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In this note we discuss some elementary theorems about the relation between
area and length of closed embedded plane curves with bounded curvature. Our main
result (see Theorem 4.1) solves the extremal problem of which domain has largest
boundary length among embedded disks in the plane whose boundary curvatures
are uniformly bounded and whose area is fixed and sufficiently small.

Fig. 1 “Peanut” domain Pδ.

Reverse Isoperimetric Inequality. If M is an embedded closed disk in the plane
R2 whose boundary curvature satisfies |κ| ≤ 1 and with area A ≤ π + 2

√
3 then the

length of ∂M is bounded by

L − 2π

4
≤ Arcsin

(
A − π

4

)
.

If equality holds then M is congruent to the peanut shaped domain of Figure 1.
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This gives an estimate in the reverse direction to the classical isoperimetric
inequality. There is also a threshold phenomenon: if the area is larger than π +
2
√

3 then then is no upper bound for the length of ∂M . This is the area the
pinched peanut domain P√

3. Examples can be found by breaking a thin peanut
and connecting the ends with a long narrow strip. In fact, the set of possible points
(A,L) for embedded disks whose boundary satisfies |κ| ≤ 1 is further restricted
(Theorem 4.1). There is a suggestive physical interpretation of the equivalent dual
problem, where the length is fixed and the minimal area disk is sought. One may
imagine the cross section of a hose in which the inside pressure is smaller than the
outside. If the hose has limited flexibility, modelled by a uniform bound on the
curvature, then the equilibrium section is again the peanut shape.

In Section 4. we prove existence and uniqueness of the extremal figures. We
use a replacement argument to show that extremals are piecewice circular arcs.
Compactness depends on apriori length bounds. In Section 3. we consider length
estimates and some related stability results in the class of embedded disks whose
boundary curvature is uniformly bounded. Our results say that if area or some
other quantity is small, such as the circumradius, then the curve must be near
the circle. This gives a preliminary reverse isoperimetric inequality which improves
with the addition of extra information, say on the circumradius, for this class of
curves. The results depend on a theorem of Pestov and Ionin [PI] on the existence
of a large disk in a domain with uniformly bounded curvature (see e.g. [BZ].) In
Section 2. we include an argument for Pestov and Ionin’s theorem along the lines
of Lagunov’s [L] proof of the higher dimensional generalization using analysis of the
structure of the cut set of such a domain. Lagunov gives a sharp lower bound for
the radius of the biggest ball enclosed within hypersurfaces all of whose principal
curvatures are bounded |κi| ≤ 1. Lagunov and Fet [LF] show that the bound is
increased if additional topological hypotheses are imposed. It is noteworthy that
the examples which show the sharpness of the Lagunov and Lagunov-Fet bounds
for dimension greater than one are not unit spheres. We indicate how the argument
carries over to general Riemannian surfaces. In higher dimensions, Alexander and
Bishop [AB] have found inradius bounds depending on the curvatures and topology
of the manifold and its boundary. Our results use both the existence of a disk
and structure of the cut set. In Section 1. we consider curves which are only
continuously differentiable and whose curvature is bounded in an appropriate weak
sense which is suitable to extremal problems. Some other extremal problems for
such curves have been studied previously. For example, the problem of finding the
shortest plane curve with given endpoint and starting line element (position and
direction) considered by Markov [P]. The shortest plane curve given starting and
ending line elements was found by Dubins [D].
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1. Curves with weakly bounded curvature

Let Σ be 2-manifold of class C2. We will usually assume that our curves c :
(a, b) → Σ are C1, parameterized by arclength, such that the tangent vector t = c′

is absolutely continuous. Let n be the unit normal, chosen so that {t,n} is a
right handed system. Then the defining equation for geodesic curvature ∇tt(s) =
κg(s)n(s) implies that κg exists almost everywhere as an L1

loc function which we
shall assume satisfies the L∞ bound

(1.1) ‖κg‖∞ ≤ 1.

Let K denote the class of C1 curves of Σ, parameterized by arclength, whose c′ is
absolutely continuous, and whose geodesic curvature satisfies (1.1).

If Σ = R2 then c ∈ K is equivalent to the condition c ∈ C1 and

(1.2) |c′(s) − c′(t)| ≤ |s − t| for all s, t

which is called a constraint on average curvature by Dubins [D]. Since (1.2) implies
that the c′ is Lipschitz and thus absolutely continuous, by a theorem of Lebesgue c′

is differentiable almost everywhere, and is the integral of its derivative in the sense
that

c′(b) − c′(a) =
∫ b

a

c′′(s) ds.

By looking at difference quotients and using (1.2) we see that |c′′(s)| ≤ 1 at all
points where it exists. As 〈c′, c′〉 ≡ 1 we also have that c′′ = t′⊥t = c′ at all points
where c′′ = t′ exists. Thus κ, given by c′′ = t′ = κn is defined almost everywhere.
As |c′′| ≤ 1 this implies |κ| ≤ 1 at all points where c′′ exists, hence (1.1) holds.

Plane curves c ∈ K have a well defined direction angle from which the position
can be recovered. Because the rotation J by 90◦ is linear, n = Jt is differentiable
at exactly the same points that t is, and n′ = Jt′ = Jκn = −κt. Thus the usual
c′ = t and t′ = κn hold at all points where c′′ exists, and thus almost everywhere.
Now define a function ϑ(s) by

ϑ(s) =
∫ s

0

κ(t) dt

where the integral is in the sense of Lebesgue. By another theorem of Lebesgue the
function ϑ is absolutely continuous and has derivative κ almost everywhere. This
implies |dϑ/ds| = |κ| ≤ 1 almost everywhere. Define a functions R → R2 by

t∗(s) =(cos ϑ(s), sinϑ(s)),

n∗(s) =(− sinϑ(s), cos ϑ(s)).
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A unit speed curve c∗ is defined by

c∗(s) =
∫ s

0

t∗(t) dt.

Then c∗, t∗, and n∗ satisfy

(1.3) c∗′ = t∗, t∗′ = κn∗, n∗′ = −κt∗

almost everywhere. We can rotate and translate c∗ so that c(0) = c∗(0) and t(0) =
t∗(0).

Consider the function f(s) = |t(s)−t∗(s)|2+|n(s)−n∗(s)|2. Then f is absolutely
continuous and (1.1), (1.3) and a calculation imply that f ′(s) = 0 almost every-
where. As f is absolutely continuous this implies f is constant. But f(0) = 0 so
f ≡ 0. Therefore c′ = c∗′ which in turn implies c = c∗. So c′(s) = (cos ϑ(s), sinϑ(s))
where dϑ/ds = κ almost everywhere, and

(1.4) ϑ(s) − ϑ(0) =
∫ s

0

κ(t) dt.

Under this hypothesis, Proposition 1.1 and Proposition 1.2, which generalize
the classical lemmata of Schur-Schmidt, continue to hold. This is the desirable
hypothesis since it is the expected regularity for solutions of optimal control problem
with curvature as the control κ ∈ [−1, 1] for maximal length with the constraints
that the area be fixed and the curve be embedded. Part (3) is a special case of a
theorem due to A. Schur and E. Schmidt [BL], [C], [d], [Gg] which says the distance
between endpoints of a convex planar curve is smaller than the distance between
endpoints of a second curve with smaller curvatures at corresponding points.

Proposition 1.1. Let γ : [0, L] → R2 be a curve in K. Let γ(0) = 0 and γ′(0) =
∂/∂x. Denote the coordinates of by γ(s) = (x(s), y(s)). Then

(1) x(s) ≥ sin s for all 0 ≤ s ≤ π. Equality holds if and only if γ is an arc of a
unit circle.

(2) |y(s)| ≤ 1 − cos s for 0 ≤ s ≤ π/2 with equality if and only if γ is an arc of
a unit circle.

(3) |γ(s)| ≥ 2 sin(s/2) for 0 ≤ s ≤ 2π with equality if and only if γ is an arc of
the unit circle.

(4) In particular, if γ : [0, π] → R2 is tangent to a unit circle at γ(0) then γ(s)
is disjoint from the interior of the circle for 0 ≤ s ≤ π.

Proof. This is a standard fact from elementary differential geometry for C2 curves
and given by Dubins [D] for curves in K. We give the proof for completeness sake.
By the assumption on curvature and the representation (1.3), the direction of the
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tangent vector of the curve ϑ(s) =
∫ s

0
κ(s) ds is less than the corresponding angle

of a circular arc with unit curvature |ϑ(s)| ≤ s. Hence

x(s) =
∫ s

0

cos(ϑ(s)) ds ≥
∫ s

0

cos s ds = sin s

for 0 ≤ s ≤ π with equality if and only if |ϑ| = s a.e. Similarly

|y(s)| =
∣∣∣∣
∫ s

0

sin(ϑ(s)) ds

∣∣∣∣ ≤
∫ s

0

sin s ds = 1 − cos s

for 0 ≤ s ≤ π/2 with equality if and only if |ϑ| = s a.e. This implies (1) and (2).
Now orient the curve so that γ(s/2) = 0 and γ′(s/2) = ∂/∂x. By (1) x(s) ≥ sin(s/2)
and x(0) ≤ − sin(s/2) which implies (3). Equality implies γ is the arc of a unit
circle.

This implies a related result which is occasionally useful.

Proposition 1.2. Let γ : [0, L] → R2 be of class K (t = γ′ is absolutely contin-
uous, parameterized by arclength and |∇tt| = |κ| ≤ 1 a.e.) Suppose the curve has
endpoints on the boundary of a disk BR of radius R ≤ 1, lies outside BR and has
length

L ≤ 2π − 2 sin−1 R.

Then γ is an arc of a unit circle and either
(1) L = 2π − 2 sin−1 R; or
(2) R = 1.

Proof. By the Schur-Schmidt Proposition 1.1, the endpoints of γ are a distance
D = dist(γ(0), γ(L)) ≥ 2 sin(L/2) apart. If L > 2 sin−1 R then D > 2R, the
diameter of the circle unless (1) holds. On the other hand, a curve of length
L ≤ 2 sin−1 R ≤ πR whose endpoints are on a circle of radius R can be at most the
distance of the chord along the circle apart, namely dist(γ(0), γ(L)) ≤ 2R sin(L/2R)
which is a contradiction unless R = 1 and γ is the arc of a unit circle.

The strong maximum principle holds for curves γ ∈ K. Although this follows
from the maximum principle for weak solutions of an elliptic equation, in the curve
case it also follows immediately from Proposition 1.1. Suppose γ ∈ K so that γ(0) ∈
∂B1(O) and γ(−ε, ε) ⊂ B1(O) for some 0 < ε < π. Then γ((−ε, ε)) ⊂ ∂B1(O)
because γ is tangent to the disk at γ(0).

