EXTREMAL APPROXIMATELY CONVEX FUNCTIONS
AND THE BEST CONSTANTS IN A THEOREM OF
HYERS AND ULAM
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ABSTRACT. Let n > 1 and B > 2. A real-valued function f defined on
the n-simplex A,, is approximately convex with respect to Ag_1 if

B B
f (Z tx) <N tif(wm) +1
=1 1=1

for all z1,...,25 € A, and all (t1,...,t5) € Ap—1. We determine the
extremal function of this type which vanishes on the vertices of A,,.
We also prove a stability theorem of Hyers-Ulam type which yields as a
special case the best constants in the Hyers-Ulam stability theorem for
e-convex functions.

1. INTRODUCTION

Let U be a convex subset of a real vector space. Then a function f: U — R
is e-conver iff

f(A =tz +ty) < (A -0)f(z) +1f(y) +¢
for all t € [0,1] and z,y € U. In 1952 Hyers and Ulam [6] proved that any
e-convex function on a finite dimensional convex set can be approximated by
a convex function. Since then several authors have considered the problem
of improving the constants in this stability theorem. (See the book [5] for
the complete history.) Here we find the best constants.

Theorem 1. Suppose that U C R"™ is convex and that f: U — R is e-convez.
Then there exist convex functions g,go: U — R such that
k(n)e

2

g(x) < f(x) <g(x) +r(n)e  and  |f(x) = go(2)| <
for all x € U, where
2(n + 1 — 2llos2nl)

n+1
Moreover, k(n) is the best constant in these inequalities.

r(n) = |logy ) +
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The value £(2) = 5/3 was first obtained by Green [4]. The value k(2" —
1) = n was obtained by a different argument in [3]. Note that x(3) = 2,
k(4) = 12/5, k(5b) = 8/3, Kk(6) = 20/7, k(7) = 3, etc. These values improve
the constants obtained by Cholewa [1]. The best constants corresponding
to k(n) for approximately midpoint-convex functions were obtained in [2].

Our methods give the best constants for a more general stability theorem.
To explain this we fix some notation. The standard n-simplex A,, is defined
by

A= {(@O), .. 2(m) : Y- 2(j) = 1,a(j) 20,0 < j < n}.
j=0
The vertices of A,, are denoted by e(j) (0 < j < n). For x € A,, the set
{0 <j<n:x(j)# 0} is denoted by suppz. Fix B > 2andn > 1, and let U
be a convex subset of R”. We say that a function f: U — R is approzimately
convex with respect to Apg_q iff

B B
f(Ztixi) < Ztif<$z‘) +1
i=1 i=1

for all x1,...,xp € U and all (t1,...,t5) € Ap_1. When B = 2 this is just
the definition of 1-convex and by rescaling properties of e-convex function
reduce to those of 1-convex functions.

In Section 2 we consider real-valued functions with domain A,, that are
approximately convex with respect to Ap_1. We show that there exists
an extremal such function satisfying the following: (i) F is approximately
convex with respect to Ap_1; (ii) E vanishes on the vertices of A,; (iii)
if f: U — R is approximately convex with respect to Ap_; and satisfies
fle(3)) < 0for j =0,...,n, then f(z) < E(z) for all x € A,. More-
over, we obtain an explicit formula for E, and we show that E is concave
and piecewise-linear on A, and continuous on the interior of A,. We also
calculate the maximum value of F.

In Section 3 we prove a stability theorem of Hyers-Ulam type for approx-
imately convex functions and show that the maximum value of the extremal
function E gives the best constant in this theorem. The special case of
B = 2 is Theorem 1.

More information about approximately convex functions and stability the-
orems can be found in the book [5]. Our earlier paper [2] gives a thorough
treatment of extremal approximately midpoint-convex functions and related
results.

