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Abstract. Stationary processes of k-flats in E
d can be thought of as point processes on

the Grassmannian Ldk of k-dimensional subspaces of E
d . If such a process is sampled by

a (d − k + j)-dimensional space F , it induces a process of j-flats in F . In this work we
will investigate the possibility of determining the original k-process from knowledge of the
intensity measures of the induced j-processes. We will see that this is impossible precisely
when 1 < k < d− 1 and j = 0, . . . , 2

�
r
2

�
− 1, where r is the rank of the manifold Ldk. We will

show how the problem is equivalent to the study of the kernel of various integral transforms,
these will then be investigated using harmonic analysis on Grassmannian manifolds.

§1. Introduction.

The motivation for this work is a problem posed by Matheron [1974, 1975]. This question
asks whether it is possible to determine a k-flat process in Ed from the densities of its
induced point processes in (d − k)-dimensional spaces. For background information on
geometric stochastic processes the reader is referred to Stoyan, Kendall and Mecke [1987]
and Mecke, Schneider, Stoyan and Weil [1990]. Matheron obtained positive results in the
cases k = 1 and d−1 and conjectured that the same would be true for 1 < k < d−1. This
was shown to be false by Goodey and Howard [1990a]. The same authors [1990b] obtained
some partial results on the determination of the original process from the intensity measures
of its induced j-flat processes for 0 6 j < k 6 d− 1. In this work we will obtain complete
answers to these questions. Although these problems belong to stochastic geometry, we
will see later that they have connections with other branches of geometry. The proofs
of our results will employ techniques of harmonic analysis to study the kernels of certain
integral transforms on Grassmannian manifolds. In this section we will introduce the basic
terminology and discuss Matheron’s formulation of the problem.

For 1 6 k 6 d−1, a k-flat process Xk in Ed is a point process on the homogeneous space
Edk of k-flats (k-dimensional affine subspaces) in Ed. This is a random variable with values
in the spaceMk of locally finite collections of k-flats. The distribution of Xk is a probability
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measure onMk. We will consider two processes with the same distribution to be equivalent
and our uniqueness statements should be interpreted as meaning uniqueness up to this
equivalence. The intensity measure, θ̃, of Xk is the Borel measure on Edk which assigns to
each Borel set S ⊂ Edk the expected number of k-flats of Xk which are in S. We note that
equivalent processes have the same intensity measure. Xk is said to be a Poisson process if,
for each Borel set S ⊂ Edk , the random variable #(Xk ∩ S) has a Poisson distribution and
if, for disjoint Borel sets S1, . . . , Sm, the random variables #(Xk ∩ S1), . . . ,#(Xk ∩ Sm)
are independent.

We will only consider processes for which the intensity measure is locally finite, that is,
gives finite measure to compact sets. For each such measure, there is precisely one Poisson
process for which it is the intensity measure. A stationary Poisson process is one for which
the intensity measure is translation invariant. In this paper, all processes will be assumed
to be stationary and Poisson.

There is a bijective correspondence between the locally finite translation invariant mea-
sures on Edk and the finite measures onLdk, the compact Grassmannian of k-dimensional sub-
spaces of Ed. To see this, we note that we can identify Edk with {(η, x) ∈ Ldk×Ed : x ∈ η⊥}
and let π : Edk → Ldk be defined by π(η, x) = η. For each η ∈ Ldk, we let λd−k(η⊥; ·)
denote the (d−k)-dimensional Lebesgue measure on η⊥. Then any finite measure θ on Ldk
determines a locally finite measure θ̃ on Edk by

(1.1) θ̃(S) =
∫
Ldk
λd−k(η⊥;S ∩ π−1(η)) θ(dη)

where S is a Borel subset of Edk . The translation invariance of θ̃ follows from that of
Lebesgue measure. Conversely, if θ̃ is a translation invariant locally finite measure on Edk
and σ is a Borel subset of Ldk, we put

(1.2) θ(σ) = ω−1
d−k θ̃(B

d
k ∩ π−1(σ)),

where ωd−k is the volume of the unit (d − k)-ball and Bdk denotes those elements of Edk
which intersect the unit ball of Ed. The fact that (1.2) inverts (1.1) follows from the
characteristic properties of Lebesgue measure. If K is a compact subset of Ed we put

ψ(K) = θ̃({E ∈ Edk : E ∩K 6= ∅})

and note that, as a consequence of (1.1), we have

(1.3) ψ(K) =
∫
Ldk
λd−k(η⊥; Πη⊥K) θ(dη),

where Πη⊥ denotes the orthogonal projection onto η⊥. If θ̃ is the intensity measure of the
stationary k-flat process Xk we will say that θ is the measure associated with the process
Xk. The comments above show that Xk is uniquely determined by θ.