2. The theorem of Pestov and Ionin and the structure of the cut locus

Let M be a simply connected plane domain with C1 boundary which satisfies a
one-sided condition on the curvature. Let the boundary curve of M be positively
oriented, parameterized by arclength, γ′ absolutely continuous and 〈γ′(s + h) −
γ′(s)),n(s)〉 ≤ h for all s and 0 < h < π. Equivalently, the boundary ∂M has
curvature satisfying κg ≤ 1 a.e. We denote the class of all such curves by K+.
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Proposition 2.1. (Pestov and Ionin [PI]) Let M ⊂ R2 be an embedded disk whose
boundary is of class K+. Then M contains a disk of radius one. In particular the
area of M is at least π with equality if and only if M is a disk of radius one.

Outline of the proof. For X ∈ ∂M let C(X) be the first point P along the inward
normal to ∂M at X where the segment [X,P (X)] stops minimizing dist(P, ∂M).
Call this the cut point of X ∈ ∂M in M . From the definition it is clear that M
contains a disk of radius d(X,C(X)) about C(X). Lemma 2.2 shows that if C(X)
is the cut point of X ∈ ∂M , then at least one of the following two conditions holds

(1) C(X) is a focal point of ∂M along the normal line to ∂M at X, or
(2) there is at least one other point Y ∈ ∂M so that C(Y ) = C(X) and

|C(X) − X| = |C(X) − Y | = dist(C(X), ∂M).

(For example, if the boundary were C2, see [CE, Lemma 4.2 page 93].) If C(X)
is a focal point of ∂M then the curvature condition implies |X − C(X)| ≥ 1 by
Lemma 2.3 and we are done. However, if C denotes the set of all cut points then
we will show that C contains at least one focal point in Lemma 2.7.

We spell out these notions for M ⊂ R2 with boundaries of class K+. In fact,
the results of this section apply almost directly for M which is a C2 compact
two dimensional Riemannian manifold with C1 nonempty boundary ∂M . For any
X ∈ ∂M let ηX(s) be the unit speed geodesic through X with ηX

′(0) equal to
the inward unit normal to ∂M . The cut point of X ∈ ∂M is the point ηX(s0)
where s0 is the supremum of all s > 0 so that the segment [X, ηX(s)] realizes
the distance dist(ηX(s), ∂M). The focal point of X ∈ ∂M is the point ηX(s1)
where s1 is supremum of values s > 0 so that the function on ∂M defined by
Y 7→ dist(ηX(s), Y ) has a local minimum at Y = X. If ∂M is C2 at X then s1

is the first s where Y 7→ dist(ηX(s), Y ) ceases to have a positive second derivative
at Y = X. It is possible that no such s1 exists; in this case we say that the focal
distance is s1 = ∞. Clearly s0 ≤ s1.

Denote by C the set of all cut points of ∂M in M . Our goal is to understand
what the local geometry of C is like at its “nice” points.

Lemma 2.2. Any point P ∈ C satisfies at least one of the following two conditions
(1) P is a focal point of ∂M or
(2) There are two or more distance minimizing geodesics from ∂M to P .

Proof. This is standard. If P ∈ C is not a focal point of ∂M then let r :=
dist(P, ∂M) and let X ∈ ∂M be a point with P = ηX(r). Then choose a sequence
sk ↘ r such that for each k there is a point Xk ∈ ∂M so that ηX(sk) = ηXk

(rk) for
some rk < sk. By going to a subsequence we can assume that Xk → Y for some
Y ∈ ∂M . Because P is not focal point of ∂M we have Y 6= X. It follows that
ηY (r) = P and ηY is a minimizing geodesic from ∂M to P .
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Lemma 2.3. Let M ⊂ R2 be a domain whose boundary is of class K+. Let Y ∈ C
be a focal point. Then dist(Y, ∂M) ≥ 1.

Proof. Let Y = ηX(s0) for some point X ∈ ∂M and s0 > 0. Let γ ∈ K+ denote
the boundary curve ∂M parameterized so that γ(0) = X. Since γ is tangent to
∂M at X, by Proposition 1.1, some interval γ((−ε, ε)) is not contained in the open
disk Bs(ηX(s)) for each 0 < s < 1. Hence ∂M 3 Z 7→ dist(Z, ηX(s)) has a local
minimum at Z = X. Thus s0 ≥ 1.

Lemma 2.4 (Structure of the cut locus away from focal points.). Let P ∈ C
be a cut point that is not a focal point and let r = dist(P, ∂M). Then there is a
finite number of k ≥ 2 of minimizing geodesics from P to ∂M , and
Case 1: If k = 2, then there is a neighborhood U of P so that C ∩U is a C1 curve

and the tangent to C at P bisects the angle between the two minimizing
geodesics from P to ∂M .

Case 2: If k ≥ 3, then the k geodesic segments from P to ∂M split the disk Br(P )
into k sectors S1, . . . ,Sk. There is a small open disk U about P so that
in each sector Si the set C ∩ U ∩ Si is a C1 curve ending at P and the
tangent to this curve at P is the angle bisector of the two sides of the
sector Si at P .

Remark 2.5. When viewed correctly, this is not a surprising result. In the Euclidean
case take k points X1, . . . , Xk on the boundary of a disk Br(P ) that divides the
disk into sectors S1, . . . , Sk. The cut set C of the finite set {X1, . . . , Xk} is exactly
the union of the angle bisectors of the sectors Si. The theorem just says that away
from focal points this model is correct at the infinitesimal level.

Proof. By Lemma 2.2 there are at least two minimizing geodesics from P to ∂M .
If there were an infinite number of these segments, then their endpoints would
accumulate at some point Y ∈ ∂M . Then P would be a focal point of Y . Thus the
number of such segments is finite.

Let X1, . . . , Xk be the points in ∂Br(P )∩∂M (so that d(P,Xi) = dist(P, ∂M)).
Let ε > 0 be small. There is then an r1 > r so that

(2.1) Br1(P ) ∩ ∂M ⊆
k⋃

k=1

Bε(Xi).

Therefore if δ = 1
2 (r1 − r) and Q ∈ Bδ(P ) then the point of ∂M closest to Q is in

∂M ∩ ⋃k
1 Bε(Xi). For let X ∈ ∂M be the point closest to Q, then

d(Q,X) ≤ d(Q,X1) ≤ d(Q,P ) + d(P,X1) ≤ δ

2
+ r < r1.

Thus (1.1) implies X ∈ ∂M ∩ ⋃k
1 Bε(Xi). In what follows we will take a point Q

close to P and assume that the point of ∂M closest to Q is close to one of the
points X1, . . . , Xk. This is justified in light of the remarks just made.
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If k = 2 then P = ηX1(r) = ηX2(r) for X1, X2 ∈ ∂M . Let ci be a small piece
of ∂M containing Xi and let ρi(Q) be the distance of Q ∈ M from ci. Then, as
P is not a focal point, the function ρi is C1 in a neighborhood of the minimizing
geodesic from Xi to P . The gradient of ρi at the point ηXi(s) (where 0 ≤ s ≤ r) is

(2.2) ∇ρi(ηXi(s)) = ηXi

′(s).

Set f = ρ1−ρ2. Thus the zero set of f is the set of points that are at equal distances
from c1 and c2. This is a C1 function in a neighborhood of P . The gradient of f
at P is

(2.3) ∇f(P ) = ∇ρ1(P ) −∇ρ2(P ) = η′
X1

(r) − η′
X2

(r)

which is not zero (if it where, then the minimizing geodesics from P to ∂M would
be equal). Therefore by the implicit function theorem the set S defined by f = 0 is
a C1 curve in some small open disk U about P . The points of S are all cut points as
they can connected to ∂M by two minimizing geodesics. Moreover no other point
of U can be a cut point as any point of U is either closer to c1 than c2 or the other
way around. Thus C ∩U = S. As S is a level set of f its tangent at P is orthogonal
to ∇f = ∇ρ1−∇ρ2. But each ∇ρi is a unit vector so that ∇ρ1 +∇ρ2 is orthogonal
to ∇f . But ∇ρ1 + ∇ρ2 bisects the angle between ∇ρ1 and ∇ρ2. This completes
the proof of case 1.

If k ≥ 3 then choose a sector and reorder things so that this sector is S1 and so
that X1, X2 are the points of {X1, . . . , Xk} = ∂Br(p) ∩ ∂M that are on S1. For
each i with 1 ≤ i ≤ k choose a small piece ci of ∂M centered at xi and as in the case
of k = 2 let ρi be the distance from ci. As before each ρi is C1 in a neighborhood
on the minimizing geodesic segment from Xi to P . Again let f = ρ1 − ρ2. Again
as before ∇f 6= 0 near P and so in some small open disk U about P the set defined
by f = 0 is a C1 curve through P and the tangent to this curve bisects the angle
between the two sides of the sector S1. Call this curve S. Set

S+ = S ∩ S1, S− = S\S1.

If Q is a point in the interior of U ∩ S1, and the disk U is small enough, then
the point of ∂M closest to Q will be in c1 or c2. To see this let 3 ≤ i ≤ k. Then by
the argument above the set Fi1 of points in U closer to ci that to c1 is separated
from the set Gi1 of points in U closer to c1 than to ci by a smooth curve γ1i whose
tangent at P bisects the angle between the geodesic segments [P,Xi] and [P,X1].
Likewise for the sets F2i and G2i. Therefore the set of points closer to ci then either
c1 or c2 is contained in Fi1 ∩Fi2 and this set is disjoint from S1, at least when U is
small enough. This implies the statement above about Q. But this makes it clear
that the part of C in S1 is just S+. As a similar argument applies to the other
sectors. This completes the proof.

We now provide the details of the proof of Proposition 2.1. First we need that
M and the cut locus M have very similar topology.
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Proposition 2.6. For any compact two dimensional Riemannian manifold (M,∂M)
the cut locus C is a strong deformation retract of M .

Proof. This is standard. Retraction is accomplished by normal deformation.

Lemma 2.7. If M is simply connected then the cut locus C contains at least one
focal point.

Proof. Assume, toward a contradiction, that C has no focal points. Then by the
structure theorem C is a graph in the sense that it is a finite number of points
connected by a finite number of C1 imbedded arcs. (Note that loops, that is arcs
that begin and end at the same point, may be possible.) Also by the structure
theorem each vertex of the graph has valence at least 3 in the sense that there are
at least three arcs ending at the vertex. But by Proposition 2.6, C has the same
homotopy type as M and thus it is also simply connected. Therefore it is a tree.
But a tree has at least two vertices that are “ends” in that they have valence one.
This contradiction completes the proof.