Finally we remark on why the proofs for approximately convex functions
are shorter and simpler than in the case of approximately midpoint-convex
functions in [2]. An approximately convex function defined on an open set is
easily seen to be locally bounded. However the existence of non-measurable
solutions to the functional equation f(x+y) = f(x)+ f(y) shows that there
are approximately midpoint-convex functions defined on all of R™ that are
unbounded, both above and below, on every non-empty open subset of R".
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Thus the extremal approximately midpoint-convex function on the simplex
A, corresponding to E of Theorem 2 in the current paper, is not pointwise
largest in the set of all approximately midpoint-convex functions vanishing
on the vertices of A,, but only extremal in the set of Borel measurable
approximately midpoint-convex functions vanishing on the vertices of A,,.
These measure theoretic considerations are a major reason for the more
complicated proofs in [2].

2. EXTREMAL APPROXIMATELY CONVEX FUNCTIONS

Define a function E: A,, — R as follows (recall that sgn0 = 0 and sgna =
a/la| if a # 0):

= min { S m()e() 3 D <4 () > 0.m(G) € N} 2.)
j=0 J=0

If x € A, then z(j) > 0 and so sgnxz(j) is either 0 or 1. Note that if
A = supp z, then

—mln{Zm ZBi(j)_l m()>0m()€N} (2.2)

JEA jEA

Proposition 1. E(e(j)) = 0 for all j and E is approzimately convexr with
respect to Ag_1.

Proof. 1t is clear from (2.2) that E(z) > 0 for all z and that E(e(j)) = 0 for
all j. Suppose that x € A,, and that x = Zszl tyxy for some x1,...,xp €

A,. Let A = suppx and A, = supp x, and note that A C Ule A;.. For
each 1 < k < B, we have

E(xy) = > mi(f)zr())
JEAL

for some (mg(j))jea, such that > 1/B™U) < 1. For j € A, let C(j) =

{1<k<B:je A} and let

JEAK

M(j) = min{my(j) - k € C(j)}.

Note that

@
=
E
oa
U:J |

Q

Thus,

Mm
i

Z BM y)+1 = Z Z Bm;C

jEA JEA keC(j)

Bl

Il

b
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Hence

B
B( Y thay) = B(@) < 30 (1+ M(j)a())
k=1

jEA

B
="+ MG) Y tean()
k=1

jEA

B
=14 > M(G)ax(j)

k=1 jeA

B
=143t Y M(@G)zr())

k=1 JEAL

(since A C A if t, #0)

B
ST+t > me(f)aa(s)
k=1 jCAg
B
=1+ ZtkE(wk)
k=1
Thus, E is approximately convex with respect to Ap_1. ([l

Lemma 1. If m(j) > 1 for each 0 < j < n and Z?:O 1/B™U) < 1, then
{0,1,...,n} is the disjoint union of sets Pi,..., Pp such that
1 1
> i) =B
JEP
fork=1,...,B.
Proof. Without loss of generality we may assume that 1 < m(0) < m(1) <
-+ < m(n). We shall prove that the result holds for all n > 1 by induction
on N = 37" ;m(j). Note that the result is vacuously true if N = 1 and
is trivial if n < B. So suppose that N > 2 and that n > B, so that
n—1> B —12> 1. By inductive hypothesis, {0,1,...,n — 1} is the disjoint
union of sets Fi,..., Fp such that
1 1
2. 5o < B
JEF
for k =1,...,B. Since Z;L:_Ol 1/B™Y) < 1, and since 1 < m(0) < m(1) <
-+ < m(n), there exists kg such that
1 1 1 1 1
D FOSE T S F T G (2:3)
JE€LY,
Put Py, = Py, U{n} and P, = F}, for k # ko to complete the induction. O
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Theorem 2. E is extremal, that is if h: A, — R is approximately convex
with respect to Ap_1 and h(e(j)) <0 for j =0,1,...,n, then

h(z) < E(z) forall z € Ay,

Proof. Let s = |suppz|, so that 1 < s < n + 1. The proof is by induction
on s. If s =1 then z = e(j) for some j, so that

E(z) = E(e(j)) = 0 = h(e(j)) = h(x).