In order to motivate our problem, we will repeat some of the discussion given in Math-
eron [1975], but with slightly different notation. If 0 6 j < k < d then, for almost all
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E ∈ Edd−k+j , the process Xk ∩ E is a stationary j-flat process in E which depends only
on the subspace ζ ∈ Ldd−k+j parallel to E. Our objective is to determine those triples
(d, k, j) for which the process Xk is determined by knowledge of the processes Xk ∩ E for
all E ∈ Edd−k+j . For 1 6 m,n < d, E ∈ Edm and ζ ∈ Ldm, we put

Edn(E) = {F ∈ Edn : F ⊂ E} and Ldn(ζ) = {η ∈ Ldn : η ⊂ ζ} if n < m

and

Edn(E) = {F ∈ Edn : F ⊃ E} and Ldn(ζ) = {η ∈ Ldn : η ⊃ ζ} if n > m.

If E ∈ Ldd−k+j and ζ ∈ Ldd−k+j is parallel to E, we will denote by θζ the measure on Ldj (ζ)
associated with the process Xk ∩ E. We now want to formulate the relationship between
the measures θ and θζ for ζ ∈ Ldd−k+j . For the moment we will assume that Xk is a process
of flats parallel to ξ0 ∈ Ldk. Then θ is an atomic measure concentrated on ξ0. We choose
E ∈ Ldd−k+j so that dim(ξ0 ∩ E) = j and put σ0 = ξ0 ∩ ζ where ζ ∈ Ldd−k+j is parallel to
E. Then it is clear that θζ is concentrated on σ0. Now let K be any compact subset of E.
We will use (1.3) to calculate ψ(K) first in terms of θ and then in terms of θζ . This gives

(1.4) ψ(K) = λd−k(ξ⊥0 ; Πξ⊥0
K)θ(ξ0) = λd−k(σ⊥0 ; Π′σ⊥0 K)θζ(σ0),

where Π′
σ⊥0

denotes the orthogonal projection in ζ onto σ⊥0 , the (d−k)-dimensional subspace
of ζ orthogonal to σ0. If u1, . . . , uj is an orthonormal basis of σ0, we first extend it to an
orthonormal basis of ξ0, introducing the vectors v1, . . . , vk−j and then to an orthonormal
basis of ζ introducing the vectors w1, . . . , wd−k. We denote by [ξ0, ζ] the volume of the
parallelepiped generated by the vectors u1, . . . , uj, v1, . . . , vk−j, w1, . . . , wd−k. Then we
have

λd−k(ξ⊥0 ; Πξ⊥0
K) = [ξ0, ζ]λd−k(σ⊥0 ; Π′σ⊥0 K).

So it follows from (1.4) that, if g ∈ C(Ldj (ζ)), then∫
Ldj (ζ)

g(σ) θζ(dσ) = g(σ0)θζ(σ0) = [ξ0, ζ]g(ξ0 ∩ ζ)θ(ξ0).

Since all measures can be approximated by linear combinations of atomic measures, stan-
dard measure-theoretic results now show that for any k-flat process Xk and almost all
ζ ∈ Ldd−k+j , we have ∫

Ldj (ζ)

g(σ) θζ(dσ) =
∫
Ldk

[ξ, ζ]g(ξ ∩ ζ) θ(dξ),

for all g ∈ C(Ldj ).
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So our problem is to determine those triples (d, k, j) with the property that if φ is a
signed measure on Ldk with ∫

Ldk
[ξ, ζ]g(ξ ∩ ζ)φ(dξ) = 0

for all g ∈ C(Ldj ) and all ζ ∈ Ldd−k+j , then φ is identically zero. In order to summarize our
results, we let M(Ldk) denote the signed Borel measures on Ldk and put

M(d, k, j) =
{
φ ∈M(Ldk) :

∫
Ldk

[ξ, ζ]g(ξ ∩ ζ)φ(dξ) = 0

for all ζ ∈ Ld−k+j and all g ∈ C(Ldj )
}
.

