : Av = αi(A)v for all A ∈ AAA},

then Vαi
6= {0} and there exists the following orthogonal decomposition:
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V = V0 ⊕
r⊕

i=1

Vαi

where V0 = {v ∈ V : Av = 0 for all A ∈ AAA} and V0 is, possibly, {0}.

Proof. We prove our Spectral Theorem based on induction on dimV. Surely,

the base case of dimV = 1 is true. Assume that dimV = n and that the result holds

on all inner product spaces of dimension less than n. If AAA is only scalar multiples of

the identity, IV , then the result is trivial. Let us assume, then, that there exists a A0

in AAA that is not a scalar multiple of IV and, therefore, has at least one eigenvalue, call

it λ. Let E be the eigenspace corresponding to λ. Then {0} 6= E 6= V. Now for any

B in AAA and v in E we have A0Bv = BA0v = λBv, as all members of AAA commute.

Thence, E is invariant under all elements of AAA. Furthermore, by Proposition 3.1.2,

E⊥ is also invariant under AAA. Now if we apply the induction hypothesis to AAA
∣∣
E

=

{B∣∣
E⊥ : B ∈ AAA} and AAA

∣∣
E⊥ , we have completed the proof. Q.E.D.

We will say that a linear operator, call it A, is normal if AA∗ = A∗A. Easily, we

see that if we let AAA = {A,A∗}, then AAA is self-adjoint and we obtain a special case of

our Spectral Theorem for normal operators.

3.2. Symmetric G-Spaces

We reconsider, next, our G-space, X, and say that it is symmetric if for every x

and y in X, there exists an element of G, call it g, such that gx = y and gy = x.

Restating the definition in plainer terms, we consider a special type of G-space with

the property that, given any two elements of X, there exists a group element whose

action interchanges them. We call such an X a symmetric G-space. We see easily that

if X is symmetric, then X is also a transitive G-space. Now we are ready to prove
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a theorem that relates the symmetry of X with the commutativity of its convolution

algebra. The following theorem is attributable to I. M. Gel′fand .

Theorem 3.2.1. If X is a symmetric G-space, then the convolution algebra of X,

`2(X ×X)G, is commutative.

Proof. Let k be a member of `2(X×X)G and X be a symmetric G-space. To begin

our proof, we will remark that k(x, y) = k(y, x). For k(x, y) = k(gx, gy) = k(y, x),

since we have chosen the g in G that interchanges x and y. Now let k1 and k2 be in

`2(X ×X)G, and consider

(k1 ∗ k2)(x, y) =
∑

z

k1(x, z)k2(z, y)

=
∑

z

k2(z, y)k1(x, z)

=
∑

z

k2(y, z)k1(z, x) , by our remark above,

= (k2 ∗ k1)(y, x),

which is again in `2(X × X)G, as `2(X × X)G is closed under convolution. Again,

then, by our remark, (k2∗k1)(y, x) = (k2∗k1)(x, y), which proves that (k1∗k2)(x, y) =

(k2 ∗ k1)(x, y) and, therefore, the theorem. Q.E.D.

We mention, now, a few examples of symmetric G-spaces. The first is the size k

subsets of the set of n letters, {1, · · · , n}, under the natural action of the group of

permutations, Sn. (For the definition of Sn see Section 4.1.) Next, let Gk(F
n) and

AGk(F
n) be as in Section 2.8. Then the actions of GL(Fn) on Gk(F

n) and Aff(Fn) on

AGk(F
n) are symmetric.

In Chapter 2 we defined, for k ∈ `2(X ×X), a linear operator, TTTk, on `2(X) by

(TTTkφ)(x) =
∑

y

k(x, y)φ(y).
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Theorem 3.2.1 above shows that the set {TTTk : k ∈ `2(X × X)G} is a commuting,

self-adjoint set of linear operators.

Inspired by Theorem 3.2.1, we formulate the following definition. Let X be a

transitive G-space. Then we will call X a Gel ′fand space if `2(X × X)G is commu-

tative. If X is a symmetric G-space, then we know from Theorem 3.2.1 that X is a

Gel′fand space.

