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Abstract. Let n ≥ 1 and B ≥ 2. A real-valued function f defined on
the n-simplex ∆n is approximately convex with respect to ∆B−1 if

f

(
B∑

i=1

tixi

)
≤

B∑
i=1

tif(xi) + 1

for all x1, . . . , xB ∈ ∆n and all (t1, . . . , tB) ∈ ∆B−1. We determine the
extremal function of this type which vanishes on the vertices of ∆n.
We also prove a stability theorem of Hyers-Ulam type which yields as a
special case the best constants in the Hyers-Ulam stability theorem for
ε-convex functions.

1. Introduction

Let U be a convex subset of a real vector space. Then a function f : U → R

is ε-convex iff

f((1 − t)x + ty) ≤ (1 − t)f(x) + tf(y) + ε

for all t ∈ [0, 1] and x, y ∈ U . In 1952 Hyers and Ulam [6] proved that any
ε-convex function on a finite dimensional convex set can be approximated by
a convex function. Since then several authors have considered the problem
of improving the constants in this stability theorem. (See the book [5] for
the complete history.) Here we find the best constants.

Theorem 1. Suppose that U ⊆ R
n is convex and that f : U → R is ε-convex.

Then there exist convex functions g, g0 : U → R such that

g(x) ≤ f(x) ≤ g(x) + κ(n)ε and |f(x) − g0(x)| ≤ κ(n)ε
2

for all x ∈ U , where

κ(n) = blog2 nc +
2(n + 1 − 2blog2 nc)

n + 1
.

Moreover, κ(n) is the best constant in these inequalities.
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The value κ(2) = 5/3 was first obtained by Green [4]. The value κ(2n −
1) = n was obtained by a different argument in [3]. Note that κ(3) = 2,
κ(4) = 12/5, κ(5) = 8/3, κ(6) = 20/7, κ(7) = 3, etc. These values improve
the constants obtained by Cholewa [1]. The best constants corresponding
to κ(n) for approximately midpoint-convex functions were obtained in [2].

Our methods give the best constants for a more general stability theorem.
To explain this we fix some notation. The standard n-simplex ∆n is defined
by

∆n =
{

(x(0), . . . , x(n)) :
n∑

j=0

x(j) = 1, x(j) ≥ 0, 0 ≤ j ≤ n
}

.

The vertices of ∆n are denoted by e(j) (0 ≤ j ≤ n). For x ∈ ∆n, the set
{0 ≤ j ≤ n : x(j) 6= 0} is denoted by suppx. Fix B ≥ 2 and n ≥ 1, and let U
be a convex subset of R

n. We say that a function f : U → R is approximately
convex with respect to ∆B−1 iff

f
( B∑

i=1

tixi

)
≤

B∑
i=1

tif(xi) + 1

for all x1, . . . , xB ∈ U and all (t1, . . . , tB) ∈ ∆B−1. When B = 2 this is just
the definition of 1-convex and by rescaling properties of ε-convex function
reduce to those of 1-convex functions.

In Section 2 we consider real-valued functions with domain ∆n that are
approximately convex with respect to ∆B−1. We show that there exists
an extremal such function satisfying the following: (i) E is approximately
convex with respect to ∆B−1; (ii) E vanishes on the vertices of ∆n; (iii)
if f : U → R is approximately convex with respect to ∆B−1 and satisfies
f(e(j)) ≤ 0 for j = 0, . . . , n, then f(x) ≤ E(x) for all x ∈ ∆n. More-
over, we obtain an explicit formula for E, and we show that E is concave
and piecewise-linear on ∆n and continuous on the interior of ∆n. We also
calculate the maximum value of E.

In Section 3 we prove a stability theorem of Hyers-Ulam type for approx-
imately convex functions and show that the maximum value of the extremal
function E gives the best constant in this theorem. The special case of
B = 2 is Theorem 1.

More information about approximately convex functions and stability the-
orems can be found in the book [5]. Our earlier paper [2] gives a thorough
treatment of extremal approximately midpoint-convex functions and related
results.