We will show that, for 2 6 k 6 d− 2,

(1.5) M(d, k, j) 6= {0} ⇐⇒ j = 0, . . . , 2
[r

2

]
− 1,

where r = min{k, d−k}. The case j = 0 deserves special mention. In this case our problem
reduces to determining the pairs (d, k) with the property that if φ is a signed measure on
Ldk such that ∫

Ldk
|〈ζ, ξ⊥〉|φ(dξ) = 0

for all ζ ∈ Ldd−k, then φ is identically zero; here |〈ζ, ξ⊥〉| denotes the absolute value of
the determinant of the projection of ζ onto ξ⊥. In fact this was the problem originally
considered by Matheron. He [1974, 1975] gave an affirmative answer in the equivalent cases
k = 1, d − 1 whereas Goodey and Howard [1990a] gave negative answers in all the cases
1 < k < d− 1. In the above notation, Matheron’s results give

M(d, d− 1, j) = M(d, 1, 0) = {0} for 0 6 j 6 d− 2.

Partial progress towards (1.5) was made by Goodey and Howard [1990a,b] using a spe-
cial representation for L4

2 and various embedding arguments. In this work we use rather
different methods and are able to shed some new light on these previous results.

§2. Statement of results.

The space M(d, k, j) is a weakly closed subspace of M(Ldk) which is invariant under
the action of the group SO(d). It follows (see Loomis [1953, Theorem 31F], for example)
that M(d, k, j) forms an ideal with respect to convolution. But convolution of functions in
C∞(Ldk) with measures in M(Ldk) produces functions in C∞(Ldk). So if

F(d, k, j) =
{
f ∈ C∞(Ldk) :

∫
Ldk

[ξ, ζ]g(ξ ∩ ζ)f(ξ) νk(dξ) = 0

for all ζ ∈ Ldd−k+j and all g ∈ C(Ldj )
}
,

where νk denotes the invariant probability measure on Ldk, then

F(d, k, j) 6= {0} ⇐⇒M(d, k, j) 6= {0}.
From now on we will denote the rank min{k, d − k} of the Grassmannian Ldk by r. Our
main result is
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Theorem. If 2 6 k 6 d − 2 and 0 6 j < 2[ r2 ], then F(d, k, j) is infinite dimensional. In
all other cases F(d, k, j) is trivial.

Part of this was established in Goodey and Howard [1990b] where it was shown that
F(d, k, j) is trivial in the following cases:

(1) d− k 6 j < k;
(2) k = j + 1 and k is odd;
(3) j = d− k − 1, d− k < k and d− k is odd.

For 2 6 k 6 d−2, this is exactly the set of j where the relation 0 6 j < 2[ r2 ] does not hold.
Thus, what remains is to show that F(d, k, j) is infinite dimensional if j = 0, . . . , 2[ r2 ]− 1.
This result, for j = 0, 1 was given in Goodey and Howard [1990a] but will be repeated here
with a different proof, for completeness.

Each F(d, k, j) is invariant under the action of SO(d) and so, by the Peter-Weyl the-
orem (see Helgason [1984], for example), must be a direct sum of irreducible SO(d)-
representations occuring in the harmonic expansion of L2(Ldk). We will show that, in
the cases mentioned in the first part of the theorem, this sum involves infinitely many such
representations.

§3. Reduction to the special cases F(d, 2n, 2n− 1).

In this section we will see that it suffices to prove that F(d, 2n, 2n−1) is infinite dimen-
sional for 4 6 4n 6 d, and then give an alternative formulation for these cases.

Our first observation is that, for 1 6 j < k, we have F(d, k, j) ⊂ F(d, k, j − 1). This is
most easily seen from the stochastic interpretation. If f ∈ F(d, k, j) then the positive and
negative parts of f can each be thought of as the density of the measure θ on Ldk associated
with a stationary k-flat process. These two processes must induce the same j-flat process
on all members of Ldd−k+j . If E ∈ Edd−k+j−1 and F ∈ Edd−k+j(E), the two processes we
have constructed from f induce the same j-flat process in F . The (j − 1)-flat processes
they induce on E are, of course, precisely those induced by the above j-flat process in F
and so must be the same. Consequently f ∈ F(d, k, j − 1), as claimed. It follows that we
need only show that F(d, k, 2[ r

2 ]− 1) is infinite dimensional, for 2 6 k 6 d− 2.