3.3. The Cartan-Gel
′
fand Theorem

We now fix and review some notation. As above, let us choose an origin, call it o, in

X, and let Go be the set of o-stabilizers in G. Next, if E is a G-invariant subspace of

`2(X), then let

EGo = {φ ∈ E : τgφ = φ for all g ∈ Go}

be the isotropic functions of E. Because T = {TTTk : k ∈ `2(X × X)G} is a commut-

ing, self-adjoint set of linear operators, `2(X) can be diagonalized simultaneously or,

equivalently, can be decomposed into an orthogonal direct sum by our Spectral The-

orem on page 33. We will call a nonzero linear functional α : `2(X × X)G 7→ C a

weight if

Eα = {φ : TTTkφ = α(k)φ for all k ∈ `2(X ×X)G} 6= {0}.

Therefore, by our Spectral Theorem, we know that if X is a Gel′fand space, then T

is commutative and self-adjoint, and there exist weights, call them α1, · · · , αr, such

that

`2(X) = E0 ⊕ Eα1 ⊕ · · · ⊕ Eαr

where E0 = {φ ∈ `2(X) : TTTkφ = 0 for all k ∈ `2(X ×X)G} 6= {0}.
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Furthermore, we will call Eαi
, if 0 ≤ i ≤ r, the weight space corresponding to αi.

We provide, now, two lemmata, which we will find useful in our proof of the

Cartan-Gel′fand Theorem to follow.

Lemma 3.3.1. If φ is in EGo
α and φ(o) = 0, then φ ≡ 0.

Proof. Let φ be in `2(X)Go . Then we know from remarks leading up to Propo-

sition 2.13.1 that there exists a k0 in `2(X ×X)G so that k0(o, y) = φ(y). Now

0 = α(k0)φ(o) = (TTTk0φ)(o) =
∑

y

k0(o, y)φ(y) =
∑

y

|φ(y)|2,

which shows that φ ≡ 0. Q.E.D.

Lemma 3.3.2. Let φ1 and φ2 be in `2(X). Then there exists a constant cα(φ1, φ2)

so that for all φ in Eα,

∑
g∈G

∑
y∈X

φ1(g
−1x)φ2(g

−1y)φ(y) = cα(φ1, φ2)φ(x).

Proof. Suppose h(x, y) =
∑
g∈G

φ1(g
−1x)φ2(g

−1y). We will show that h is in

`2(X × X)G. To that end, let ξ be in G and consider

h(ξx, ξy) =
∑
g∈G

φ1(g
−1ξx)φ2(g

−1ξy)

=
∑
g∈G

φ1((ξ
−1g)−1x)φ2((ξ

−1g)−1y)

=
∑
ξg∈G

φ1((ξ
−1ξg)−1x)φ2((ξ

−1ξg)−1y), if we set g = ξg

=
∑
g∈G

φ1(g
−1x)φ2(g

−1y) = h(x, y).

37



Thence, h is in `2(X × X)G as claimed. Therefore, for any φ in Eα, we have that

TTThφ = α(h)φ, which is equivalent to the statement of the lemma, with cα(φ1, φ2) =

α(h). Q.E.D.

The following theorem is a discrete analogue of the results due to E. J. Cartan

and I. M. Gel′fand .

Theorem 3.3.1. (Cartan-Gel ′fand) If X is a finite Gel′fand space, then there

exist weights, α1, · · · , αr, so that

(1) `2(X) = Eα1 ⊕ · · · ⊕ Eαr (orthogonal direct sum)

(2) Each EGo
αi

is one-dimensional and is spanned by a unique element, pαi
, with

pαi
(o) = 1, called the spherical function in EGo

αi
.

(3) Each weight space, Eαi
, with 1 ≤ i ≤ r, is irreducible.

(4) If i 6= j, then Eαi
and Eαj

are not equivalent as representations.

(5) If E 6= {0} is any irreducible, G-invariant subspace of `2(X), then E = Eαi0

for some i0.

(6) r = RankGo(X).

Proof. We already know that `2(X) = E0 ⊕ Eα1 ⊕ · · ·Eαr . Therefore to prove

(1), we need merely to show that E0 = {0}. Let φ be in E0. Then TTTkφ = 0 for all k

in `2(X ×X)G. Now set

k(x, y) = δ(x, y) =


 1 x = y

0 x 6= y.
,

the identity in the convolution algebra, `2(X ×X)G.