As inductive hypothesis, we suppose that h(z) < E(x) whenever |supp x| <
s. Now suppose that s > 2 and that ] supp z| = s. Without loss of generality

we may assume that supp:c ={0,...,s—1},so that E(x) = > 7 om(§)z(5),
where 327, ! l/Bm < 1. Note that each m(j) > 1 since s > 2.
If ZF 1/B™9) < 1/B, let P, = {0,...,5 — 2}, P, = {s — 1}, and

P, = @ for 2 < k < B. Note that |P;| < s for 1 < k < B and that
Siep 1/B™0) < 1/B.

On the other hand, if Z;;é 1/B™Y) > 1/B, then applying Lemma 1
with n = s — 1, we can write {0,1,...,s — 1} as the disjoint union of sets
Py, ..., Pg such that ZjePk 1/Bm(j) < 1/B for each 1 < k < B. Note that
this implies that |Py| < s for 1 < k < B.

It Py # @, let xp = (1/tg) X ep, x(j)e()), where ty = > . p x(j). If
P, = @, let x;, = e(0) and let tx = 0. Thus = = Zle tpxr, where t, > 0
and 337, ), = 1. Note that

| supp zx| = max{1, |P|} < s (1<k<B).

If P, # @, then m(j) > 1 for all j € Py, and Y cp 1/B™0)71 < 1. Since
| supp x| < s, our inductive hypothesis implies that h(zy) < E(zy). Finally,

(Zthk) <1+Ztkh a:k <1+ Z tkE l‘k
PuAD
<1—|—2th J) — Dar(4)

Py#2  jeEP;

=14 > > (m(j) — D=(j)

Pp#0 jePy
s—1 s—1
=14 m()z(j) = Y ()
j=0 J=0
s—1
=2 m()z(j) = E(z)
=0

This completes the induction. O
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Following the convention that zloggax = 0 when x = 0, the entropy
function F': A,, — R is defined as follows:

F(x) = =) (j)logp z(j).
Proposition 2. I is approximately convexr with respect to Ag_1 and satis-

fies
F(z) < E(z)< F(x)+1 (x € Ayp).

Proof. Let x € A,. A standard Lagrange multiplier calculation yields
. N 1 .
Fla)=min{ Y y()e(): Y 2oy <1 () 20f, (24)
jEA jEA
where A = supp . Using (2.4) in place of (2.2), minor changes in the proof

of Proposition 1 show that F' is approximately convex with respect to Ag_1.
Suppose that

F(z) =Y y(i)a()) (2.5)
JjeEA
for some y(j) > 0 satisfying >°._, 1/BY0) < 1. Let m(j) = [y(5)]. Then

djea 1/B™U) < 1, and so
E(z) <Y m(j)a() <Y (y(j) + Dz(j) = F(z) + 1.

jEA JEA

jEA

On the other hand, since F' is approximately convex with respect to Ap_1,
it follows from Theorem 2 that F'(z) < E(z). O

Recall that a face of a compact convex set A is an intersection of A with
any of its supporting hyperplanes. An open face is the interior of a face in
the minimal affine space containing it. When A is a simplex, the faces of A
are just the sub-simplices of A of lower dimension.

Proposition 3. (i) E is piecewise-linear and the restriction of E to each
open face of A, is continuous.

(ii) E is lower semi-continuous;

(i1i) E is concave.

Proof. To prove that E is piecewise linear it is enough to show that F is
piecewise linear on the interior Ay of A,. For then by an induction on n
we will have that E is piecewise linear on A} and the induction hypothesis
implies that it is piecewise linear when restricted to any of the faces of A,
which implies that F is piecewise linear on A,,. For fixed n and B let

1
F(n,B) := {(mo,...,mn):mk e N, ZBmk < 1}
k=0

be the set of feasible (n + 1)-tuples. For (mg,...,my) € F(n,B) let
A( A, — R be the linear function

m07"'7mn)