Remark 2.8. Thus we have established Proposition 2.1. In fact, a nontrivial cut
locus C must have at least two focal points. To see this note that an easy variant
of the structure theorem shows that if the set of focal points is finite, then S is
a graph. Again by the structure theorem any valence one vertex most be a focal
point. This if the domain is simply connected there are three cases:

1: S is a one point set in which case the domain is a disk,
2: S has more than one point and a finite number of focal points. In this case

S is a graph and thus has two or more vertices, which implies it has two or
more focal points,

3: S contains an infinite number of focal points.

Note that we are only assuming a one sided bound on κ, not a bound on |κ|. The
argument applies equally well to Riemannian surfaces. In the Riemannian surface
case, the focal distance depends on the upper bound of the curvature K0 as well as
the boundary curvature.

Theorem 2.9. Let M be simply connected with ∂M ⊂ K+. Suppose that the Gauss
curvature K of M satisfies K ≤ 0 and the geodesic curvature κ of ∂M with respect
to the inward normal satisfies κ ≤ 1 a.e. Then M contains a disk of radius one.
M has area at least π with equality if and only if M is isometric with the standard
unit disk in the plane.

Proof. As in Lemma 2.7 the cut locus C has at least one focal point P . By adapting
standard comparison theorems this focal point has a distance of at least 1 from ∂M .
Also (see, e.g., [K]) the area inequality holds. This implies the theorem.

Remark 2.10. For general curvature, the radius estimate of the contained disk has
the following form. Let r0 > 0 and let K0 be any real number. When K0 > 0 we
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assume r0 < π/
√

K0. Set

(2.4)

(2.5)

(2.6)

κ0 =




√
K0 cot

(√
K0 r0

)
, if K0 > 0,

1
r0

, if K0 = 0,√|K0| coth
(√|K0| r0

)
, if K0 < 0.

Then it is straightforward to modify the proof of the last theorem to show that if M
is simply connected, the Gauss curvature of M satisfies K ≤ K0 and the geodesic
curvature of ∂M with respect to the inward normal satisfies κ ≤ κ0 a.e., then M
contains a disk of radius r0. This gives the area of a disk of radius r0 in the model
space of constant curvature K0 as a lower bound for the area of M with equality if
and only if M is isometric to a disk of radius r0 in the model.

There is an application to minimal (zero mean curvature) surfaces spanning
curves in space that follows easily from what we have done.

Corollary 2.11. Let c ∈ K be a curve in R3 whose curvature as a space curve
has k ≤ 1 a.e. Assume that X : D → R3 is a minimal immersion of a disk
with boundary so that the restriction X|∂D is a regular parameterization of c and
X ∈ C1,1(D,R3). Then the area |D| ≥ π.

Proof. Intrinsically D is a surface with nonpositive Gauss curvature and with
boundary geodesic curvature κ ≤ 1 a.e. since the geodesic curvature of ∂D = c
does not exceed curvature of c viewed as a space curve. Thus Theorem 2.9 shows
the area(D) ≥ π with equality if and only if D is a flat round disk.

Corollary 2.12. Let c ∈ R3 be a closed embedded C1,1 space curve whose curvature
k ≤ 1 at all points. Then any disk spanning c has area at least π.

Proof. For a C1 space curve let A(c) be the infimum of the areas of the disks
spanning c. A is a continuous function of c in the C1 topology. As the real analytic
curves are dense in the space of all curves in the C2 topology we may assume that
c is real analytic. If M is the Douglas-Rado solution to the Plateau problem, then
the area of M is A(M) and by a theorem of Osserman [O] and Gulliver [G] this is
free of interior branch points, and by a theorem of Gulliver and Lesley [GL] it is
free of boundary branch points. Therefore the last corollary implies that A(c) ≥ π.

Remark 2.13. Minimizing surfaces in Rn for n ≥ 4 can have branch points. We
wonder if there is still get a lower bound on the inradius of a disk with a metric
that is smooth except for a finite number of singularities of “branch point type”.

Remark 2.14. Note that if c is a space curve that is very close to a standard circle
double covered, then there is a minimal surface of the type of a Möbius strip that
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spans c and has small area. However, no lower bound is to be expected if, as for the
the Möbius strip, the Euler characteristic vanishes. For example if M is the planar
region between concentric circles, one of radius 1 and the other of radius 1 + 2r,
then the curvature of boundary of M has |κ| ≤ 1 but the largest disk that can be
put in M has radius r. Since r can be taken to be as small as we please this shows
there is no lower bound for the inradius.

For higher connectivity, there is another inradius lower bound. The following is
a special case of a more general theorem of Alexander and Bishop [AB] for curved
surfaces under curvature bounds. The proof for the case of plane domains follows
easily from what we have already done so we include it here for completeness.

Theorem 2.15. Let M ⊂ R2 be a bounded connected domain in the Euclidean
plane with boundary of class K (so that the curvature satisfies |κ| ≤ 1 a.e.) If
the Euler characteristic χ(M) is non-zero, then M contains a disk of radius r1 =
2/
√

3 − 1 ≈ .15470053838.

Lemma 2.16. If a disk Br(p) has three points on the boundary so that the unit
disks tangent to Br(p) at these points are disjoint, then r ≥ r1 = 2/

√
3 − 1.

Proof. The extremal figure is three unit disks centered at the vertices of an equi-
lateral triangle with sides of length 2 and Br(p) the disk centered at the center of
the triangle that is tangent to the three larger disks. This disk has radius r1 given
above.

Proof of theorem 2.15. If the cut locus of M has a focal point, then M contains a
disk of radius 1 and we are done. Thus assume that the cut locus C has no focal
points. If C has no vertices then by the structure theorem C is a C1 connected curve,
and thus a circle. Thus C and, by Proposition 2.6, also M have Euler characteristic
zero. Therefore by the hypothesis C has a least one vertex, and by the structure
theorem the valence of this vertex P is at least three. Set r = dist(P, ∂M) and let
{X1, . . . , Xk} = ∂Br(P ) ∩ ∂M .

Consider unit disks {B1, . . . , Bk} exterior to M and tangent to ∂M at the Xj .
We now argue that these unit disks are disjoint. Suppose this is not the case for,
say, two consecutive contact points X1, X2. Then the two tangent unit disks B1

and B2 intersect. Let the piece of boundary curve from X1 to X2 be denoted c(s)
where c(0) = X1 and c(L) = X2. We first claim that L ≤ π. By Proposition 1.1
(1) and (2) there are 0 < s1, s2 < π/2 so that c(s1) ∈ B̄2 and c(L− s2) ∈ B̄1 Hence
c([0, s1]) ∩ c([L − s2, L]) 6= ∅, thereforeL ≤ s1 + s2 ≤ π. By Proposition 1.2, (1) is
this is impossible. By Lemma 2.16 this implies r ≥ r1.

Remark 2.17. In higher dimensions, Lagunov [L] shows that the largest ball con-
tained in a domain of Rn, n ≥ 3, with connected boundary with principal curvatures
satisfying |κi| ≤ 1 has radius at least r1 = 2/

√
3−1 but gives an example for which

this cannot be enlarged. However, for domains satisfying additional topological re-
strictions, such as the ball, Lagunov and Fet [LF] show that the least radius of the
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contained ball is increased to r2 =
√

3/2− 1 and give examples of surfaces showing
this is sharp.

The essence of Lagunov’s argument, again, is to study the cut set. Let C(X1, . . . , Xk)
be the cut locus for finitely many points {X1, . . . , Xk} ∈ ∂B1(0) on the surface of
the unit ball in Rn. C(X1, . . . , Xk) divides Rn into sectors Si containing Xi where
Si can be defined as the set of points of Rn that are closer to Xi than to any of the
other points in the set {X1, . . . , Xk}. If k = 2 then C(X1, X2) is the hyperplane
that is a perpendicular bisector of the segment between X1 and X2. For a domain
M with smooth boundary ∂M let C be the cut locus of ∂M . Choose P ∈ C such
that P is not a focal point of ∂M . Set r = dist(P, ∂M). Lagunov shows that there
is a finite number k ≥ 2 of points {X1, . . . , Xk} in ∂Br(P )∩ ∂M . For each i let ui

be the unit vector in TP M that is tangent to the segment [P,Xi] and is pointing
in the direction of Xi. If k = 2 then there is a small open ball U about P so U ∩ C
is a smooth hypersurface and the tangent space to C at P is C(u1,u2). If k ≥ 3
then there is a small ball U about P so that U ∩ C is a “nice” stratified set, in
particular it has a tangent cone at P and this tangent cone is C(u1, . . . ,uk). For
general domains, if there is no focal point, the cut set must contain points where
k ≥ 3. Locally this looks like a triple juction graph crossed with an interval, hence
it allows balls of radius r1 as in Theorem 2.15. Under topological hypotheses, La-
gunov and Fet [LF] deduce existence k = 4 points which yields the larger radius r2

in the analog of Lemma 2.16.
There may be a stronger inradius estimates in the higher dimensional version if

topological assumptions are replaced by geometric ones such as a bound on diam-
eter. Also, we suspect that any starlike domain in R3 with all principle curvatures
≤ 1 has inradius ≥ 1.

3. Gradient estimate and star-shapedness

The following lemma gives an estimate on the radial component of velocity of a
curve in an annulus in the plane. It says that the rate at which a curve approaches
the boundary circles cannot be too large near the boundary lest the curve be forced
to “drive into the curb”. The estimate was found by computing the gradient of the
distance function on a circular arcs tangent to the bounding circles.

Lemma 3.1. Suppose M ⊂ R2 is an embedded disk with class K boundary satis-
fying |κ| ≤ 1 a.e. Let c(s) denote the boundary curve parameterized by arclength
and ρ(s) = 〈c(s), c(s)〉 be the square of the distance to the origin. If the unit disk
centered at the origin Br(0) ⊂ M then

(3.1) ρs
2 ≤ [

ρ − r2
] [

(r + 2)2 − ρ
]

whenever ρ ≤ r2 + 2r.

If M ⊂ BR(0) where R ≤ 2 then

(3.2) ρs
2 ≤ [

R2 − ρ
] [

ρ − (R − 2)2
]
.
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Moreover, inequality (3.2) implies that ρ ≥ (2 − R)2. If 2 < R then (3.2) holds
whenever ρ ≥ R2 − 2R.

Fig. 2 A curve with large |ρs| can’t avoid “driving into the curb”.