Hence,

0 = TTTkφ(x) =
∑

y

k(x, y)φ(y)
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=
∑

y

δ(x, x)φ(y)

= φ(y),

whereby we have shown φ = 0 and (1) holds.

To prove that each EGo
αi

is one-dimensional and is spanned by a unique element

we will use Lemma 3.3.1. We know that we can always choose a pα in EGo
αi

such

that pα(o) = 1, by Proposition 2.5.1. Now let φ be in EGo
αi
. Note that φ1(o) =

φ(o) − φ(o)pα(o) = 0, as pα(o) = 1. Further, by Lemma 3.3.1, we have shown that

φ1 = 0 and so φ = φ(o)pα and, hence, that (2) holds.

Next, we show that each EGo
αi

is irreducible. To that end, assume to the contrary

that a weight space, Eαi0
, is reducible. Then we can decompose EGo

αi
orthogonally

as follows, EGo
αi

= W1 ⊕W2, where W1 and W2 are G-invariant subspaces of `2(X).

But we know that W1
Go 6= {0} 6= W2

Go by Proposition 2.5.1. Therefore, EGo
αi

≥ 2,

which is a contradiction, inasmuch as, by (2) above, each Eαi
is one-dimensional.

Accordingly, we have shown that (3) holds.

Now we show that if α and β are weights, then Eα and Eβ are not isomorphic and,

therefore, are not equivalent representations. Let ρ be a representation and define

χρ : G 7→ C by χρ(g) = Trace(ρ(g)). Then we call χρ the character of ρ. If two

linear transformations are isomorphic, then they have the same character, because

isomorphic transformations are similar and similar transformations have the same

trace.

Let χα(g) = Trace(τg
∣∣
Eα

) and χβ(g) = Trace(τg
∣∣
Eβ

) be the characters of the repre-

sentation τ restricted to Eα and Eβ. Let {φ1 α, φ2 α, · · · , φl α} and {φ1 β, φ2 β, · · · , φm β}
be unitary bases of Eα and Eβ, respectively. Then, since the trace is the sum of the

diagonal elements of the matrix of τ
∣∣
Eα
, we have that

χα(g) =
∑

i

〈τgφi α, φi α〉.
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Similarly, we recognize that

χβ(g) =
∑

j

〈τgφj β, φj β〉.

Consider, next,

〈χα, χβ〉 =
∑
g∈G

χα(g)χβ(g)

=
∑
g∈G

∑
i

∑
j

〈τgφi α, φi α〉〈τgφj β, φj β〉

=
∑
g∈G

∑
i

∑
j

∑
x

∑
y

φi α(g−1x)φi α(x)φj β(g−1y)φj β(y)

=
∑

i

∑
j

∑
x

(∑
g∈G

∑
y

φi α(g−1x)φj β(g−1y)φj β(y)

)
φi α(x)

=
∑

i

∑
j

∑
x

cα(φi α, φj β)φj β(x)φi α(x), by Lemma 3.3.2,

=
∑

i

∑
j

cα(φi α, φj β)
∑

x

φj β(x)φi α(x)

=
∑

i

∑
j

cα(φi α, φj β)〈φj β, φi α〉

= 0,

since φj β is in Eβ and φi α is in Eα and Eα is orthogonal to Eβ. Now suppose to the

contrary that Eα and Eβ are isomorphic. Then χα = χβ. But then

0 =
∑
g∈G

|χα(g)|2 > 0,

a contradiction, which evinces, then, that Eα and Eβ are not isomorphic, or, what is

the same, Eα and Eβ are not equivalent as representations; thus, (4) holds.

Let us suppose that E 6= {0} is an irreducible, G-invariant subspace of `2(X),

and let πi : `2(X) 7→ Eαi
be the orthogonal projection. Then πi is G-invariant. As

E is a G-invariant subspace of `2(X), we know by Schur’s Lemma that for each i,

the projection restricted to E, π
∣∣
E

: E 7→ Eαi
, is either an isomorphism or the zero
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transformation. Because E 6= {0} and, by (4), no two weight spaces are isomorphic,

we conclude that for every i but one, call it i0, πi = 0 and πi0 is an isomorphism.

Therefore, E = Eαi0
, and we have proven (5).