Finally we remark on why the proofs for approximately convex functions
are shorter and simpler than in the case of approximately midpoint-convex
functions in [2]. An approximately convex function defined on an open set is
easily seen to be locally bounded. However the existence of non-measurable
solutions to the functional equation f(x+y) = f(x)+f(y) shows that there
are approximately midpoint-convex functions defined on all of R

n that are
unbounded, both above and below, on every non-empty open subset of R

n.
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Thus the extremal approximately midpoint-convex function on the simplex
∆n, corresponding to E of Theorem 2 in the current paper, is not pointwise
largest in the set of all approximately midpoint-convex functions vanishing
on the vertices of ∆n, but only extremal in the set of Borel measurable
approximately midpoint-convex functions vanishing on the vertices of ∆n.
These measure theoretic considerations are a major reason for the more
complicated proofs in [2].

2. Extremal Approximately Convex Functions

Define a function E : ∆n → R as follows (recall that sgn 0 = 0 and sgn a =
a/|a| if a 6= 0):

E(x) = min
{ n∑

j=0

m(j)x(j) :
n∑

j=0

sgnx(j)
Bm(j)

≤ 1, m(j) ≥ 0, m(j) ∈ N

}
. (2.1)

If x ∈ ∆n then x(j) ≥ 0 and so sgnx(j) is either 0 or 1. Note that if
A = suppx, then

E(x) = min
{∑

j∈A

m(j)x(j) :
∑
j∈A

1
Bm(j)

≤ 1, m(j) ≥ 0, m(j) ∈ N

}
. (2.2)

Proposition 1. E(e(j)) = 0 for all j and E is approximately convex with
respect to ∆B−1.

Proof. It is clear from (2.2) that E(x) ≥ 0 for all x and that E(e(j)) = 0 for
all j. Suppose that x ∈ ∆n and that x =

∑B
k=1 tkxk for some x1, . . . , xB ∈

∆n. Let A = suppx and Ak = suppxk, and note that A ⊆ ⋃B
k=1 Ak. For

each 1 ≤ k ≤ B, we have

E(xk) =
∑
j∈Ak

mk(j)xk(j)

for some (mk(j))j∈Ak
such that

∑
j∈Ak

1/Bmk(j) ≤ 1. For j ∈ A, let C(j) =
{1 ≤ k ≤ B : j ∈ Ak} and let

M(j) = min{mk(j) : k ∈ C(j)}.
Note that

1
BM(j)+1

=
1
B

1
BM(j)

≤ 1
B

∑
k∈C(j)

1
Bmk(j)

.

Thus,

∑
j∈A

1
BM(j)+1

≤
∑
j∈A

1
B

∑
k∈C(j)

1
Bmk(j)

≤ 1
B

B∑
k=1

∑
j∈Ak

1
Bmk(j)

≤ 1.
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Hence

E
( B∑

k=1

tkxk

)
= E(x) ≤

∑
j∈A

(1 + M(j))x(j)

=
∑
j∈A

(1 + M(j))
B∑

k=1

tkxk(j)

= 1 +
B∑

k=1

tk
∑
j∈A

M(j)xk(j)

= 1 +
B∑

k=1

tk
∑
j∈Ak

M(j)xk(j)

(since Ak ⊆ A if tk 6= 0)

≤ 1 +
B∑

k=1

tk
∑
j∈Ak

mk(j)xk(j)

= 1 +
B∑

k=1

tkE(xk).

Thus, E is approximately convex with respect to ∆B−1. �
Lemma 1. If m(j) ≥ 1 for each 0 ≤ j ≤ n and

∑n
j=0 1/Bm(j) ≤ 1, then

{0, 1, . . . , n} is the disjoint union of sets P1, . . . , PB such that∑
j∈Pk

1
Bm(j)

≤ 1
B

for k = 1, . . . , B.