Proposition 3.1. Assume 2 6 k 6 d − 2 and 0 6 j < k. Then, if F(d, k, j) is infinite
dimensional, so is F(d+ 1, k + 1, j).

Proof. We think of Ed being embedded in Ed+1 and orthogonal to the final basis vector
ed+1, and let ` ∈ Ld+1

1 be the line parallel to ed+1. If f ∈ F(d, k, j) is non-trivial then,
as above, its positive and negative parts give rise to different k-flat processes Xk, Yk in
Ed which induce the same j-flat processes on the members of Ldd−k+j . As we just noticed,
they also induce the same (j − 1)-flat processes on the members of Ldd−k+j−1. We denote
by Xk+1 the (k + 1)-flat process in Ed+1 whose realisations are the vector sum of ` with
those of Xk. We shall denote this by writing Xk+1 = Xk + `. For Borel sets η ⊂ Ldk,
we will write η + ` to denote the set {E + ` : E ∈ η}. In terms of the measures θ and φ
associated with Xk and Xk+1, respectively, we have

φ(η + `) = θ(η)
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for all Borel sets η ⊂ Ldk, and φ(ξ) = 0 for all Borel sets ξ ⊂ Ld+1
k+1 which are disjoint from

Ldk + `. We now assume ζ ∈ Ld+1
d−k+j . If ` ⊂ ζ then ζ = ζ ′ + ` for some ζ ′ ∈ Ldd−k+j−1 and,

denoting the j-flat process induced on ζ by Xk+1 ∩ ζ, we have Xk+1 ∩ ζ = (Xk ∩ ζ ′) + `. It
follows immediately that Xk+1 and Yk+1 induce the same j-flat process on ζ. If ζ does not
contain ` then ζ + ` = ζ ′ + ` ∈ Ld+1

d−k+j+1 for some ζ ′ ∈ Ldd−k+j . But then, as previously,

Xk+1 ∩ (ζ + `) = (Xk ∩ ζ ′) + `.

So Xk+1 and Yk+1 induce the same (j + 1)-flat process on ζ + `. It follows that they must
also induce the same j-flat process on ζ. Since Xk+1 6= Yk+1 we see that M(d+1, k+1, j) is
non-trivial. The same is therefore true of F(d+1, k+1, j) and, furthermore the relationship
between Xk+1 and Xk shows that F(d+ 1, k + 1, j) must be infinite dimensional.

In the case r = d− k, repeated application of Proposition 3.1 shows that it suffices to
prove that F(2r, r, 2[ r2 ] − 1) is infinite dimensional. It follows that, in general, it suffices
to prove that F(d,m, 2[m2 ] − 1) is infinite dimensional for d ≥ 2m ≥ 4. If m is odd,
Proposition 3.1 shows that the latter is a consequence of the infinite dimensionality of
F(d − 1,m − 1,m − 2). Collecting these observations together, we see that it suffices to
show that F(d, 2n, 2n− 1) is infinite dimensional for d ≥ 4n ≥ 4.

Our objective now is to find an alternative formulation of the above observation. For
this, we will use a result of Goodey and Howard [1990b]. If 1 6 j < k 6 d − 1 and if
σ ∈ Ldj , we put

Ldj,k =
{

(σ, ξ) ∈ Ldj ×Ldk : ξ ∈ Ldk(σ)
}
.

The transform T : C∞(Ldk)→ C∞(Ldj,k) is defined by

Tf(σ, ξ) =
∫
Ldk(σ)

|〈η, ξ〉|j+1f(η) νk(σ; dη),

where νk(σ; ·) is the invariant probability measure on the compact manifold Ldk(σ).

Proposition 3.2 (Goodey and Howard). F(d, k, j) = kerT .

Consequently, we are interested in the kernel of the transform

T : C∞(Ld2n)→ C∞(L2n−1,2n)

where, for (σ, ξ) ∈ Ld2n−1,2n

(3.1) Tf(σ, ξ) =
∫
Ld2n(σ)

〈η, ξ〉2nf(η) νk(σ; dη).