To prove (6), we recall from Proposition 2.4.1 that RankGo(X) = dim `2(X)Go .

Now dim `2(X)Go = dim(Eα1 ⊕ · · · ⊕ Eαr)
Go by (1) above. Further,

dim(Eα1 ⊕ · · · ⊕ Eαr)
Go = dim(EGo

α1
⊕ · · · ⊕ EGo

αr
) = r,

inasmuch as, by (3), we know that each of the weight spaces, Eαi
, where 1 ≤ i ≤ r,

is one-dimensional, and we have, indeed, shown that (6) holds. Accordingly, we have

proven the Cartan-Gel′fand Theorem.

3.4. G-Invariant Linear Operators and Inversion Formulae

We next turn our attention to results obtained when we consider the G-invariant op-

erators in the mathematical setting described in Theorem 3.3.1, the Cartan-Gel′fand

Theorem, and we will use the notation of that theorem throughout the following.

First, we see that if L is a G-invariant linear operator on `2(X) and X is a Gel′fand

space, then we can realize the restriction of L on Eαi
by scalar multiplication and

find an explicit inverse for L.

Theorem 3.4.1. Let X be a Gel′fand space and let L : `2(X) 7→ `2(X) be a G-

invariant linear operator—that is, Lτg = τgL for all g in G. Then for all i, LEαi
⊆ Eαi

holds and L
∣∣
Eαi

= ciIEαi
, where ci = (Lpαi

)(o). In particular, L is invertible if and

only if (Lpαi
)(o) 6= 0 for all i. In this case, the inverse of L is given by

L−1 =
r∑

i=1

1

Lpαi
(o)

πi,

where πi : `2(X) 7→ Eαi
is an orthogonal projection.
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Proof. Because LEαi
is a G-invariant subspace of `2(X) and, as Eαi

is irre-

ducible, LEαi
is either {0} or is an isomorphic to Eαi

. Suppose, first, that LEαi
= {0}.

Then LEα ⊆ Eαi
and, therefore, L

∣∣
Eαi

= 0IEαi
. The first part of the theorem, then,

holds for the case LEαi
= {0}.

Now let us consider the case when LEαi
is isomorphic to Eαi

. Then LEαi
=

Eαi
by parts (4) and (5) of Theorem 3.3.1. Note that τgLpαi

= Lτgpαi
= Lpαi

,

for g in Go, the last equality holding because pαi
is in EGo

αi
. Thence, Lpαi

is in

EGo
αi
, and because EGo

αi
is one-dimensional, Lpαi

= cipαi
for some scalar ci. Then

ker(L
∣∣
Eαi

− ciIEαi
) is a G-invariant subspace of Eαi

, and since Eαi
is irreducible, we

know that ker(L
∣∣
Eαi

− ciIEαi
) = Eαi

; hence, ker(L
∣∣
Eαi

− ciIEαi
) must be the zero

transformation, and we L
∣∣
Eαi

= ciIEαi
. From above we know that Lpαi

(o) = cipαi
(o),

and so ci = (Lpαi
)(o) follows, as pαi

(o) = 1.

We will show, next, that the inverse of L is as claimed in the statement of the

theorem. Let

S =
r∑

i=1

1

Lpαi
(o)

πi.

Then

LS =
r∑

i=1

ciπi

r∑
j=1

1

Lpαj
(o)

πj

=
r∑

i=1

ciπi

r∑
j=1

1

cj
πj, since Lpαj

(o) = cj,

=
r∑

i=1

ci
ci
πi

2, because πiπj = 0 for i 6= j

=
r∑

i=1

πi, as πi is a projection,

= I`2(X).
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Similarly, SL = I`2(X) and, therefore, the inverse of L is given by

L−1 =
r∑

i=1

1

Lpαi
(o)

πi,

as claimed. Q.E.D.

Let V and W be inner product spaces and L : V 7→ W be a linear transformation.

We claim that L is injective if and only if L∗L, a linear operator on V, is injective;

for Lv = 0 is equivalent to ‖Lv‖2 = 0, where ‖v0‖, called the norm of v0, we define,

as usual, to be
√〈v0, v0〉. Now ‖Lv‖2 = 0 is the same as 〈Lv, Lv〉 = 0. Finally, we

have 0 = 〈Lv, Lv〉 = 〈L∗Lv, v〉, which proves the claim, which, in turn, we use in the

proof of the theorem that follows.