Proof. For (3.1), we may assume that c′(0) makes an angle of at most 90 degrees
with the segment from c(0) to the origin. (If not replace c(s) with c(−s).) Let C1

and C2 be two unit circles tangent to c at c(0) with C1 the one that is “closest” to
the origin. If ρ ≤ r2 + 2r and (3.1) is false, then both C1 and C2 must intersect the
interior of Br(0). Proposition 1.1 implies that c will also intersect the interior of
Br(0), which is not the case. Thus C1 is either tangent to ∂Br(0) or disjoint from
the closure of Br(0). This implies that if the angle between c′(0) and the segment
from c(0) to the origin is at least as large as the angle between this segment and
the tangent to the unit circle through c(0) and tangent to ∂Br(0). A calculation
shows that this is equivalent to

(3.3) [ρ′(s)]2 = [(r + 1)2 − ρ(s)][ρ(s) − r2].

(3.2) can be proven along the same lines, however we indicate an alternate proof.
As before, ρs is absolutely continuous and ρss is defined almost everywhere. The
(weak) equations for ρ on ∂M are

(3.4)
ρs = 2〈c, t〉

ρss = 2 − 2κp a.e.

where p = −〈X,n〉 and t and n are the tangent and outer unit normal vectors to
c. Thus setting ρ2

s + 4p2 = 4ρ we get

(3.5) ρss ≤ 2 +
√

4ρ − ρ2
s. a.e.

This can be integrated to yield (3.2).
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Lemma 3.2. Suppose M ⊂ R2 is an embedded disk with boundary of class K(k),
that is, the boundary curve c(s) is C1, parameterized by arclength, with c′ absolutely
continuous with boundary curvature |κ| ≤ k a.e. Let p = −〈c,n〉 denote the support
function to ∂M and assume p ≥ p0 > −1/k at all x ∈ ∂M . Then

(3.6) L ≤ 2kA + 2πp0

1 + kp0
.

In particular, if M were star-shaped with respect to the origin (thus p0 ≥ 0) then
L ≤ 2kA.

Proof. This follows from the Minkowski formulas whose proof we sketch. By
Lebesgue’s theorem we can recover ρs by integration. (3.4) implies

0 =
∫

∂M

ρss ds = 2
∫

∂M

ds − 2
∫

∂M

κp ds

so that

L =
∫

∂M

κp ds.

The function f(X) = 〈X,X〉 satisfies nf = 2〈c,∇nc〉 = 2p for X ∈ ∂M . Using
p ≥ p0 and Stokes theorem,

L − 2πp0 =
∫

∂M

κ (p − p0) ds

≤k

∫
∂M

p − p0 ds

=
k

2

∫
∂M

∂f

∂N
ds − kp0L

=
k

2

∫
M

∆f dx̂dy − kp0L

=2kA − kp0L

where ∆ is the R2 Laplacian. Hence (3.6) holds.

Remark 3.3. In fact, there is a reverse isoperimetric inequality in all dimensions
for regions M ⊂ Rn which are starlike with respect to the origin and with mean
curvature H (normalized so that H = 1 on the unit sphere) of ∂M satisfying
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|H| ≤ 1. To see this let p the support function of ∂M . Then the surface area A of
∂M and the volume V of M are given by the Minkowski formulas

A =
∫

∂M

pH dA, nV =
∫

∂M

p dA.

Using that |H| ≤ 1 and that p ≥ 0 (as M is starlike with respect to the origin) in
these leads at once to the reverse isoperimetric inequality

A ≤ nV.

Also the isoperimetric inequality in Rn is

A(Sn−1)nV (M)n−1 ≤ V (Bn)n−1A(∂M)n.

Using the relation A(Sn−1) = nV (Bn
1 ) and the last two inequalities leads to sharp

lower bounds for the A(∂M) and V (M)

A(Sn−1) ≤ A(∂M), V (Bn) ≤ V (M),

in the class of star like regions with mean curvature having |H| ≤ 1.
The following lemma is the link between radius bounds and length bounds. Its

main conclusion is star shapedness of the domain.

Theorem 3.4. Suppose M ⊂ R2 is an embedded disk with ∂M of class K. Suppose
also that B1(0) ⊂ M ⊂ BR(0) where R ≤ 3. Then M is star shaped with respect to
the origin. There is the estimate

(3.7) L ≤ 8A + 2π
(
3 + 2R − R2

)
7 + 2R − R2

where L = |∂M | is the length and A = |M | is the area of M . In particular, for all
1 ≤ R ≤ 3 there holds L ≤ 2A.

Proof. If R < 3 then Lemma 3.1 with r = 1 and R = 3 imply that ρs
2 < 4ρ and so

4p2 = 4ρ− ρs
2 > 0 so p cannot change sign and must remain positive. If R = 3 the

only possibility for p < 0 is that at a point c(s0) ∈ ∂M there holds p = 0 at ρ = 3
and ∂M consists of circular arcs near c(s0) extending the entire range ρ ∈ [1, 9].
But at ρ ∈ {1, 9} we must have p = +

√
ρ and P ≥ 0 on the arcs adjacent to c(s0)

or else M is on the “wrong” side of ∂M so at ρ = 1 and 1 6= inf ρ, or ρ = 9 and
9 6= sup ρ. The remainder of the argument is to give an estimate of p0. Recall that

(3.8) 4p2 = 4ρ − ρs
2.
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For R < 3 the bounds given by Lemma 3.1 intersect at ρ = ρ3 := (3− 2R + R2)/2.
Hence, there is an absolute bound

ρs
2 ≤ (9 − ρ3)(ρ3 − 1) =

(5 − R)(3 + R)(1 − R)2

4
.

Observe that

4ρ − min
{
(ρ − 1)(9 − ρ),

[
R2 − ρ

] [
ρ − (R − 2)2

]}
is minimized at ρ3. Thus by (3.8) we get the bound

4p2 ≥ 4ρ3 − (ρ3 − 1)(9 − ρ3) =
(3 − R)2(1 + R)2

4

hence

p0 ≥ (3 − R)(1 + R)
4

which gives (3.7) when inserted in Lemma 3.2.

For 0 ≤ δ ≤ √
3, let Eδ = B1((0, δ)) ∪ B1((0,−δ)) denote the domain consisting

of the union of two unit disks whose centers are 2δ apart. Consider two unit circular
arcs c1, c2 tangent to each of the circular boundary components of ∂Eδ. Let Pδ

denote the “peanut shaped” domain consisting of Pδ = int(Ēδ ∪ F̄1 ∪ F̄2) where
the Fi are “fillets” consisting of the region between the arcs ci and Eδ. This is the
region pictured in Figure 1.

Lemma 3.5. Suppose δ ≤ 1. Let γ(s) : [0, L] → R2 be a curve of regularity K
with curvature bounded by |κ| ≤ 1 a.e. whose endpoints are on ∂Pδ and which lies
exterior to Eδ. Then the entire curve is exterior to Pδ.

Proof. Suppose that c1 is an arc of the circle ∂B1(
√

4 − δ2, 0) and that γ(s) enters
the fillet F1. Then f(x, y) = (x − √

4 + δ2)2 + y2 = 1 on the endpoints of γ(s)
and maximal on γ at 0 < s0 < L where f(γ(s0)) > 1. Consider the family of unit
circle arcs corresponding to circles with centers on the line (

√
4 − δ2, 0) to γ(s0).

One of them passes through and is tangent to γ at s0. By construction, these
are transverse to ∂Eδ and hence by the maximum principle, γ “crashes” into ∂Eδ

before it reaches c1.

Lemma 3.6. Suppose M is an embedded disk whose boundary curve is of class K.
Assume that M contains two unit disks whose centers Z1, Z2 lie on the cut locus
C of ∂M . If dist(Z1, Z2) = 2δ > 2 then

(3.9) |M | > π + 2
√

3.
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Proof. Since it is connected, the cut locus connects Z1 to Z2. We may suppose that
C−(B1(Z1)∪B1(Z2)) contains no focal points ζ. Otherwise M contains a unit disk
about ζ and

|B1(Z1) ∪ B1(Z2) ∪ B1(ζ)| ≥ π + 2 +
2π

3
> π + 2

√
3

and we are done. Hence we suppose that there is a piecewise C1 simple subarc γ :
[0, L] → C, connecting Z1 = γ(0) to Z2 = γ(L) so that γ([0, L])−(B1(Z1)∪B1(Z2))
is without focal points.

We will show that either M contains a peanut Pδ or it contains thickening where
γ meets the disks. In order to quantify this, consider three disks B = B1(0, 0),
B′ = B1(

√
3, 1) and B′′ = B1(

√
3,−1). The triangular region T between the three

circles has area
√

3 − π/2. Let σ(x) denote the radius of the circle centered at
(x, 0) and tangent to B′ and B′′. Let σ(x) = 0 if x ≥ √

3. Let τ(x) denote the
distance of the contact point of ∂Bσ(x)(x, 0) ∩ ∂B′ to the origin and λ(τ(x)) the
length of the arc ∂Bτ(x)(x, 0) ∩ T . σ(x) is a decreasing and 1 ≤ τ(x) ≤ √

3 an
increasing function of x. We say that γ has remote ends if for all 0 ≤ x1, x2 there
are measurable functions t1(x1), t2(x2) ∈ [0, L] so that dist

(
γ(t1(x1)), Z1

)
= x1,

dist
(
γ(t2(x2)), Z2

)
= x2 and that Bσ(x1)(γ(t1(x1))) ∩ Bσ(x2)(γ(t2(x1)) = ∅.

First, if γ has remote ends then |M | > π + 2
√

3. To see this, observe that
for any point γ(t) there is an estimate of cut distance c(γ(t)). In particular, let
X1, X2 ∈ ∂M be two distinct points with c(γ(t)) = |c(t) − Xi|, which by the
structure of C may be chosen on opposite sides of γ. The subsets of ∂M which are
within an arclength π/2 of the Xi must be disjoint by Proposition 1.2. They must
also be disjoint of B1(Z1). Hence, by Proposition 1.1, the smallest cut distance
is possible if the boundary subsets are unit circle arcs and form with ∂B1(Z1) a
triangle congruent to T . Thus the cut distance is at least that of the distance from
(|Z1−γ(t)|, 0) to ∂T , namely c(γ(t)) ≥ σ(|γ(t)−Z1|). In particular, there is an arc

A1(τ(|Z1 − γ(t)|)) = ∂Bτ(|Z1−γ(t)|)(Z1) ∩ Bσ(|γ(t)−Z1|)(γ(t)) ⊂ M.