We notice that, if σ ∈ Ld2n−1 then Ld2n(σ) is isomorphic to Ld−2n+1
1 . For our purposes it is

convenient to think of the latter as the sphere Sd−2n with antipodal points identified. If
ξ, η ∈ Ld2n(σ) and if u, v are the corresponding points of Sd−2n under this identification, we
have 〈ξ, η〉 = 〈u, v〉. Furthermore, this identification allows us to use techniques from the
theory of spherical harmonics. We will denote by ρ : L2(Ld2n)→ L2(Ld2n(σ)) the restriction
map and by U2n the span of the spherical harmonics on Sd−2n of degrees 0, 2, . . . , 2n.
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Proposition 3.3. For 4 6 4n 6 d and σ ∈ Ld2n−1 the space F(d, 2n, 2n− 1) is the space
spanned by those irreducible SO(d)-representations W with ρ(W ) contained in U⊥2n, the
orthogonal complement of U2n in L2(Ld2n(σ)).

Proof. Since we are viewing Sd−2n as the unit sphere in σ⊥, the space U2n is spanned
by the restriction to Sd−2n of the homogeneous polynomials of degree 2n on σ⊥. These
polynomials are, in turn, spanned by the functions of the form 〈u, ·〉2n for u ∈ Sd−2n. Now,
since SO(d) acts transitively on Ld2n−1, the requirement that f be in F(d, 2n, 2n− 1) may
be expressed as ∫

Sd−2n
〈u, v〉2nf ′(v)λd−2n(dv) = 0

for all u ∈ Sd−2n and all SO(d)-rotations f ′ of f ; here λd−2n denotes spherical Lebesgue
measure on Sd−2n. If W ⊂ L2(Ld2n) is an irreducible SO(d)-representation, then it is
spanned by the set of all f ′ for any fixed non-trivial f ∈ W . It follows that W ⊂
F(d, 2n, 2n− 1) if and only if ρ(W ) is orthogonal to U2n, as required.

Proposition 3.3 allows us to compare F(d, 2n, 2n − 1) with the kernel of the Radon
transform R2n,2n−1. We recall that, for 0 < i < j < d, the Radon transform Rj,i maps
L2(Ldj ) to L2(Ldi ) and is defined by

(Rj,if)(σ) =
∫
Ldj (σ)

f(ξ) νj(σ; dξ) for σ ∈ Ldi and f ∈ L2(Ldj ),

see Helgason [1980 and 1984], for example. If i < j, the transform Rj,i is injective if and
only if i+j ≥ d, see Gelfand, Graev and Roşu [1984] and Grinberg [1985 and 1986]. So, for
d ≥ 4n ≥ 4, we see that R2n,2n−1 is not injective. In fact, its kernel is the space spanned
by those irreducible SO(d)-representations W with ρ(W ) contained in U⊥0 . Consequently,
F(d, 2n, 2n− 1) is a proper subspace of kerR2n,2n−1.

§4. Non-trivial functions in F(d, 2n, 2n− 1).

In this section we will complete the proof of the theorem by finding an infinite di-
mensional subspace of F(d, 2n, 2n− 1) in the case d ≥ 4n. The key to this construction
will be the branching theorem for the irreducible representations of SO(d), see Boerner
[1963, Theorem 12.1], for example. The symmetric space SO(d)/(SO(d− 2n)× SO(2n))
is the manifold L̂d2n of oriented 2n-dimensional subspaces of Ed. As representations of
SO(d), L2(L̂d2n) is a Hilbert direct sum of irreducible representations. These, in turn, are
characterised by their highest weights; if d = 2p is even these are the integer p-tuples of the
form d(m1, . . . ,mp) with m1 ≥ m2 ≥ · · · ≥ mp−1 ≥ |mp|, whereas if d = 2p+ 1 is odd they
are again integer p-tuples but now those which satisfy m1 ≥ m2 ≥ · · · ≥ mp ≥ 0. In this
context the spherical harmonics of degree 2m on Sd−1 correspond to the highest weights
d(2m, 0, . . . , 0) for m = 0, 1, . . . . The highest weights of the irreducible representations of
SO(d) which appear in L2(L̂d2n), where d ≥ 4n, are precisely those p-tuples d(m1, . . . ,mp)
where p = [d2 ] which satisfy the the following two conditions:

(a) mi = 0 for all i > 2n,
(b) the integers m1, . . . ,mp all have the same parity;
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see Strichartz [1975], Sugiura [1962] and Takeuchi [1973]. Consequently, we have a Hilbert
direct sum

L2(L̂d2n) =
⊕
Vdm1,...,mp

where Vdm1,...,mp
is isomorphic to the SO(d)-representation corresponding to the highest

weight d(m1, . . . ,mp); here the summation is over all p-tuples satisfying (a) and (b) above.
The functions of L2(Ld2n) are those of L2(L̂d2n) which are independent of orientation and
so

(4.1) L2(Ld2n) =
⊕
Vd2m1,...,2m2n,0,...,0

.