Theorem 3.4.2. Let L : `2(X) 7→ V be a G-invariant linear transformation. Then

the following are equivalent.

(1) L is injective

(2) Lpαi
(o) 6= 0, if 1 ≤ i ≤ r

(3) The restriction, L
∣∣
`2(X)Go

, of L to the isotropic functions,

`2(X)Go , is injective.

Furthermore, if L is injective, any φ in `2(X) is recovered from Lφ by

φ =

(
r∑

i=1

1

L∗Lpαi
(o)

πiL
∗
)
Lφ.

Proof. By Theorem 2.7.1 , we have already shown that (1) is equivalent to (3).

Now by the claim above, we know that L is injective if and only if L∗L is injective,

which is equivalent to the statement

(L∗Lpαi
)(o) 6= 0, 1 ≤ i ≤ r.

To prove that the inversion formula holds, let L be injective. Now if we apply the

inversion results in Theorem 3.4.1 to the linear operator, L∗L, on `2(X), then

43



(L∗L)−1 =

(
r∑

i=1

1

L∗Lpαi
(o)

πiL
∗
)
L.

Therefore,

φ = (L∗L)−1φ =

(
r∑

i=1

1

L∗Lpαi
(o)

πiL
∗
)
Lφ.

and we have proven the theorem. Q.E.D.
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Chapter 4

Doubly Transitive Group Actions

4.1. Introduction and Definitions

Heretofore we have been interested in transitive group actions on sets and have con-

structed our injectivity theorems under the assumption that the set X with which

we have been working is a transitive G-space. Now let X be a G-space, and suppose

that, for all (x1, x2) and (y1, y2) in X ×X such that x1 6= y1 and x2 6= y2, there exists

a g in G such that gx1 = x2 and gy1 = y2. Then we will say that the action of G on

X is doubly transitive and will call X a doubly transitive G-space.

Evidently, if X is a doubly transitive G-space, then X is a symmetric G-space.

Consequently, by Theorem 3.2.1, if the action of G on X is doubly transitive, then X

is a Gel′fand space. Therefore, the injectivity and orthogonal decomposition results

from Chapter 3 hold. As in the previous chapters, fix some o in X to serve as the

origin, and let Go = {g ∈ G : go = o} be the o-stabilizers in G. Then we claim

that X is a doubly transitive G-space if and only if there are exactly two orbits of X

under the action of the o-stabilizers, Go : namely, the singleton orbit X1 = {o} and

the orbit X2 = X − {o} or, what is the same, all of X except the origin.

Recall from elementary group theory that the group of permutations on a set,

X = {1, 2, · · · , n}, of n letters is the collection, Sn, of bijections from X to X.

Furthermore, the natural action of Sn on X we will describe as follows. If σ is a

member of Sn such that
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σ =


 1 2 3 · · · n

σ(1) σ(2) σ(3) · · · σ(n)


 ,

then define Ψ : Sn ×X 7→ X by Ψ(σ, x) = σ(x), for all x in X and σ in Sn, or, as we

will write the action Ψ henceforth, σx = σ(x).

4.2. The Radon Transform on X = {1, · · · , n}

Now set G = Sn and X = {1, 2, · · · , n}; then X is a doubly transitive G-space under

the natural action of G = Sn on X described in the previous paragraph. Next, let

Y = {S ⊆ X : |S| = k}. Then G acts on Y in the obvious way, a natural extension

of the action of G on X—that is, if g is in G, then gS = {gs : s ∈ S}. Set, finally,

o = 1 as our origin in X. Thus,

Go = {g ∈ G : g1 = 1}

= {σ ∈ Sn : σ(1) = 1}

= {σ ∈ Sn : σ({2, · · · , n}) = {2, · · · , n}},

The last equality, with some renaming, evinces that Go = Sn−1.

Next, define R : `2(X) 7→ `2(Y ) by the natural Radon transform,

(Rφ)(S) =
∑
x∈S

φ(x).