Proof. Without loss of generality we may assume that 1 ≤ m(0) ≤ m(1) ≤
· · · ≤ m(n). We shall prove that the result holds for all n ≥ 1 by induction
on N =

∑n
j=0 m(j). Note that the result is vacuously true if N = 1 and

is trivial if n ≤ B. So suppose that N ≥ 2 and that n > B, so that
n− 1 > B − 1 ≥ 1. By inductive hypothesis, {0, 1, . . . , n− 1} is the disjoint
union of sets F1, . . . , FB such that∑

j∈Fk

1
Bm(j)

≤ 1
B

for k = 1, . . . , B. Since
∑n−1

j=0 1/Bm(j) < 1, and since 1 ≤ m(0) ≤ m(1) ≤
· · · ≤ m(n), there exists k0 such that∑

j∈Fk0

1
Bm(j)

≤ 1
B

− 1
Bm(n−1)

≤ 1
B

− 1
Bm(n)

. (2.3)

Put Pk0 = Pk0 ∪ {n} and Pk = Fk for k 6= k0 to complete the induction. �
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Theorem 2. E is extremal, that is if h : ∆n → R is approximately convex
with respect to ∆B−1 and h(e(j)) ≤ 0 for j = 0, 1, . . . , n, then

h(x) ≤ E(x) for all x ∈ ∆n.

Proof. Let s = | suppx|, so that 1 ≤ s ≤ n + 1. The proof is by induction
on s. If s = 1 then x = e(j) for some j, so that

E(x) = E(e(j)) = 0 ≥ h(e(j)) = h(x).

As inductive hypothesis, we suppose that h(x) ≤ E(x) whenever | suppx| <
s. Now suppose that s ≥ 2 and that | suppx| = s. Without loss of generality
we may assume that suppx = {0, . . . , s−1}, so that E(x) =

∑s−1
j=0 m(j)x(j),

where
∑s−1

j=0 1/Bm(j) ≤ 1. Note that each m(j) ≥ 1 since s ≥ 2.
If
∑s−1

j=0 1/Bm(j) ≤ 1/B, let P1 = {0, . . . , s − 2}, P2 = {s − 1}, and
Pk = ∅ for 2 < k ≤ B. Note that |Pk| < s for 1 ≤ k ≤ B and that∑

j∈Pk
1/Bm(j) ≤ 1/B.

On the other hand, if
∑s−1

j=0 1/Bm(j) > 1/B, then applying Lemma 1
with n = s − 1, we can write {0, 1, . . . , s − 1} as the disjoint union of sets
P1, . . . , PB such that

∑
j∈Pk

1/Bm(j) ≤ 1/B for each 1 ≤ k ≤ B. Note that
this implies that |Pk| < s for 1 ≤ k ≤ B.

If Pk 6= ∅, let xk = (1/tk)
∑

j∈Pk
x(j)e(j), where tk =

∑
j∈Pk

x(j). If
Pk = ∅, let xk = e(0) and let tk = 0. Thus x =

∑B
k=1 tkxk, where tk ≥ 0

and
∑B

k=1 tk = 1. Note that

| suppxk| = max{1, |Pk|} < s (1 ≤ k ≤ B).

If Pk 6= ∅, then m(j) ≥ 1 for all j ∈ Pk, and
∑

j∈Pk
1/Bm(j)−1 ≤ 1. Since

| suppxk| < s, our inductive hypothesis implies that h(xk) ≤ E(xk). Finally,

h(x) = h
( B∑

k=1

tkxk

)
≤ 1 +

B∑
k=1

tkh(xk) ≤ 1 +
∑

Pk 6=∅

tkE(xk)

≤ 1 +
∑

Pk 6=∅

tk
∑
j∈Pk

(m(j) − 1)xk(j)

= 1 +
∑

Pk 6=∅

∑
j∈Pk

(m(j) − 1)x(j)

= 1 +
s−1∑
j=0

m(j)x(j) −
s−1∑
j=0

x(j)

=
s−1∑
j=0

m(j)x(j) = E(x).

This completes the induction. �
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Following the convention that x logB x = 0 when x = 0, the entropy
function F : ∆n → R is defined as follows:

F (x) = −
∑

x(j) logB x(j).

Proposition 2. F is approximately convex with respect to ∆B−1 and satis-
fies

F (x) ≤ E(x) ≤ F (x) + 1 (x ∈ ∆n).