Proposition 4.1. If d ≥ 4n ≥ 4 then

(4.2) F(d, 2n, 2n− 1) ⊇
⊕

|m2n|>n
Vd2m1,...,2m2n,0,...,0

and is therefore infinite dimensional.

Proof. The branching theorem explains how to express the restriction of an irreducible
representation of SO(d) to SO(d−1) as a sum of irreducible representations of SO(d−1).
In terms of the expansion in (4.2), it can be stated as follows

V2p
m1,...,mp

∣∣
SO(2p−1)

'
⊕

m1≥m′1≥···≥mp−1≥m′p−1≥|mp|
V2p−1
m′1,...,m

′
p−1

and

V2p+1
m1,...,mp

∣∣
SO(2p)

'
⊕

m1≥m′1≥···≥mp−1≥m′p−1≥mp≥|m′p|
V2p
m′1,...,m

′
p
.

According to Proposition 3.3, it suffices to show that the representations W occurring in
(4.2) do not contain any SO(d − 2n + 1) subrepresentations isomorphic to Vd−2n+1

2i,0,...,0 for
i < 2n. This, in turn, is a consequence of

(4.3) Vd2m1,...,2m2n,0,...,0

∣∣
SO(d−2n+1)

{
⊃ Vd−2n+1

2m2n,0,...,0
,

6⊃ Vd−2n+1
2i,0,...,0 , for i < m2n.

We will establish (4.3) by 2n− 1 applications of the branching theorem. We first consider
the number of zeros in the subscripts of SO(d)-representations. On the left side of (4.3)
there are p − 2n zeros, whereas on the right side there are p − n − 1 zeros if d = 2p and
p− n if d = 2p+ 1. The branching theorem shows that we can only gain a zero when we
restrict from an odd dimension to an even dimension and that is achieved only by the term
corresponding to m′k = 0 where k is the largest index such that mk 6= 0. In view of the
number of zeros which have to be gained, we must make this choice at each opportunity.
Furthermore, on making this choice, it is clear that, in the lexicographic ordering of highest
weights, the least highest weight of the form d−1(k1, . . . , kt) which occurs in the restric-
tion of d(2m1, . . . , 2m2n, 0, . . . , 0) to SO(d− 1) is the weight d−1(2m2, . . . , 2m2n, 0, . . . , 0).
Repeated application of these observations now yields (4.3).
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§5. Remarks.

The case d = 4 of Proposition 4.1 was obtained by Goodey and Howard [1990a] using a
rather different approach. They used the fact that L̂4

2 = S2 × S2 (see Gluck and Warner
[1983]) to write

(5.1) L2(L4
2) =

⊕
n−m even

Sn,m

where

Sn,m = {f ∈ L2(S2 × S2) : ∆1f + n(n+ 1)f = ∆2f +m(m+ 1)f = 0}.

Here, ∆1 and ∆2 are the Laplace-Beltrami operators on the two factors of S2 × S2. So
the functions of Sn,m are spherical harmonics of degree n in the first factor, and of degree
m in the second. We will now use this representation to show that, in case d = 4, n = 1
there is equality in (4.2). That is

(5.2) F(4, 2, 0) = F(4, 2, 1) =
⊕
|j|>1

V4
2i,2j.

The former equality is established in Goodey and Howard [1990a] and so we will concentrate
on the latter. The first step is to establish the relationship between the two representations,
(4.1) and (5.1), for L2(L4

2). This will be achieved by showing that

(5.3) V4
2i,±2j ' Si∓j,i±j (i ≥ j ≥ 0).

In the S2 × S2 representation, the members of L4
2 which lie in a fixed 3-dimensional

subspace of E4 comprise a set isomorphic to the diagonal of S2 × S2. We will use this to
find isomorphic copies of certain SO(3) subrepresentations in Sn,m.

We use coordinates (x, θ) where −1 6 x 6 1 and 0 6 θ 6 2π to parameterize the points
of each S2 factor. The spherical harmonics of degree n on S2 which are independent of θ
are multiples of the Legendre polynomial

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n.