There is a similar definition of an arc A2 near the Z2 end.
If γ has remote ends, then for all 0 ≤ xi <

√
3 the balls Bσ(|γ(t1)−Z1|)(γ(t1)) and

Bσ(|γ(t2)−Z2|)(γ(t2)) are disjoint, as are the corresponding arcs Ai(τi). Hence the
thickenings

Hi =
⋃

1<τ<
√

3

Ai(τ)
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are disjoint. Thus

(3.10)

|M | ≥|B1(Z1)| + |B1(Z2)| + |H1| + |H2|

=2π + 2

√
3∫

1

λ(τ) dτ

=2π + 2|T |
=π + 2

√
3.

Moreover, since γ(t1(
√

3)) /∈ H1 ∪ H2 by continuity, but is an interior point of M ,
the inequality (3.10) must be strict. In particular, if δ ≥ √

3 then γ has remote
ends so (3.9) holds.

¿From now on, assume δ <
√

3. Let Λ be the straight line segment from Z1 to
Z2. By rigid motion we may suppose that Λ is in the y-axis and centered about
0. We deal with the case that Λ 6⊂ M . Choose a point E ∈ Λ − M̄ . We may also
suppose that the bounded part of the complement of M ∪ Λ lies on the right side
of Λ. Let χ : [0,∞) → R2 in the unbounded part of the complement of M ∪ Λ be
a simple smooth path connecting E to ∞. Let Let Pδ denote the peanut shaped
region about the balls B1(Z1) and B1(Z2). Let Y1, Y2 ∈ Λ be the endpoints of the
interval of Λ − M̄ containing E. Because of Lemma 3.1, the direction V to ∂M at
X ∈ ∂M ∩ Pδ cannot point at Z1 nor Z2 thus must “flow through”. For example,
foliate R2 −M by arcs of the circle x = +(1− y2)1/2 + k for all constants k so that
the semicircle touches B1(Z1) and B1(Z2). Then k|∂M cannot have a maximum at
one of these arcs, by the maximum principle. In particular, the curves ∂M through
Yi continue to x > 1.

Consider the portion β of ∂M starting π/2 from Y1, continuing through Y1,
heading in the positive x-direction to Y2 and ending π/2 beyond Y2. By the Schur-
Schmidt Proposition 1.1, β starts and ends on the left side of y = −1 and passes
through Pδ. Let E denote the “lagoon”, the connected component of R2 − (M ∪Λ)
containing E bounded by the union of the arc β and the segment [Y1, Y2]. Now
consider the cut set C′ of the complement of M . Since there are points (1, y) ∈ E ,
some point on E is a cut point of R2−M . To see this, let Bu(Y ) be the largest ball
contained in R2 −M with center Y ∈ [Y1, Y2]. It must be a cut point of C′ which is
not a focal point because, by construction, u <

√
3 − 1. Let {X1, . . . , Xk} be the

nearest points of Y in ∂M . It must happen that at least one X1 is on the boundary
near Y1 and one X2 is on the boundary near Y2. Now Y is the only place on the two
segments [X1, Y ] ∪ [Y,X2] that meets C′. By the structure of the cut set, at least
one continuation of the cut set enters the region Ê bounded by [X1, Y ]∪ [Y,X2]∪β.
But Ê is simply connected, therefore by the structure theorem of C′, if there are no
focal points Ê ∩ C′ is a piecewise C1 tree that must have an endpoint other than
Y . It is a focal point W and therefore B1(W )∩M = ∅. In particular, the intrinsic
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minimal path from Z1 to Z2 within R2−
(
χ([0,∞)) ∪ Ê

)
must loop around B1(W )

so must have a length at least 2
√

3 + 4π/3 − 2 sin−1(δ/2) > 2π/3 + 2
√

3. Thus, γ
has remote ends and (3.9) holds.

Finally, consider the case that Λ ⊂ M . By considering the foliation of Pδ −
(B1(Z1)∪B1(Z2)∪Λ) by the field of extremals again, x = ±(1− y2)1/2 ± k, we see
that any part of ∂M that begins and ends outside the peanut Pδ must stay outside
the peanut. Hence

|M | ≥ |Pδ| = π + 2δ
√

4 − δ2 > π + 2
√

3

whenever 1 < δ <
√

3, which is the present case.

We now prove the first link of our main estimate. It says that among domains
with boundary having bounded curvature, the circumradius is bounded by area.
In fact we give a “stable version”: the closer the area is to the area of a disk, the
closer the domain itself is to the disk.

Theorem 3.7 [Area Stability Theorem]. Suppose M is an embedded disk whose
boundary curve is of class K. If the area |M | ≤ π+2

√
3 then there is a point P ∈ M

so that B1(P ) ⊂ M ⊂ BR(P ) where

(3.11) (R − 1)2 = 8 − 2
√

16 − (A − π)2.

Proof. We utilize the structure of the cut locus C of M . By Proposition 2.1, M
contains at least one unit disk which we locate at the origin. Let ζ(A) = R be
the radius defined by the relation (3.11) for π ≤ A ≤ π + 2

√
3. ζ(A) is the radius

needed to contain a peanut located so the origin coincides with one of the unit disks
of the peanut. So B1(0) ⊂ Pδ ⊂ Bζ(A)(0) for a given area A = |Pδ|. Denote by

G = {P ∈ C : dist(P, ∂M) + |P | ≤ ζ(A)}.

We claim G = C and so R ≤ ζ(A). First observe that if Q ∈ C and dist(Q, ∂M) ≥ 1
then Q ∈ G. This implies that there is a unit ball B1(P ) ⊂ M so that |P | = |Q| +
dist(Q, ∂M)−1. However Lemma 3.6 and |M | ≤ A implies that |P | ≤ ζ(A)−1 hence
Q ∈ G. Moreover, there is a segment from the origin, [0, Q], which is completely
contained in M . Hence all the focal points of C, which have dist(Q, ∂M) ≥ 1, are
in G. Thus C−G is a subset of a tree consisting of C1 curves joined at vertices with
finite valence.

Suppose C 6= G. Then at some point X(s0) ∈ ∂M we have |X(s0)| > ζ(A).
Consider the function f(X) = |X| restricted to C. At its maximum Y ∈ C, it
exceeds |Y | ≥ |X(s0)|−|X(s0)−C(s0)| > ζ(A)−1 > 0. Because of the structure of
the cut locus, there are 2 ≤ k < ∞ points {X1, . . . , Xk} ⊂ ∂M ∩∂Br(y) where r =
dist(Y, ∂M) < 1. For any one of the components (Xi, Xi+1) ⊂ ∂M −{X1, . . . , Xk},
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the cut set bisects the sector and extends beyond Y in the direction from Y to
1
2 (Xi + Xi+1). But because f is maximal at Y this implies that k = 2 and the
cut set directions are at best perpendicular to Y with Y1 = (1 + r/|Y |)Y and
Y2 = (1 − r/|Y |)Y . In particular, the segment [Y1, Y2] intersects C at exactly one
point Y where it crosses transversally. Let λ be a simple curve in R2−M connecting
Y1 to Y2. Now, each connected component Ci, i = 1, 2, of C − {Y } must contain
a focal point Ai. To see this, suppose C1 does not. By construction it has the
structure of a smoothly embedded connected tree. Hence it must contain at least
two vertices of valence 1, thus a focal point. The set H = C ∪ ΓA ∪ γ − {Y } ⊂ M
connects both sides the loop λ∪ [Y1, Y2] without crossing it, which is a contradiction
in R2.

Corollary 3.8. [Preliminary reverse isoperimetric inequality]. Suppose M

is an embedded disk whose boundary curve is of class K. If the area |M | ≤ π +2
√

3
then L ≤ 2A. Moreover M is star shaped with respect to the center of any unit disk
in M . In fact, if M is located so that the origin is the center of such a disk, then the
rays through the origin are transverse to ∂M except, possibly, when A = π + 2

√
3

and R =
√

8.

Proof of Corollary 3.8. By Theorem 3.7, R = R(A) ≤ 3. The result follows from
Theorem 3.4. In fact, the sharper inequality (3.7) holds for this R.

We can extend Theorem 3.4 in the following manner. The closer the circumradius
of a domain whose boundary has uniformly bounded curvature is to one, the closer
the domain is to the unit circle. We obtain a stability estimate provided the original
circumradius is at most the circumradius of three touching circles. The case S ≤ 2
also follows from Theorem 3.4.

Theorem 3.9. [Circumradius stability theorem]. Let M ⊂ R2 be an em-
bedded disk with boundary of class K. Suppose in addition that there is a bound
on the circumradius M ⊂ BS(0) where 1 ≤ S ≤ 1 + 2/

√
3. Then, in fact,

Bs1(Z) ⊂ M ⊂ BS(Z) where

s1 =
√

3 + 2S − S2 − 1

and some Z ∈ M . M is star shaped with respect to Z. Moreover, there is an
estimate of the length of the form

(3.12) L ≤ 4A + 2π
(
1 + 2S − S2

)
3 + 2S − S2

.

Proof. First we show that if two unit disks are in M then so is the peanut between
them. Let B1(Z1) and B2(Z2) two unit disks contained in M . Let Λ = [Z1, Z2] be
the line segment between the centers of length 2δ. Since δ <

√
3 by assumption, we
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argue as in Lemma 3.6. If Λ 6⊂ M then there is a unit disk B1(W ) ∩ M = ∅ which
is contained in the convex hull of M . However, the circumradius of three tangent
unit disks, 1+2/

√
3, is strictly smaller than the circumradius of B1(Z1)∪B1(Z2)∪

B1(W ) which is less than S. This is a contradiction. Hence Λ, and therefore as in
Lemma 3.6, the peanut Pδ ⊂ M .

We may assume that BS is the smallest possible disk that contains M and that
its center is at the origin. If we let Y = ∂BS(0) ∩ ∂M be the contact points
then the origin must be in the convex hull of Y. We claim if C(Y ) is a cut point
for Y ∈ Y then s0 = |Y − C(Y )| ≥ 1. The argument is similar to the proof
of Lemma 3.6. If not, s0 < 1 and the cut point is not a focal point. Hence,
for r(X) = |X|, the distance function from the origin, and W ∈ C where r|C is
maximum, |W | ≥ S − s0 so W is not a focal point. It follows that the contact
points {X1, . . . , Xk} = ∂Bc(W )(W ) ∩ ∂M must be X1 = (1 + c(W )/|W |)W and
X2 = (1 − c(W )/|W |)W , because by the structure of the cut set near W , C has
maximal r so must be perpendicular to W there. Now let γ be a curve in R2 −M
connecting X1 to X2. Let B1(Z1) and B2(Z2) be two unit balls centered at focal
points on each component of the sets C − {W}. By the previous paragraph, the
line segment Λ from Z1 to Z2 is in M . Hence the connected set (C −{W})∪Λ does
not intersect the closed path [X2,W ]∪ [W,X1]∪ γ yet connects its two sides. This
is a contradiction.