Proof. Let x ∈ ∆n. A standard Lagrange multiplier calculation yields

F (x) = min
{∑

j∈A

y(j)x(j) :
∑
j∈A

1
By(j)

≤ 1, y(j) ≥ 0
}

, (2.4)

where A = supp x. Using (2.4) in place of (2.2), minor changes in the proof
of Proposition 1 show that F is approximately convex with respect to ∆B−1.
Suppose that

F (x) =
∑
j∈A

y(j)x(j) (2.5)

for some y(j) ≥ 0 satisfying
∑

j∈A 1/By(j) ≤ 1. Let m(j) = dy(j)e. Then∑
j∈A 1/Bm(j) ≤ 1, and so

E(x) ≤
∑
j∈A

m(j)x(j) ≤
∑
j∈A

(y(j) + 1)x(j) = F (x) + 1.

On the other hand, since F is approximately convex with respect to ∆B−1,
it follows from Theorem 2 that F (x) ≤ E(x). �

Recall that a face of a compact convex set A is an intersection of A with
any of its supporting hyperplanes. An open face is the interior of a face in
the minimal affine space containing it. When A is a simplex, the faces of A
are just the sub-simplices of A of lower dimension.

Proposition 3. (i) E is piecewise-linear and the restriction of E to each
open face of ∆n is continuous.
(ii) E is lower semi-continuous;
(iii) E is concave.

Proof. To prove that E is piecewise linear it is enough to show that E is
piecewise linear on the interior ∆◦

n of ∆n. For then by an induction on n
we will have that E is piecewise linear on ∆◦

n and the induction hypothesis
implies that it is piecewise linear when restricted to any of the faces of ∆n,
which implies that E is piecewise linear on ∆n. For fixed n and B let

F(n, B) :=

{
(m0, . . . , mn) : mk ∈ N,

n∑
k=0

1
Bmk

≤ 1

}

be the set of feasible (n + 1)-tuples. For (m0, . . . , mn) ∈ F(n, B) let
Λ(m0,...,mn)∆n → R be the linear function

Λ(m0,...,mn)(x0, . . . , xn) = m0x0 + m1x1 + · · · + mnxn
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Figure 1. Graph of y = E(x, y, 1−x−y) for B = 2 over the simplex
0 ≤ y ≤ 1 − x ≤ 1 showing the discontinuity along the boundary. On
the boundary ES has the value 1 except at the three vertices where it
has the value 0.

so that E : ∆n → R is given by

E(x) = min{Λ(m0,...,mn)(x) : (m0, . . . , mn) ∈ F(n, B)}.
Let

E(n, B) := {(m0, . . . , mn) ∈ F(n, B) :

Λ(m0,...,mn)(x) = E(x) for some x ∈ ∆◦
n}

be the set of extreme (n + 1)-tuples. Then

E
∣∣
∆◦

n
(x) = min{Λ(m0,...,mn)(x) : (m0, . . . , mn) ∈ E(n, B)}

and therefore showing that E
∣∣
∆◦

n
is piecewise linear is equivalent to showing

that E(n, B) is finite.

Lemma 2. Let (m0, . . . , mn) ∈ E(n, B) and (m′
0, . . . , m

′
n) ∈ F(n, B) with

m′
k ≤ mk for 0 ≤ k ≤ n. Then (m′

0, . . . , m
′
n) = (m0, . . . , mn).

Proof. For if not then there is an index k with m′
k < mk. As all the compo-

nents of x = (x0, . . . , xn) are positive on ∆◦
n this implies that on x ∈ ∆◦

n

E(x) ≤ Λ(m′
0,...,m′

n)(x) = Λ(m0,...,mn)(x) + Λ(m′
0,...,m′

n)(x) − Λ(m0,...,mn)(x)

≤ Λ(m0,...,mn)(x) + (m′
k − mk)xk < Λ(m0,...,mn)(x).
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This contradicts that for (m0, . . . , mn) ∈ E(n, B) there is an x ∈ ∆◦
n with