A(mo,...,mn)(an cee Jjn) = moeTo +M1T1 + - + MpTy
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FIGURE 1. Graphof y = E(z,y,1—x —y) for B = 2 over the simplex
0 <y <1-—2z <1 showing the discontinuity along the boundary. On
the boundary Es has the value 1 except at the three vertices where it
has the value 0.

so that F: A,, — R is given by
E(l‘) = min{A(mo,l..,mn)(x) : (m07 cees mn) € ]:(TL, B)}

Let

E(n,B) :={(mg,...,my) € F(n,B) :

A(mow’mn)(w) = E(z) for some z € A} }
be the set of extreme (n + 1)-tuples. Then
E‘A% (x) = min{A(mopwmn)(x) i (moy...,my) € E(n,B)}

and therefore showing that E‘ Ao 18 pilecewise linear is equivalent to showing
that £(n, B) is finite.
Lemma 2. Let (mg,...,my) € E(n,B) and (my,...,m)) € F(n,B) with
my < my, for 0 <k <n. Then (my,...,m}) = (mo,...,my).

Proof. For if not then there is an index k with mj < my. As all the compo-
nents of x = (xo,...,x,) are positive on Ay this implies that on z € A,

E(z) < Agy,mt) (@) = Ang,omn) (@) + At ) () = Ao, ()

n

< A(mo,...,mn)(‘r> + (m;s - mk)mk < A(mo,...,mn)(x)'
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This contradicts that for (mg,...,m,) € £(n, B) there is an x € AY with
Amg,..omn) (@) = E(2). O

Let Perm(n + 1) be the group of permutations of {0, 1,...,n}. Then it is
easily checked that £(n, B) is invariant under the action of Perm(n+1) given
by o(mo,m1,...,mn) = (Me(0); Me(1)s - - -, Me(n))- Therefore if £*(n, B) is
the set of monotone decreasing elements of £(n, B), that is

E*(n,B) :={(mo,...,my) €E(n,B) :myg >my >--->my},
then
E(n,B) ={o(mo,...,my) : (mo,...,my,) € E(n,B),0 € Perm(n + 1)}
and to show that £(n, B) is finite it is enough to show that £*(n, B) is finite.

Lemma 3. Suppose that n > 0. Let mg > my > --- > m, be a non-
increasing sequence of (n + 1) positive integers, and let C be a positive real

number such that
n

1
Z Bmk S C’
k=0
and such that if mg,m), ..., m; are any positive integers with mj < my, for
0 <k <n, then
S|
Z m) <C
im0 B
implies that (mgy,...,m,) = (mo,...,my). (We will say that (mg,...,my)

is extreme for (n,C).) Let
n=mn(n,C):=min{j >2:CB’ >n+ B}.

Then my, < n(n,C). (The explicit value of n is n(n, C) = max{2, [logg((n+
B)/C)1})

Proof. From the definition of n we have n > 2 and CB" > n + B which is
equivalent to

n+1 1 1
g =Y B T
Assume, toward a contradiction, that m,, > n. Then
1 1 1 n+1 1 1
B Tt B T s pn ST B T
This can be rearranged to give
1 1 1
This contradicts that (mo,...,my) is (n,C) extreme and completes the

proof. O
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We now prove £*(n, B) is finite. First some notation. For positive integers
liy..., 0 let C(ly,... ,lj) =1 g:l 1/Blj. If (mg,...,my) € £(n,B)
then by Lemma 2 (and with the terminology of Lemma 3) for each j with
1 < j < n the tuple (my,...,my—;) is (n — j,C(mp—ji1,...,my)) extreme,
and (mg,...,my) itself is (n,1) extreme. Therefore, by Lemma 3, m, <
n(n, 1), whence there are only a finite number of possible choices for m,,.
For each of these choices of m,, we can use Lemma 3 again to get m,_1 <
n(n—1,C(my)), and so there are only finitely many choices for the ordered
pair (mp—1,my,). And for each of these pairs (my_1,m,) we have that
so there are only finitely many possibilities for m,_o. Continuing in this
manner it follows that £*(n, B) is finite. This completes the proof that Eﬁ"
is piecewise linear and thus point (i) of Propsition 3