Finally, since we have shown that the cut distances c(Y ) ≥ 1 for all Y ∈ Y, there
is an osculating unit disk D(Y ) ⊂ M centered at ηY (1). Every segment connecting
pairs of ηY (1)’s for Y ∈ Y must be in M as must their peanuts. The origin is
in the convex hull of the ηY (1)’s of Y ∈ Y and as the segments connecting these
points are in M which is simply connected, this implies the origin is in M . To
estimate dist(0, ∂M), observe that the origin is in the set consisting of the union
of all peanuts with centers at ηY (1)’s of Y ∈ Y, with any possible holes filled in
(union in the bounded components of the complement of the union of peanuts).
Hence the minimal distance to the boundary is the distance to the boundary of
the narrowest possible peanut, namely one with diam(Pδ) = 2δ + 2 ≤ 2S. Hence
dist(0, ∂M) ≥ dist(0, P(S−1)) = s1 = (3 + 2S − S2)1/2 − 1 ≥ √

8/3 − 1.
Thus S − s1 < 2 and we may continue the argument as in Theorem 3.7. Let

ρ(X) = 〈X,X〉 be the square of the distance from the origin. We find that the
bounds from Lemma 3.1 with r = s1 and R = S agree when ρ = 1 so

4p2 = 4ρ − ρs
2 ≥ 4 − [

S2 − 1
] [

1 − (S − 2)2
]
.

This lower bound for p is used in Lemma 3.2 to obtain (3.12).

Corollary 3.10. Let M ⊂ R2 be an embedded disk with boundary of class K.
Suppose in addition that there is a bound on the circumradius M ⊂ BS(0) where
1 ≤ S ≤ 1 + 2/

√
3. Then

L ≤ 2π(1 + S)
3 − S

; L ≤ 3A + π

2
.
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Proof. For the first inequality substitute A ≤ πS2 into Theorem 3.9. For the second
substitute S ≤ 1 + 2/

√
3.

Fig. 3 “Fanbelt” counterexample.

Remark 3.11. Observe that Theorem 3.4, Theorem 3.7 and Theorem 3.9 are sharp.
That is, for every ε > 0 there is an example M that has A < π + 2

√
3 + ε,

B1(Z) ⊂ M ⊂ B3+ε(Z) and circumradius S < 1 + 2/
√

3 + ε but has arbitrarily
large length. Take three disjoint circles in B1+2/

√
3+ε/2 which can be thought of

as pulleys. Think of the domain as the region between a long fanbelt (Figure 3).
Thread a loop about one of the circles, wind both sides around a second circle, then
continue arbitrarily many times about the peanut formed by the first two circles.
End by looping about the last circle. By taking the region sufficiently thin, one can
obtain all four conditions.

The last result in this section shows that embedded disks with small area but
large length have to be thin in a sense appropriate for ∂M ∈ K. In this way we get
a quantitative description of the degeneration of embeddedness or “puckering”. A
measure of the pinching of a domain is given by

(3.13) ω(M) = dist(C, ∂M),

where C is the cut locus of the boundary. ω is called the rolling number of M
because it is the largest radius such that at every boundary point the tangent disk
of that radius remains inside M .
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Theorem 3.12. [Puckering Theorem]. Let M ∈ R2 be an embedded disk with
boundary of class K. Then the rolling number (3.13) satisfies

(3.14) ω(M) ≤ L −√
L2 − 4πA

2π
.

If in addition, L > 2A then

(3.15) ω(M) ≤ A − π − 2
√

3
L − 2π − 4

√
3
.

Proof. Consider the interior parallel domain Ma = {P ∈ M : dist(p, ∂M) ≥ a} for
constant a ≥ 0. If a < ω(M) then ∂Ma is C1,1 embedded circle whose curvature has
‖κ̃‖∞ ≤ 1/(1−a). Let c(s) denote an arclength parameterization of ∂M . Then the
tubular neighborhood M−Ma has a parameterization ∂M×[0, a] 3 (s, t) 7→ ηc(s)(t)
with area form (1 − κ(s)t)dt ds. Estimating the area for 0 < a < ω,

A ≥ area(M − Ma)

=
∫

∂M

a∫
0

(1 − κ(r)t) dt ds

=aL − πa2.

This holds for small a so the smaller root provides (3.14).
By the assumption and Proposition 2.1, A ≥ π we have L > A+π thus, by (3.14),

ω(M) < 1. Let Z ∈ C be a point where the distance to ∂M is a minimum. We argue
that Y = Bω(M)(Z)∩ ∂M is a doubleton Y = {Y1, Y2} using the structure theorem
for the cut locus near the a nonfocal point Z. Let U ⊂ M be a small enough disk
about Z. If ]Y ≥ 3 then one of the components of U − C, say corresponding to Y1,
has a vertex angle < π at Z. Hence the distance to the cut set as a function on
∂M near Y1 cannot have a local minimum at Y1. We claim that there must be at
least two focal disks in M whose centers Z1, Z2 ∈ C are at least r̃ =

√
3 − 2ω − ω2

apart, measured along C. The existence follows as in Theorem 3.7. The distance
estimate follows from Proposition 1.1. Consider the exterior tangent unit disks to
∂M at X1, X2. If distC(Z1, Z2) <

√
3 then unit disks centered at Z1, Z2 must be on

opposite sides and disjoint from the tangent disks. Thus by elementary geometry,
they must be r̃ apart.

We apply a scaled version of the proof Lemma 3.6 to estimate the area of Ma.
If the curvature of ∂Ma satisfies ‖κ̃‖∞ ≤ (1 − a)−1 and if two 1 − a disks centered
Z1, Z2 ∈ C̃ = C are at least 2

√
3(1−a) apart along C̃, the cut set of Ma, then Ma has
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remote ends so area(Ma) ≥ (1−a)2[π+2
√

3]. One should check that
√

3(1−a) ≤ r̃,
but this holds for all a < ω < 1. The total area can now be estimated

A = area(M − Ma) + area(Ma)

=
∫

∂M

a∫
0

(1 − κ(s)t) dt ds + area(Ma)

≥La − πa2 + (1 − a)2A1

where A1 = π + 2
√

3. Hence

4
√

3a ≤
(
(L − 2ℵ)2 + 8

√
3(A − A1)

) 1
2 − (L − 2A1).

In view of Corollary 3.8, L > 2A implies A > π + 2
√

3 hence (3.15) follows.

4. A sharp reverse isoperimetric inequality and the extremal figure

In this section we consider the best reverse isoperimetric inequality and the figure
which extremizes this inequality. Let M(A) denote the space of all embedded
closed disks M ⊂ R2 whose boundary curves are in class K and whose areas satisfy
area(M) = A. Let N (L) denote the space of all embedded closed disks M ⊂
R2 whose boundary curves are in class K and whose length length(∂M) = L.
Then we say E ∈ M(A) is extremal if length(∂E) = sup{length(∂M) : M ∈
M(A)}. Similarly, E ∈ N (L) is extremal if area(M) = inf{area(M) : M ∈ N (L)}.
Although these problems are dual, they require slightly different treatment (e.g.
see Lemma 4.16).

Theorem 4.1. The set of pairs (A,L) where A is the area and L is the boundary
length of M ⊂ R2, an embedded closed disk whose boundary is of class K, consists
exactly of the points in the first quadrant (shown in Figure 4.) satisfying three
inequalities:

(1) The isoperimetric inequality

4πA ≤ L2.

Equality holds if and only if M is a circular disk.
(2) The reverse isoperimetric inequality. If 2π ≤ L < 14π/3 then there holds

(4.1) sin
(

L − 2π

4

)
≤ A − π

4
.

Equality holds in (4.1) if and only if M is congruent to the peanut Pδ (Fig-
ure 1.) where

δ = 4 sin
(

L − 2π

8

)
.



A Reverse Isoperimetric Inequality and Extremal Theorems 25

(3) Embeddedness border. If L ≥ 14π/3 then

A > π + 2
√

3.

Equality cannot hold, although there are arbitrarily nearby regions for which
the embeddedness degenerates by “puckering”. For example one can consider
a sequence of domains decreasing to the dumbbell region consisting of two
unit disks, two triangles with circular sides and a segment of length L/2 −
7π/3.

Fig. 4 Attainable (A,L) for M ∈ K.

First we show that extremal figures exist.



26 Ralph Howard and Andrejs Treibergs

Theorem 4.2. For any π ≤ A ≤ π + 2
√

3 there exists an E ∈ M(A) which is
extremal, namely, length(E) = sup{length(∂M) : M ∈ M(A)} .

Proof. For area fixed, consider a maximizing sequence of embedded disks Mi ⊂
M(A) such that length(∂Mi) ↗ `(A) = sup{length(∂M) : M ⊂ M(A)}. Corol-
lary 3.8 shows that if Mi ∈ M(A) then it contains a disk of radius 1 and that
Mi is star-shaped with respect to the center of this disk. Translating if necessary,
we assume that these centers lie on the origin. Corollary 3.8 also shows that the
lengths are uniformly bounded `(A) ≤ 2A. By scaling the parameters, the bound-
ary curves σi : S1 → R2 are uniformly bounded in C1,1(S1). It follows by Arzela’s
Theorem that a subsequence σi′ → σ uniformly in C1, hence with the same bound
on Lip(σ′). Thus σ ∈ K. The limit M must also contain B1(0). Since (ρi)s are
bounded as in Corollary 3.8, ∂Mi′ are uniformly transverse to the rays from the
origin, except possibly if |M | = π+2

√
3 and then only for one radius, the same must

be true of the limit. Hence we can conclude that M is topologically an embedded
closed disk.

Theorem 4.3. For any 2π ≤ L < 14π/3 there exists an E ∈ N (L) which is
extremal, namely, area(E) = inf{area(M) : M ∈ N (L)}.
Proof. Again, since length is bounded, after translating if necessary, the same com-
pactness property shows there exists limits of subsequences. It remains to argue
that the limiting figures are embedded. If not, there are elements of the approximat-
ing minimizing sequence, call them M which are nearly degenerate having a thin
waist. Let γ : [0, L] → ∂M denote an arclength parameterization of the boundary
curve. There are points on opposite sides of the waist, s1 + 2π < s2 < s1 + L− 2π,
so that d = dist(γ(s1), γ(s2)) is minimum among such points and arbitrarily small.
Hence γ(s1) and γ(s2) have a common normal line. But the total length must
exceed the double of the minimal length for a segment of class K connecting the
line elements γ(s1) and γ(s2). By Dubins Theorem [D] this segment consists of the
three unit arcs forming a lightbulb shape with length π + 4 cos−1(1/2 + d/4) which
exceeds L/2 for d sufficiently small.