In fact there are points u1, . . . , u2n+1 ∈ S2 such that the functions Pn(〈ui, ·〉), for i =
1, . . . , 2n+1, form a basis of the space of spherical harmonics of degree n. In any case, the
spaces Sn,m contain functions of the form PnPm. In looking for SO(3) subrepresentations
of these spaces, we note that

(5.4) Pn(x)Pm(x) =
n+m∑
j=n−m

γn,mj Pj(x) (n ≥ m ≥ 0),
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where γn,mj 6= 0 for all j of the same parity as n −m; see, for example, Gradshteyn and
Ryzhik [1994, p.1046] or Adams and Hippisley [1922]. We know that, given i ≥ j ≥ 0,
there are n ≥ m such that V4

2i,2j is isomorphic to some Sn,m. The branching Theorem
shows that the former contains SO(3) subrepresentations isomorphic to V3

k (which has
dimension 2k + 1) for all k = 2j, . . . , 2i. Furthermore, the dimension of V4

2i,2j is the sum
of the dimensions of these V3

k , namely 4(i2 − j2 + i) + 1. From (5.4) and the fact γn,mn+m

and γn,mn−m are non-zero, we see that Sn,m contains isomorphic copies of V3
n−m and V3

n+m.
So n−m ≥ 2j and n+m 6 2i. If either of these inequalities were strict the dimension of
Sn,m, namely (2n+ 1)(2m+ 1) would be strictly less than that of V4

2i,2j. So we must have
equality in both cases, which gives (5.3). We note that (5.3) could also be obtained using
quaternions.

It follows from (5.3) and the comments above that (5.2) is equivalent to

(5.5) F(4, 2, 1) =
⊕

|n−m|>2

Sn,m

Since F(4, 2, 1) is invariant under the action of SO(4) and since the Sn,m are the irreducible
spaces in L2(L4

2), it suffices to prove that, for each pair n,m, there is an f ∈ Sn,m with
f ∈ F(4, 2, 1) if and only if |n−m| > 2. As mentioned previously, a natural choice for such
a function is the product of Legendre polynomials. Now (5.4) shows that the restriction
of PnPm ∈ Sn,m to planes containing a given line has non-trivial projection onto S|n−m|,
the space of spherical harmonics on S2 of degree |n−m|. It follows from Proposition 3.3
that PnPm ∈ F(4, 2, 1) if and only if |n−m| > 2, as required. Of course, it is tempting to
conjecture that (4.2) is always an equality, but we have been unable to prove this.

We conclude this work by noting some connections with other branches of geometry.
If K is a convex body in Ed and if E ∈ Ldk, we denote the orthogonal projection of K
onto E by K|E. If K is sufficiently smooth and centrally symmetric, there is a continuous
function fK ∈ C(Ldk) such that

Vk(K|E) =
∫
Ldk

[E,F ]fK(F ) νk(dF ) for all E ∈ Ldk,

see Schneider and Weil [1983] or Goodey and Weil [1993], for example. This represen-
tation for volumes of projections leads to similar integral formulas for functionals which
arise naturally in translative integral geometry, see Goodey and Weil [1987]. More recently
Schneider and Wieacker [1994] have shown that such integral equations also play an im-
portant role in the integral geometry of Minkowski spaces. In case k = 1 or d−1, functions
of the form Vk(K|·) span a dense subspace of C(Ldk). In fact, any sufficiently differentiable
member of C(Ldk) is a difference Vk(K|·)− Vk(L|·) for some convex bodies K, L. The fact
thatM(d, k, 0) 6= {0} for all 2 6 k 6 d−2 shows that, for these values of k, the projection
functions of centrally symmetric convex bodies do not span a dense subspace of C(Ldk). It
is not known whether this is also true for projection functions of arbitrary convex bodies.
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Birkhäuser, Basel 1983, 296–317.

Schneider, R. and Wieacker, J.
1994 Integral geometry in Minkowski spaces, to appear.

Stoyan, D., Kendall, W.S. and Mecke, J.
1987 Stochastic geometry and its applications, Akademie-Verlag, Berlin 1987.

Strichartz, R.
1975 The explicit Fourier decomposition of L2(SO(n)/SO(n−m)), Can. J. Math. 27 (1975), 294–310.

Sugiura, M.
1962 Representations of compact groups realized by spherical functions on symmetric spaces, Proc.

Japan Acad. 38 (1962), 111–113.

Takeuchi, M.
1973 Polynomial representations associated with symmetric bounded domains, Osaka J. Math. 10

(1973), 441–475.