To prove point (ii) let A be a nonempty subset of {0,1,...,n}. In proving
point (i) we have seen that there is a finite collection £(A) of linear map-
pings A: A, — R, each one of the form A(z) = > .., m(j)z(j) for some
nonnegative integers m(j), 7 = 0,1,...,n, with ZjeA 1/B™Y) < 1, such
that

E(z) =min{A(z) : A € L(A)} (2.6)
for all x € A, such that suppx = A. Clearly, we may also assume that
L(B) C L(A) whenever A C B. Suppose that (z;)°; C A, and that
x; — x as 1 — oo. Note that suppx C supp z; for all sufficiently large i, so
that L(suppz;) C L(supp x) for all sufficiently large . Thus,

E(z) =min{T(x) : T € L(suppz)}
= llirglo min{7(z;) : T € L(suppz)}
< liminf min{7T(z;) : T € L(supp x;)}

1— 00

= liminf E(x;).

71— 00
Thus, F is lower semi-continuous.

Finally we prove point (iii). It follows from (2.6) that the restriction of
FE to the interior of any face is the minimum of a finite collection of linear
functions, and hence is continuous and concave. The lower semi-continuity
of F forces E to be concave on all of A,,. O

Remark. The algorithm implicit in the proof that £*(n, B) is finite is rather
effective for small values of n. In the case of most interest, when B = 2 so
that S = Aq, it can be used to show

£*(2,2) =4{(2,2,1)}, £7(3,2) =1(3,3,2,1),(2,2,2,2)}
£*(4,2) ={(4,4,3,2,1),(3,3,2,2,2)},
£*(5,2) =1{5,5,4,3,2,1),(3,3,3,3,2,2) }.
When n = 2 this leads to the explicit formula
Ez,y,1—z—y)=min{l +x+y,2 —z,2 — y}
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for 0 <z <1—y < 1. (Cf. Figure 1). The sets £*(n,2) can be used to give
messier, but equally explicit formulas, for higher values of n. O

Proposition 4. The mazimum of E is given by

[B(n+1—Blezn)) /(B —1)]
n+1

k(n, B) = |loggn]| + (2.7)

For small values of B and n, kg(n) is given in Table 1.

B\n | 1 2 3 4 5 6 7 8 9 10
2 | 1.0 1.6667 2.0000 2.4000 2.6667 2.8571 3.0000 B.1111 3.4000 3.5455
3 |10 1.0 15000 1.6000 1.8333 1.8571 2.0000 2.0000 2.2000 2.2727
4 |10 10 1.0 1.4000 15000 1.5714 1.7500 1.7778 1.8000 1.9091
5 |10 1.0 1.0 1.0 13333 1.4286 1.5000 1.5556 1.7000 1.7273
6 1.0 1.0 1.0 1.0 1.0 1.2857 1.3750 1.4444 1.5000 1.5455
7 1.0 1.0 1.0 1.0 1.0 1.0 1.2500 1.3333 1.4000 1.4545
8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2222 1.3000 1.3636
9 |10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 12000 1.2727
10 | 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 11818
11 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TABLE 1. Values of k(n,B) for 2< B <11 and 1 < n < 10.
Proof. E is a symmetric function of z(0),...,z(n) and E is also concave.

Thus E achieves its maximum at the barycenter T = (1/(n + 1)) >7_ e(j).
So there exist nonnegative integers m(j) (j = 0,1,...,n) such that E(7) =
(1/(n+ 1)) Xi_gm(j) and > 0, 1/B™Y) < 1. We may also assume that
(m(j))}—o have been chosen to minimize » 7 1/ B™U) among all possible
choices of (m(j))7_y. Suppose that there exist i and k such that m(k) >
m(i) + 2. Note that

1 n 1 < 2 < B < 1 n 1
Bm(i)+1 Bm(k)-1 — pm(i)+1 — pm(i)+1 Bm(3) Bm(k)’

(2.8)