Λ(m0,...,mn)(x) = E(x). �

Let Perm(n + 1) be the group of permutations of {0, 1, . . . , n}. Then it is
easily checked that E(n, B) is invariant under the action of Perm(n+1) given
by σ(m0, m1, . . . , mn) = (mσ(0), mσ(1), . . . , mσ(n)). Therefore if E∗(n, B) is
the set of monotone decreasing elements of E(n, B), that is

E∗(n, B) := {(m0, . . . , mn) ∈ E(n, B) : m0 ≥ m1 ≥ · · · ≥ mn},
then

E(n, B) = {σ(m0, . . . , mn) : (m0, . . . , mn) ∈ E∗(n, B), σ ∈ Perm(n + 1)}
and to show that E(n, B) is finite it is enough to show that E∗(n, B) is finite.

Lemma 3. Suppose that n ≥ 0. Let m0 ≥ m1 ≥ · · · ≥ mn be a non-
increasing sequence of (n + 1) positive integers, and let C be a positive real
number such that

n∑
k=0

1
Bmk

≤ C,

and such that if m′
0, m

′
1, . . . , m

′
n are any positive integers with m′

k ≤ mk for
0 ≤ k ≤ n, then

n∑
k=0

1
Bm′

k

≤ C

implies that (m′
0, . . . , m

′
n) = (m0, . . . , mn). (We will say that (m0, . . . , mn)

is extreme for (n, C).) Let

η = η(n, C) := min{j ≥ 2 : CBj ≥ n + B}.
Then mn < η(n, C). (The explicit value of η is η(n, C) = max{2, dlogB((n+
B)/C)e}.)
Proof. From the definition of η we have η ≥ 2 and CBη ≥ n + B which is
equivalent to

n + 1
Bη

≤ C − 1
Bη−1

+
1

Bη
.

Assume, toward a contradiction, that mn ≥ η. Then

1
Bm0

+ · · · + 1
Bmn−1

+
1

Bmn
≤ n + 1

Bη
≤ C − 1

Bη−1
+

1
Bη

.

This can be rearranged to give

1
Bm0

+ · · · + 1
Bmn−1

+
1

Bη−1
≤ C +

1
Bη

− 1
Bmn

≤ C.

This contradicts that (m0, . . . , mn) is (n, C) extreme and completes the
proof. �
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We now prove E∗(n, B) is finite. First some notation. For positive integers
l1, . . . , lj let C(l1, . . . , lj) := 1 −∑j

i=1 1/Blj . If (m0, . . . , mn) ∈ E∗(n, B)
then by Lemma 2 (and with the terminology of Lemma 3) for each j with
1 ≤ j ≤ n the tuple (m0, . . . , mn−j) is (n − j, C(mn−j+1, . . . , mn)) extreme,
and (m0, . . . , mn) itself is (n, 1) extreme. Therefore, by Lemma 3, mn <
η(n, 1), whence there are only a finite number of possible choices for mn.
For each of these choices of mn we can use Lemma 3 again to get mn−1 <
η(n− 1, C(mn)), and so there are only finitely many choices for the ordered
pair (mn−1, mn). And for each of these pairs (mn−1, mn) we have that
so there are only finitely many possibilities for mn−2. Continuing in this
manner it follows that E∗(n, B) is finite. This completes the proof that E∆n

S
is piecewise linear and thus point (i) of Propsition 3

To prove point (ii) let A be a nonempty subset of {0, 1, . . . , n}. In proving
point (i) we have seen that there is a finite collection L(A) of linear map-
pings Λ: ∆n → R, each one of the form Λ(x) =

∑
j∈A m(j)x(j) for some

nonnegative integers m(j), j = 0, 1, . . . , n, with
∑

j∈A 1/Bm(j) ≤ 1, such
that

E(x) = min{Λ(x) : Λ ∈ L(A)} (2.6)

for all x ∈ ∆n such that suppx = A. Clearly, we may also assume that
L(B) ⊆ L(A) whenever A ⊆ B. Suppose that (xi)∞i=1 ⊆ ∆n and that
xi → x as i → ∞. Note that suppx ⊆ suppxi for all sufficiently large i, so
that L(suppxi) ⊆ L(suppx) for all sufficiently large i. Thus,

E(x) = min{T (x) : T ∈ L(suppx)}
= lim

i→∞
min{T (xi) : T ∈ L(suppx)}

≤ lim inf
i→∞

min{T (xi) : T ∈ L(suppxi)}
= lim inf

i→∞
E(xi).