Now let

φ1(x) =


 1 x = 1

0 x 6= 1

and
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φ2(x) =


 0 x = 1

1 x 6= 1

Then {φ1, φ2} is a basis of `2(X)Go . The image of the basis vectors, φ1 and φ2, is

(Rφ1)(S) =
∑
x∈S

φ1(x) =


 1 1 ∈ S

0 1 /∈ S

and

(Rφ2)(S) =
∑
x∈S

φ2(x) =


 k − 1 1 ∈ S

k 1 /∈ S
.

If we suppose that φ0 = c1φ1 + c2φ2 and that φ0 ∈ Ker
(
R
∣∣
`2(X)Go

)
, then

Rφ0 = c1Rφ1 + c2Rφ2 = 0.

Let S1 = {1, · · · , k} and S2 = {2, · · · , k + 1}. Now if we evaluate Rφ0 at S1 and S2,

we get the following pair of homogeneous equations.

Rφ0(S1) = c1Rφ1(S1) + c2Rφ2(S1) = 0

Rφ0(S2) = c1Rφ1(S2) + c2Rφ2(S2) = 0,

which, by our results above, show that c1 = c2 = 0, which, in turn, reveals that

{Rφ1, Rφ2} is linearly independent. Therefore,

Ker
(
R
∣∣
`2(X)Go

)
= {0}

and, because dim `2(X) <∞, we know, by a famous theorem from elementary linear

algebra, that R
∣∣
`2(X)Go

is injective.

By Theorem 3.4.2, then, R is injective.
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Because X is a doubly transitive G-space, we know from our remarks above that

the orbits of X under Go must be X1 = {o} = {1} and X2 = X−{o} = {2, 3, · · · , n}.
By the results, then, of Theorem 3.3.1, `2(X) = E1 ⊕E2, as r = 2, in the notation of

that theorem. Because these two subspaces of `2(X) are both G-invariant, the weight

space E1 comprises the set of all constant functions and E2, the set of all functions

that sum to zero, or, in symbols,

E2 = {φ ∈ `2(X) :
∑
x∈X

φ(x) = 0}.

Because `2(X) is the orthogonal sum E1 ⊕ E2, to see that E2 is as we have

described, we must simply show that E2 is orthogonal to E1. To that end, let φ0 be

in E2 and consider

0 = 〈φ0, 1〉 =
∑
x∈X

φ0(x),

which implies that E2 is, indeed, the set of functions that sum to zero.

Certainly, as E1 is the set of constant functions on X, we have that p1(x) ≡ 1 is

the spherical function corresponding to E1. Furthermore, the spherical function of E2

will be of the form

p2(x) =


 1 x = 1

C2 x 6= 1
, where C2 =

−1

|X| − 1
.

That p2(x) is the spherical function of E2 follows easily from

0 = p(1) + p(2) + · · · + p(|X|)

= 1 + (|X| − 1)C2,

which gives us the value for C2. The orthogonal projections of `2(X) onto E1 and E2

we claim, respectively, are
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π1φ(x) =
1

|X|
∑
y∈X

φ(y)

and

π2φ(x) = φ(x) − 1

|X|
∑
y∈X

φ(y),

the latter projection following because, as π1 and π2 are orthogonal projections, we

can decompose φ into π1φ+ π2φ; thence, φ = π1φ+ π2φ. Solving for π2φ gives us

π2φ(x) = φ(x) − π1φ(x) = φ(x) − 1

|X|
∑
y∈X

φ(y),

with substitution of π1 from above justifying the latter equality. We next give the

image of the spherical functions, p1(x) and p2(x), under the Radon transform R :

namely,

(Rp1)(S) =
∑
x∈S

p1(x) = |S| = k

and

(Rp2)(S) =
∑
x∈S

p2(x) =


 1 + (k − 1)C2 1 ∈ S

kC2 1 /∈ S
.

There exists, as well, a natural adjoint of the Radon transform R. Define

R∗ : `2(Y ) 7→ `2(X) by

(R∗F )(x) =
∑
S3x

F (S),

if φ is in `2(X) and F is in `2(Y ), for

〈φ,R∗F 〉 =
∑
x∈X

φ(x)(R∗F )(x)

=
∑
x∈X

φ(x)
∑
S3x

F (S)
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=
∑
S3x

∑
x∈X

φ(x)F (S)

=
∑
S3x

(Rφ)F (S) = 〈Rφ, F 〉.