Thus replacing m(i) by m(i) + 1 and replacing m(k) by m(k) — 1 leaves
(1/(n + 1)) >2%_om(j) unchanged while it reduces > % ;1 /B™9) | which
contradicts the choice of (m(j))j_g. Thus |m(i) — m(k)| < 1 for all 4,k.
It follows that there exist integers £ > 0 and 1 < s < n + 1 such that

n+1—s)+(L+1)s s
B = :E 2.9
(n, B) ntl T (2.9)
and
n+1—s s
B + JZEs < 1. (2.10)

Moreover, it is clear from (2.9) that ¢ is the least nonnegative integer satsi-
fying (2.10) for some 1 < s <n+1, ie.

¢ =|loggn|.
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For this value of ¢ it is clear from (2.9) that s is the smallest integer in the
range 1 < s < n + 1 satisfying (2.10), i.e.

B(n+1)— B! B '
_{ 51 = B_l(n+1—B) .
Substituting these values for ¢ and s into (2.9) gives (2.7). O

3. BEST CONSTANTS IN STABILTY THEOREMS OF HYERS-ULAM TYPE

Hyers and Ulam [6] introduced the following definition. Fix ¢ > 0. A
function f: U — R, where U is a convex subset of R", is e-convex if

fltz+ (1 —t)y) <tf(x) + (1 —1t)f(y) +¢

for all z,y € U and all ¢ € [0, 1].

Note that f is e-convex if and only if (1/e)f is approximately convex
with respect to Aj. So let us generalize this notion by defining f to be e-
convez with respect to Ag_1 if (1/¢)f is approximately convex with respect
to Ap_1.

The proof of the following theorem is adapted from Cholewa’s proof [1]
of the Hyers-Ulam stability theorem for e-convex functions.

Theorem 3. Suppose that U C R" is convexr and that f: U — R is e-convex
with respect to Ag_1. Then there exist convex functions g,go: U — R such
that

k(n, B)e

9(z) < fz) < g(x) + K(n,B)e  and  |f(z) = go(z)| < =

for all x € U. Moreover, k(n, B) is the best constant in these inequalities.

Proof. By replacing f by f/e, we may assume that e = 1. Set W = {(x,y) €
UxR:y> f(xr)} CR*! and define g by

g(z) = inf{y : (z,y) € Co(W)}. (3.1)

Clearly —oo < g(z) < f(z). Suppose that (x,y) € Co(W). By
Caratheodory’s Theorem (see e.g. [7, Thm. 17.1]) there exist n +
2 points (20,%0), .-, (Tnt1,Ynt1) € W such that (z,y) € A :=
Co({(x0,%0),- -+, (Tn+1,Yn+1)}). Let ¥ = min{n : (x,n) € A}. Then
(z,7) lies on the boundary of A and so it is a convex combination of
n + 1 of the points (zo,%0),-- ., (Tnt1,Ynt+1). Without loss of generality,
(,9) = 25 tj(xj,y;) for some (to,...,tn) € Ay,. Note that

g

n

w()es) = S a()f(x) (2 €Ay

n
J=0 J=0

-

Il
=)

2(7)e(d) = 1 (

J
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is approximately convex with respect to Ap_1 and satisfies h(e(j)) = 0 for
j=0,1,...,n. By Proposition 4, max,ca, h(x) < k(n,B). Thus

y>y= it]yj Zt f( 13]
7=0
(3 ) - h@w@)
j=0 §=0

n
> f(thxj) — k(n, B)
j=0
= f(z) — K(n, B).

Taking the infimum over all y yields g(z) > f(x) — k(n, B), ie. f(z) <
g(x) + k(n, B). Finally, set go(z) = g(x) + k(n, B) /2.

The fact that x(n, B) is the best constant follows by taking f to be E,
where E is the extremal approximately convex function (with respect to
Ap_1) with domain A,,. O

Setting B = 2 in Theorem 3, gives the best constants in the Hyers-Ulam
stability theorem and completes the proof of Theorem 1.
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