Thus, E is lower semi-continuous.
Finally we prove point (iii). It follows from (2.6) that the restriction of

E to the interior of any face is the minimum of a finite collection of linear
functions, and hence is continuous and concave. The lower semi-continuity
of E forces E to be concave on all of ∆n. �

Remark. The algorithm implicit in the proof that E∗(n, B) is finite is rather
effective for small values of n. In the case of most interest, when B = 2 so
that S = ∆1, it can be used to show

E∗(2, 2) = {(2, 2, 1)}, E∗(3, 2) = {(3, 3, 2, 1), (2, 2, 2, 2)}
E∗(4, 2) = {(4, 4, 3, 2, 1), (3, 3, 2, 2, 2)},
E∗(5, 2) = {5, 5, 4, 3, 2, 1), (3, 3, 3, 3, 2, 2)}.

When n = 2 this leads to the explicit formula

E(x, y, 1 − x − y) = min{1 + x + y, 2 − x, 2 − y}
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for 0 < x < 1− y < 1. (Cf. Figure 1). The sets E∗(n, 2) can be used to give
messier, but equally explicit formulas, for higher values of n. �

Proposition 4. The maximum of E is given by

κ(n, B) = blogB nc +
dB(n + 1 − BblogB nc)/(B − 1)e

n + 1
(2.7)

For small values of B and n, κS(n) is given in Table 1.

B\n 1 2 3 4 5 6 7 8 9 10
2 1.0 1.6667 2.0000 2.4000 2.6667 2.8571 3.0000 3.1111 3.4000 3.5455
3 1.0 1.0 1.5000 1.6000 1.8333 1.8571 2.0000 2.0000 2.2000 2.2727
4 1.0 1.0 1.0 1.4000 1.5000 1.5714 1.7500 1.7778 1.8000 1.9091
5 1.0 1.0 1.0 1.0 1.3333 1.4286 1.5000 1.5556 1.7000 1.7273
6 1.0 1.0 1.0 1.0 1.0 1.2857 1.3750 1.4444 1.5000 1.5455
7 1.0 1.0 1.0 1.0 1.0 1.0 1.2500 1.3333 1.4000 1.4545
8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2222 1.3000 1.3636
9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2000 1.2727
10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1818
11 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 1. Values of κ(n, B) for 2 ≤ B ≤ 11 and 1 ≤ n ≤ 10.

Proof. E is a symmetric function of x(0), . . . , x(n) and E is also concave.
Thus E achieves its maximum at the barycenter x = (1/(n + 1))

∑n
j=0 e(j).

So there exist nonnegative integers m(j) (j = 0, 1, . . . , n) such that E(x) =
(1/(n + 1))

∑n
j=0 m(j) and

∑n
j=0 1/Bm(j) ≤ 1. We may also assume that

(m(j))nj=0 have been chosen to minimize
∑n

j=0 1/Bm(j) among all possible
choices of (m(j))nj=0. Suppose that there exist i and k such that m(k) ≥
m(i) + 2. Note that

1
Bm(i)+1

+
1

Bm(k)−1
≤ 2

Bm(i)+1
≤ B

Bm(i)+1
<

1
Bm(i)

+
1

Bm(k)
. (2.8)

Thus replacing m(i) by m(i) + 1 and replacing m(k) by m(k) − 1 leaves
(1/(n + 1))

∑n
j=0 m(j) unchanged while it reduces

∑n
j=0 1/Bm(j), which

contradicts the choice of (m(j))nj=0. Thus |m(i) − m(k)| ≤ 1 for all i, k.
It follows that there exist integers ` ≥ 0 and 1 ≤ s ≤ n + 1 such that

κ(n, B) =
`(n + 1 − s) + (` + 1)s

n + 1
= ` +

s

n + 1
(2.9)

and
n + 1 − s

B`
+

s

B`+1
≤ 1. (2.10)

Moreover, it is clear from (2.9) that ` is the least nonnegative integer satsi-
fying (2.10) for some 1 ≤ s ≤ n + 1, i.e.