First we shall show that extremal figures consist of finitely many unit circular
arcs. From the control theory standpoint, viewing the curvature κ as a control, and
maximizing the length among curves with curvature κ which are closed, embedded,
of class K, enclosing an area A, this shows the bang–bang type result that κ = ±1.
We shall examine variations of short arcs on the boundary of minimizers. First we
give our parameterization of pairs of line elements on the endpoints of a short arc
using the shortest path.

Lemma 4.4. Suppose σ is an arc of class K and ` = length(σ) ≤ π/2. Then
the shortest arc λ of class K connecting the starting and ending line elements of
σ consists of a unit circular arc of angle (integral curvature) α followed by a line
segment of length β ≥ 0 followed by a unit circular arc of angle γ such that the
total length of λ is |α| + β + |γ| ≤ π/2.( α < 0 corresponds to a concave arc.)
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Proof. Dubins [D] showed that the minimizer consists of either three unit circular
arcs or arc-segment-arc. By Dubins’ Proposition 6, the osculating disks on the
opposite side of γ at γ(0) and γ(`) are either tangent, in which case the shortest
connecting arc of class K consists of a subarc of the first circle followed by a subarc
of the second; or they are disjoint. By Proposition 1.1 neither osculating disk at
one endpoint contains the other endpoint in the interior. Hence, among all straight
line segments and circular arcs tangent to an osculating disk at one endpoint and
to another at the other endpoint, the straight line segment between closest disks
gives the shortest curve between elements.

Our local considerations will examine which boundary subarcs of M ∈ M(A)
can be lengthened. To do this, we describe various pairs of endpoint line elements.
Let σ ⊂ ∂M be a subarc of length ` = length(σ) ≤ π/3 oriented in the usual
direction of ∂M . Let (α, β, γ) parameterize the shortest arc of class K connecting
endpoint elements of σ. If α ≥ 0 and γ ≥ 0 we say that (α, β, γ) is a convex pair of
line elements. If α ≤ 0 and γ ≤ 0 we say concave and if neither we say mixed.

Lemma 4.5. Given 0 < l ≤ π/3, let σ : [0, l] → R2 be a unit speed arc of class K
and let {t(t),n(t)} be an orthonormal frame at σ(t) so that σ′ = t. Let D+(t) and
D−(t) be the closed osculating unit disks to σ at σ(t) on the ±n sides of σ. Then

(1) σ is an embedded arc;
(2) Disks on the same side always intersect: D+(0) ∩ D+(l) 6= ∅ and D−(0) ∩

D−(l) 6= ∅;
(3) Disks on the opposite sides don’t intersect: For 0 ≤ l ≤ π/2, either D−(0)∩

D+(l) = ∅ or D−(0) is tangent to D+(l) and λ is the class K curve con-
sisting of an arc of ∂D−(0) followed by an arc of ∂D+(l).

Proof. The embeddedness follows from the Schur-Schmidt Proposition 1.1. That
intersection occurs is a geometric exercise. For example, by moving D+(0) and
D+(l) as far apart as possible, we may assume that σ is the shortest arc λ in K
between the line elements (σ(0), σ′(0)) and (σ(l), σ′(l)). By Lemma 4.4 we may
suppose λ consists of at most three pieces consisting of (a subset) of a unit circular
subarc of angle α, a line segment of length β ≥ 0, and another unit circular arc of
angle γ. If, e.g., α ≥ 0 and turning so the segment is in the ∂/∂x direction, we see
that the centers of D+(0) and D+(l) are at most

d2 = (∆x)2 + (∆y)2 = (2 sin α + β + 2 sin γ)2 + (2 cos α − 2 cos γ)2

apart, where α+β +γ ≤ π/3 and γ ≥ 0. Because, e.g., cos(α) ≥ 1/2, by examining
the gradient, we see that the maximum value occurs when β = 0 making d = 2. In
other words, D+(0) ∩ D+(l) 6= ∅. Similarly for D−. (3) is Dubins’ Proposition 6,
[D].

Thus, by Proposition 1.1, the segment σ ∈ K of length length(σ) ≤ π/3 must lie
in the region N determined by the endpoints of σ and their directions, where N is
the bounded component of the complement of D+(0) ∪ D−(0) ∪ D+(l) ∪ D−(l).
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Lemma 4.6. In the notation of Lemma 4.5, there are unit circles which are tangent
to both D+(0) and D+(l). Let µ+ be the short subarc between the points of tangency
which touches N ; similarly define µ−. Then µ+, µ− ⊂ N̄ .

Proof. Notice that by Lemma 4.5 (3), either σ consists of two circular segments,
in which case µ+ coincides with σ, or D−(0) ∩ D+(l) = ∅ and D−(l) ∩ D+(0) = ∅.
Then a unit disk rolled from D−(0) along D+(0) bumps into D+(l) on the “inside”
of N .

Denote the “lips shaped” subregion of N between and including µ+ and µ− by
L as shown in Figure 5. Denote the boundary arc from σ(0) to σ(l) consisting
of concatenations of the subarcs of ∂D+(0), µ+ and ∂D+(l) by λ+. Define λ−

analogously. Then λ± ∈ K have the same starting and ending line elements as σ.
Let λ be the shortest curve of class K between the starting and ending line elements
of σ with parameters (α, β, γ). If l ≤ π/3 then by Lemma 4.4, λ consists of a unit
circle arc of angle α followed by a straight segment of length 0 ≤ β followed by an
arc of angle γ so that (up to reflection) |γ| ≤ |α| and |α| + β + |γ| ≤ π/3. We call
(α, β, γ) the parameters of λ.

Fig. 5 “Lips” domain.

Lemma 4.7. Let σ : [0, l] → R2 be a segment of class K. We suppose that the
osculating disks D+(0) ∩ D+(l) 6= ∅ and D−(0) ∩ D−(l) 6= ∅, for example if 0 <
l ≤ π/3. Let L be the lips-shaped region determined by the starting and ending
line elements of σ, and λ± the corresponding boundary arcs of L. First σ ⊂ L.
Moreover, then either

(1) σ consists of one or two circular arcs in which case λ+ = λ = λ−; This is
the case if and only is the curvature is a.e. piecewise equal to ±1 with at
most one essential sign change.

(2) σ = λ+, (σ = λ−, resp.) in which case the curvature is a.e. κ = 1 for
0 ≤ t < l+1 , κ = −1 for l1 ≤ t < l+2 and κ = 1 for l+2 ≤ t ≤ l (or its
negative, resp.) where l+1 is the length of the first arc and l+2 the length
of the second. Note that l±i are determined by the starting and ending line
elements of λ.

(3) λ+ 6≡ σ 6≡ λ− which is the case if κ is any other function. Let λ be the
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shortest curve of class K between starting and ending line elements of σ
with parameters (α, β, γ). Suppose α, γ ≥ 0 then length(σ) < length(λ−).

Proof. Case (1) occurs if the osculating circles D+(0) and D−(l) ( or D−(0) and
D+(0)) are tangent and Proposition 1.1 (3) applies and σ ∈ ēL. Suppose this is
not the case for the rest of the proof. By constructing a field of semicircles by
translating µ± inside N − L one sees by the maximum principle that λ ⊂ L.

(3) will be demonstrated in two steps. First we claim that λ− and σ have a
common perpendicular. To see this, orient σ so that λ(|α|) = 0 and λ′(|α|) = ∂/∂x.
By the intermediate value theorem there is a point on σ so that σ′(t0) = ∂/∂x. Put
σ′(s) = exp(iϑ(s)); similarly define ϑ±. Because ‖ϑ(t) − ϑ(t0)‖ ≤ |t − t0| ≤ π/3
we have that σ is a graph over the x-axis. Similarly, so are λ±. Let a < b be the
x-coordinates of the endpoints of σ and let a < x1 < x2 < b be the x-coordinates
of the first and second jumps of the curvature κ− of λ− (so they are the endpoints
of of µ−). Observe that ϑ(a) = ϑ±(a) and

ϑ−(x1) ≤ ϑ(a) +

x1∫
a

κ ds = ϑ(x1).

Also ϑ−(x2) ≥ ϑ(x2). Because µ− is a circular arc, for each ϑ−(x1) ≤ ζ ≤ ϑ−(x2)
there is a unique x-coordinate ξ(ζ) where the tangent of µ− is in the ζ direction
(µ−)′(ξ(ζ)) = exp(iζ). Consider the continuous function f(x) = 〈σ′(x), µ− (ξ (ϑ(x))) − σ(x)〉
which measures the distance between the normal lines thru σ(x) and µ− at the cor-
responding angles. Observe that f(x1) ≥ 0 and f(x2) ≤ 0. By the intermediate
value theorem, there is an x3 ∈ [x1, x2] where the normal lines of σ and µ+ co-
incide. Hence by a rotation, we may assume that this line is the y-axis and that
σ′(0) = (µ−)′(0) = ∂/∂x.

Next we show that length(µ−) > length(σ). It suffices to compare the lengths
of the parts when x ≥ 0 and x ≤ 0 separately. Let a ≥ 0 be the end x-coordinate
of λ and 0 ≤ x1 ≤ a the coordinate of the jump in κ−. So x1 < 1. We have

(4.2)

dϑ

dx
=

dϑ

ds

ds

dx
= κsec ϑ

dϑ−

dx
=

dϑ−

ds−
ds−

dx
= sec ϑ

{
+1, if x < x1,
−1, if x1 < x < a.

Comparison of solutions using ϑ(0) = ϑ−(0) on the interval [0, x] for x ≤ x1 and
using ϑ−(a) = ϑ(a) on the interval [x, a] shows that | sin ϑ(x)| ≤ sin ϑ−(x) for all
0 ≤ x ≤ a. Hence

ds−

dx
= sec ϑ−(x) ≥ sec ϑ(x) =

ds

dx

on [0, a] so length(µ−) > length(σ) follows.
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The following is a technical result that says that any convex arc of class K which
is not a subcircle spanning convex line elements also contains noncircular subarcs
of arbitrarily small size.