Finally, we claim that the image of p1 and p2 under the adjoint, R∗, evaluated at

1 are

(R∗Rp1)(1) =
∑
S31

(Rp1)(S)

=
∑
S31

k, from our work above,

=

(|X| − 1

k − 1

)
k

and

(R∗Rp2)(1) =
∑
S31

(Rp2)(S)

=

(|X| − 1

k − 1

)
[1 + (k − 1)C2] .

4.3. The Radon Transform for Doubly Transitive Actions

Notice that in the example above of the Radon transform on the spaceX = {1, · · · , n},
we used no special characteristics of Sn or X other than that X is doubly transitive

under the action of Sn. Therefore, the resulting decomposition of `2(X) into weight

spaces, the spherical functions, and the adjoint of the Radon transform all general-

ize nicely as follows. We will omit some of the details, inasmuch as many of these

specifics are directly analogous to those in the special case outlined above.

Let X be any doubly transitive G-space and let Go be as before for a fixed origin,

o. Then, again, Go has two orbits, X1 = {o} and X2 = X − {o}, and from the
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Cartan-Gel′fand Theorem, that is Theorem 3.3.1, `2(X) = E1 ⊕ E2, and, once more,

E1 = {φ ∈ `2(X) : φ(x) = c0 for all x ∈ X},

where c0 is a constant—that is, E1 is the set of all constant functions—and

E2 = {φ ∈ `2(X) :
∑
x∈X

φ(x) = 0}.

Then the spherical functions are, as above,

p1(x) ≡ 1

and

p2(x) =


 1 x = o

C2 x 6= o
, where C2 =

−1

|X| − 1
.

Furthermore, the orthogonal projections of `2(X) onto E1 and E2 are given exactly

as above by, respectively,

π1φ(x) =
1

|X|
∑
y∈X

φ(y)

and

π2φ(x) = φ(x) − 1

|X|
∑
y∈X

φ(y).

Let L0 be a nonempty subset of X other than X itself, and let X = {gL0 : g ∈ G}
be the set of G-translates of L0. If K = {g ∈ G : gL0 = L0}, then |X| = |G||K|, as

G/K ∼= X.

There exists, then, a natural Radon transform RRR : `2(X) 7→ `2(X) given by

(RRRφ)(L) =
∑
x∈L

φ(x).

Furthermore, RRR has a dual transformation RRR∗ : `2(X) 7→ `2(X) defined by

51



(RRR∗F )(x) =
∑
L3x

F (L).

In this case, we remark that RRR∗ is the adjoint of RRR in the following sense:

〈RRRφ, F 〉`2(X) =
∑
x∈L

φ(x)F (L) = 〈φ,RRR∗F 〉`2(X).

Therefore, RRR is injective if and only if RRR∗ is surjective.

The image of the spherical functions, p1 and p2, under RRR is

(RRRp1)(L) =
∑
x∈L

p1(x) = |L| = |L0|

and

(RRRp2)(L) =
∑
x∈L

p2(x) =




|X| − |L0|
|X| − 1

o ∈ L

−|L0|
|X| − 1

o /∈ L

If x is in X, let m = |{L ∈ X : x ∈ L}| be the number of elements of X that

contain x. Then by counting the pairs (x, L) with x in L in two ways—that is, first

summing on x and then L, or vice versa, we have

m =
|L0||X|
|X| .

Then the images of RRRp1 and RRRp2 under RRR∗ are

RRR∗RRRp1(o) = m|L0|

and

RRR∗RRRp2(o) = m
|X| − |L0|

|X| .
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As the operator RRR∗RRR is G-invariant, if we apply the results of Theorem 3.4.2, we

establish

Theorem 4.3.1. letX be a doubly transitive G-space. Then the Radon transform

RRR : `2(X) 7→ `2(X) is injective and any φ in `2(X) we can recover from RRRφ by

φ =
1

m

(
1

|L0|π1RRR
∗ +

|X|
|X| − |L0|π2RRR

∗
)
RRRφ,

where

m =
|L0||X|
|X|

and π1 : `2(X) 7→ E1 and π2 7→ E2 are orthogonal projections. By duality, the

transform RRR∗ : `2(X) 7→ `2(X) is surjective.
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