` = blogB nc.
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For this value of ` it is clear from (2.9) that s is the smallest integer in the
range 1 ≤ s ≤ n + 1 satisfying (2.10), i.e.

s =
⌈

B(n + 1) − B`+1

B − 1

⌉
=
⌈

B

B − 1
(n + 1 − B`)

⌉
.

Substituting these values for ` and s into (2.9) gives (2.7). �

3. Best Constants in Stabilty Theorems of Hyers-Ulam Type

Hyers and Ulam [6] introduced the following definition. Fix ε > 0. A
function f : U → R, where U is a convex subset of R

n, is ε-convex if

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) + ε

for all x, y ∈ U and all t ∈ [0, 1].
Note that f is ε-convex if and only if (1/ε)f is approximately convex

with respect to ∆1. So let us generalize this notion by defining f to be ε-
convex with respect to ∆B−1 if (1/ε)f is approximately convex with respect
to ∆B−1.

The proof of the following theorem is adapted from Cholewa’s proof [1]
of the Hyers-Ulam stability theorem for ε-convex functions.

Theorem 3. Suppose that U ⊆ R
n is convex and that f : U → R is ε-convex

with respect to ∆B−1. Then there exist convex functions g, g0 : U → R such
that

g(x) ≤ f(x) ≤ g(x) + κ(n, B)ε and |f(x) − g0(x)| ≤ κ(n, B)ε
2

for all x ∈ U . Moreover, κ(n, B) is the best constant in these inequalities.

Proof. By replacing f by f/ε, we may assume that ε = 1. Set W = {(x, y) ∈
U × R : y ≥ f(x)} ⊆ R

n+1 and define g by

g(x) = inf{y : (x, y) ∈ Co(W )}. (3.1)

Clearly −∞ ≤ g(x) ≤ f(x). Suppose that (x, y) ∈ Co(W ). By
Caratheodory’s Theorem (see e.g. [7, Thm. 17.1]) there exist n +
2 points (x0, y0), . . . , (xn+1, yn+1) ∈ W such that (x, y) ∈ ∆ :=
Co({(x0, y0), . . . , (xn+1, yn+1)}). Let y = min{η : (x, η) ∈ ∆}. Then
(x, y) lies on the boundary of ∆ and so it is a convex combination of
n + 1 of the points (x0, y0), . . . , (xn+1, yn+1). Without loss of generality,
(x, y) =

∑n
j=0 tj(xj , yj) for some (t0, . . . , tn) ∈ ∆n. Note that

h
( n∑

j=0

x(j)e(j)
)

:= f
( n∑

j=0

x(j)xj

)
−

n∑
j=0

x(j)f(xj) (x ∈ ∆n)
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is approximately convex with respect to ∆B−1 and satisfies h(e(j)) = 0 for
j = 0, 1, . . . , n. By Proposition 4, maxx∈∆n h(x) ≤ κ(n, B). Thus

y ≥ y =
n∑

j=0

tjyj =
n∑

j=0

tjf(xj)

= f
( n∑

j=0

tjxj

)
− h
( n∑

j=0

tje(j)
)

≥ f
( n∑

j=0

tjxj

)
− κ(n, B)

= f(x) − κ(n, B).

Taking the infimum over all y yields g(x) ≥ f(x) − κ(n, B), i.e. f(x) ≤
g(x) + κ(n, B). Finally, set g0(x) = g(x) + κ(n, B)/2.

The fact that κ(n, B) is the best constant follows by taking f to be E,
where E is the extremal approximately convex function (with respect to
∆B−1) with domain ∆n. �

Setting B = 2 in Theorem 3, gives the best constants in the Hyers-Ulam
stability theorem and completes the proof of Theorem 1.
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