Lemma 4.8. Let σ ⊂ R2 be a convex arc of class K and length ` = length(σ) ≤
π/3. Let λ be the shortest arc of class K which spans the endpoint line elements
of σ, and let (α, β, γ) be the parameters of λ. Suppose β > 0. Then there are
positive constants c7, c8 depending only on β and ` so that if ρ < c7 then there is
a subinterval σ′ ⊂ σ with length(σ′) = ρ, and such that β′ ≥ c8ρ where (α′, β′, γ′)
are the parameters of the shortest arc λ′ ∈ K spanning the endpoint elements of σ′.

Proof. The idea is that by a measure theoretic argument, there is a short subarc
σ′ that has relatively little total curvature. Hence by computing the worst possible
case, namely for the longest convex arc ν of class K spanning the end elements of
the subarc, we can estimate what fraction the β′ parameter is of the length of ν.

By convexity and continuity, there is a 0 < δ < β/2 ≤ `/2 so that if x stisfies
`− δ ≤ x ≤ `, then the parameters of σ|[0, x] satisfy αx ≥ 0, γx ≥ 0 and βx ≥ β/2.
Thus for c7 sufficiently small and any ρ < c7, there is an integer j = j(ρ) ∈ N so
that `− δ < jρ ≤ `. The total curvature of one of the subintervals of length ρ must
be less than the average curvature, hence for some 1 ≤ m ≤ j,

(4.3) K ′ =
∫

[ρ(m−1),ρm]

κ ds ≤ α + γ

j
≤ ` − β

j
≤ ` − β

` − 1
2β

ρ.

Let σ′ be this subarc and λ′ the shortest arc of class K with the same end elements.
Now orient λ′ so β′ is in the −∂/∂x direction (abusing notation). On the other
hand, by convexity of σ′, the longest possible convex span, ν ∈ K, with the same
end elements as σ′, would be the curve consisting of a straight line segment ν1 of
slope − tan α′, a unit circular arc ν2 of angle α′ + γ′ and a straight line segment
ν3 of slope tan γ′. We now wish to estimate a lower bound for the length of β′ in
terms of the length of ν. Because the maximum y-coordinate of ν occurs at α′ along
the circular part of ν, the translates of ν1, ν3 and β form a triangle. Hence, the
total horizontal component of the straight segments of ν is β. Thus, solving for the
x components of the segments ν1 and ν3, we obtain ν1 runs a horizontal distance
β′ tan γ′/(tanα′+tan γ′) and ν3 for a horizontal distance β′ tanα′/(tanα′+tan γ′).
Hence length(ν)− length(λ′) = β′(sinα′ + sin γ′)/ sin(α′ + γ′) ≤ ρ/ sin(ρ), because
α′ + β′ ≤ ρ. Therefore length(ν)/ length(λ′) ≤ ρ/ sin ρ. Hence, using (4.3),

β′ ≥ length(λ′) − K ′ ≥
(

sin ρ

ρ
− ` − β

` − 1
2β

)
ρ.

Thus for c7 sufficiently small and ρ < c7, the lemma follows.

To construct deformations, we first estimate an outward bump on a convex but
not entirely unit circular arc.
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Lemma 4.9. Let σ ⊂ R2 be a convex arc of class K and length ` = length(σ) ≤
π/3. Let λ be the shortest arc of class K which spans the endpoint line elements of
σ, and let (α, β, γ) be the parameters of λ. Assume that β ≥ k` for some constant
k > 0. Let L be the lips shaped region determined by the elements of σ and λ− the
“outer” boundary portion of L spanning the elements of σ. Then there are positive
constants c1, c2, c3 depending only on k such that

length(λ−) − length(σ) ≥c1`
3,

area enclosed by(λ− − σ) ≤c2`
3

whenever ` ≤ c3.

Proof. By convexity, the largest possible convex arc ν ∈ K consists of linear ex-
tensions of the endpoint line elements and a circular fillet as in Lemma 4.8. By
symmetry, we may suppose α ≤ γ. Suppose λ is positioned so that β is in
the −∂/∂x direction. Assume that the center of the α circle is the origin O.
Then the center of the γ circle is P = (−β, 0). The center of the fillet is Q =
(−β tan γ/(tanα+tan γ), β sin α sin γ/(sinα+sinβ)). Thus |ν| = |OQ|+α+γ+|QP |
where |OQ| = β sin γ/(sinα+sin γ). λ− consists of three circular arcs. The center R
of the central circular arc is an intersection point of two circles of radius 2 with cen-
ters at (2 sinα, 2 cos α) and (−β−2 sin γ, 2 cos γ). Thus R is above the line [O,Q] by
a distance we can estimate in terms of length([O,Q]). Now use the notation f ∼ g
to mean there is a positive constant c depending only on k (and not α + γ) such
that c−1f ≤ g ≤ cf . Then we see (using α + γ ≤ π/3 and γ ≥ α) that |OQ| ∼ β2.
Using the circle of radius 2, |QR| ∼ β2. But this means that λ+ is a displacement
of the tangent line of ν(0) by an amount |QR| over a distance ∼ β. It follows
that |λ+| − |ν| ∼ β3. Also the area increase area(λ− − ν) ≤ ∆A ≤ area(λ− − λ).
However, because the y-coordinate of Q is ≤ β2 we have ∆A ∼ |λ|β2 ∼ β3 because
λ ∼ β by assumption.

Also we describe the inward deformation which is constructed by displacing
inward part of a convex noncircular arc and connecting.

Lemma 4.10. Let σ ⊂ R2 be a convex arc of class K and length ` = length(σ) ≤
π/3 and let λ be the corresponding shortest arc of class K spanning the endpoint
elements of λ and assume the parameter β > 0. Assume that σ is oriented so that
β is in the ∂/∂x direction so that σ and λ graphs over a ≤ x ≤ b. Let σ1 and σ2 be
two disjoint subarcs of σ corresponding to coordinates [a, a+`1] and [b−`2, b]. Let λi

be the minimal arcs of class K which span the endpoint line elements of the σi, and
let (αi, βi, γi) be the parameters of λi. Assume that for some constant k > 0 there
holds the inequality βi ≥ k`i. Let Li be the lips shaped regions determined by the
elements of σi and λ+

i the “inner” boundary portion of Li spanning the elements
of σi. Let hi(`i) = sup{λ+

i (x) − σ(x)} be the maximum height of λ+
i above σ.

Because Li depends continuously on `i, by continuously decreasing one of the `i, we
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may arrange that `i = `i(l) are continuous functions so that l = max{`1(l), `2(l)}
and h(l) = h1(`1(l)) = h2(`2(l)). This means that there are continuous functions
y1(l) ∈ (a, a + `1(l)) and y2(l) ∈ (b − `2(l), b) so that the function

σl(x) =
{

σ(x), if x ≤ y1 or y2 ≤ x;
σ(x) + h(l), if y1(l) < x < y2(l).

is of class K. Then there are positive constants c4, c5, c6 depending only on k such
that

length(σl) − length(σ) ≥ −c4l
3,

area enclosed by(σ − σl) ≥ c5l
2

whenever l ≤ c3.

Proof. This follows from Lemma 4.9 and its arguments. Using the same notations,
the vertical displacement is ∼ l2 so that the area displacement is also ∼ l2. The
length change happens only on the bumps, so it is ∼ l3.

Lemma 4.11. For A ≤ π + 2
√

3, let M ⊂ M(A) be an embedded closed disk. Let
σ ⊂ ∂M so that length(σ) ≤ π/3. Let λ be the shortest arc of class K connecting the
endpoint line elements of σ and (α, β, γ) its parameters. Assume that (∂M−σ)∩L =
∅. If β > 0 and σ 6= λ± (the boundary curves of L as described in Fig. 5) then
there is a deformation Mε ∈ M(A), so that length(∂Mε) > length(∂M).

Proof. First we remark that it is sufficient to find a deformation which increases
the length and merely doesn’t increase the area. Let Mε be such a deformation.
By Corollary 3.8 we have shown that Mε is starshaped with respect to some point
P ∈ Mε. By the intermediate value theorem, there is a line through P so that ∂Mε

is parallel at the two intersection points with the line. Cutting along the line and
splicing in a parallelogram of suitable width increases the length and adjusts the
area to A. (Alternately we could scale the domain.)

Now we consider various cases of σ. Suppose it is possible to find a subarc σ1 ⊂ σ
so that the line elements determined by σ1 are concave, and σ1 does not coincide
with the interior boundary of the lips shaped regions determined by the endpoint
elements of σ1. By Lemma 4.7, replacing σ1 by λ+ increases the length, and since
σ1 6= λ+, decreases the area.

Thus if λ is concave we are finished. Similarly if λ is nontrivially mixed, say
α > 0 and γ ≤ 0. Assume β is oriented along ∂/∂x. The idea is that by continuity,
σ must go from nonpositive to nonnegative. Hence there is a point x ∈ σ∩β where
the direction of σ is increasing. If x 6= β ∩ γ or γ 6= 0 then the interval from x to
σ(`) is concave. If x = σ(`) then there is an x interior to σ with σ(x) negative and
with tangent line above D−(`). Then the interval from x to ` is concave.
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The remaining case is λ is convex and σ contains no concave subintervals. In this
case σ is convex and we suppose that β is oriented in the ∂/∂x direction. Hence σ
is a convex function and M is above the graph. Since β > 0 we have

α + γ = ϑ(`) − ϑ(0) =
∫

σ

κ ds < `.

Choose an integer k so that 0 < `/k < ` − α − β. Hence, dividing σ into 4k
equal intervals, there must be four disjoint subintervals of length `/4k, call three of
them them σ1, σ3 and σ4 so that

∫
σi

κ ds < `/4k and so that dist(σ1, σ3) ≥ 1/4k.
We shall construct an outward bump on σ4 which increases the length and area,
and an inward bump stretching from σ1 to σ3 which decreases the area, but also
possibly decreases the length. We shall show that together these form the desired
perturbation. By Lemma 4.8, there is c7 sufficiently small, so for every δ < c7,
there are subintervals of size δ in σi with β > c8δ. Hence, using Lemma 4.9 we
construct on these intervals an outward bump in σ4 so that the change in area and
length become

∆L4 ≥ c1δ
3; ∆A4 ≤ c2δ

3.

For a different l ≤ c7 we use Lemma 4.9 to construct an inward deformation on the
pair of intervals from σ1 and σ3 so that

∆L13 ≥ −c4l
3, ∆A13 ≤ −c5l

2,

where the extra interval insures uniformly positive width. Now one simply chooses
c > 0 and puts l2 = cδ3 so that ∆A = ∆A4 + ∆A13 ≤ 0 and observes that ∆L > 0
for l sufficiently small to finish the argument.
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