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ABSTRACT. For aconvex body< C R™, thekth projection function of< assigns to any
k-dimensional linear subspace &f* the k-volume of the orthogonal projection & to

that subspace. Let and K be convex bodies ii®™, and letK be centrally symmetric
and satisfy a weak regularity and curvature condition (which includes @lvith 9 K of
classC? with positive radii of curvature). Assume that and K have proportional st
projection functions (i.e., width functions) and proportiok#t projection functions. For

2 <k < (n+1)/2andfork = 3,n = 5 we show that and Ky are homothetic. In the
special case wherK is a Euclidean ball, we thus obtain characterizations of Euclidean
balls as convex bodies of constant width and congtamightness.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let K be a convex body (a compact, convex set with nonempty interidg}'im > 3.
Assume that, for any line, the length of the projectionfoto the line is independent of
that line and, for any hyperplane, the volume of the projectio&k’db the hyperplane is
independent of that hyperplane. Mustthen be a Euclidean ball?

In dimension three, this problem has become known as Nakajima’s problem [11]; see
[1], [2], [3], [4], [5], [6]. Itis easy to check that the answer to itis in the affirmativEifs a
convex body iR? of classC?. For general convex bodieslR?, the problem is much more
difficult and a solution has only been found recently. Gét, k) denote the Grassmannian
of k-dimensional linear subspacesRif. A convex bodyK in R™ is said to haveonstant
k-brightnessk € {1,...,n — 1}, if the k-volume V(K |U) of the orthogonal projection
of K to the linear subspadé € G(n, k) is independent of that subspace. The map

i G(n, k) = R, U w— Vi (K|U),

is referred to as théth projection functiorof K. Hence a convex bod¥ has constant
width (i.e. constant 1-brightness) if it has constisttprojection function (width function).

1.1.Theorem ([7]). Let K be a convex body iR™ having constant width and constant
2-brightness. Thelk is a Euclidean ball.

This theorem provides a complete solution of the Nakajima probleR? ifor general
convex bodies. In the present paper, we continue this line of research. Our main result
complements Theorem 1.1 by covering the cases of convex bodies of constant width and
constant-brightness witl2 < k < (n+1)/20rk =3,n = 5.
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1.2. Theorem. Let K be a convex body iR having constant width and constakt
brightness witl2 < k < (n+1)/2, ork = 3,n = 5. ThenkK is a Euclidean ball.

The preceding two theorems can be generalized to pairs of convex bgdiés hav-
ing proportional projection functions, provided thd} is centrally symmetric and has a
minimal amount of regularity.

1.3.Theorem. Let K, K, be convex bodies iR", and letK be centrally symmetric with
positive principal radii of curvature on some Borel subset of the unit sphere of positive
measure. Le2 < k < (n+1)/2, or letk = 3,n = 5 in which case assume the surface
area measuré,( Ky, -) of Ky is absolutely continuous with positive density. Assume that
there are constants, 5 > 0 such that

m(K) = am(K)p) and i (K) = B (Ko).
ThenK and K, are homothetic.

As the natural measure on the unit sphéfe; !, we use the invariant Haar probabil-
ity measure (i.e. spherical Lebesgue measure), or what is the same thifwg the)-
dimensional Hausdorff measuf& !, normalized so that the total mass is one. We view
the principal radii of curvature as functions of the unit normal, despite the fact that the
unit normal map is in general a set valued function (cf. the beginning of Section 2 be-
low). The assumption that the principal radii of curvature are positive on a set of positive
measure means that there is a Borel subs&f’of of positive measure such that on this
set the reverse Gauss map is single valued, differentiable (in a generalized sense) and the
eigenvalues of the differential are positive. Explicitly, this condition can be stated in terms
of second order differentiability properties of the support function (again see Section 2).
In particular, it is certainly satisfied if, is of classC?, and therefore lettind<, be a
Euclidean ball recovers Theorem 1.2. The required condition allows for pafg td be
quite irregular. For example ifK has a point that has a small neighborhood widgtg is
C? with positive Gauss-Kronecker curvature, then the assumption will hold, regardless of
how rough the rest of the boundary is. For example a “spherical polyhedron” constructed
by intersecting a finite number of Euclidean ballsRifi will satisfy the condition. More
generally if the convex bod¥, is an intersection of a finite collection of bodies of class
C%, it will satisfy the condition.

Theorem 1.3 extends the main results in [8] for the range of dimengionsvhere it
applies by reducing the regularity assumptionfdmnand doing away with any regularity
assumptions od{. However, the classical Nakajima problem, which concerns the case
n = 3 andk = 2, is not covered by the present approach.

Despite recent progress on the Nakajima problem various questions remain open. For
instance, can Euclidean balls be characterized as convex bodies having constant width
and constanfn — 1)-brightness ifn > 4? This question is apparently unresolved even
for smooth convex bodies. A positive answer is available for smooth convex bodies of
revolution (cf. [8]). From the arguments of the present paper the following proposition is
easy to check.

1.4.Proposition. Let K, Ky C R" be convex bodies that have a common axis of revo-
lution. Let Ky be centrally symmetric with positive principal radii of curvature almost
everywhere. Assume that and K, have proportional width functions and proportional
kth projection functions for somee {2,...,n — 2}. ThenK and K, are homothetic.

Itis a pleasure for the authors to dedicate this paper to Rolf Schneider. Professor Rolf
Schneider has been a large source of inspiration for countless students and colleagues all
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over the world. His willingness to communicate and share his knowledge make contact
with him a pleasurable and mathematically rewarding experience. The second named au-
thor has particularly been enjoying many years of support, personal interaction and joint
research.

2. PRELIMINARIES

Let K be a convex body ifR™, and lethx : R™ — R be the support function ok,
which is a convex function. Far € R” let Oh i (x) be the subdifferential of i atx. This
is the set of vectors € R™ such that the functiohx — (v, -) achieves its minimum at.

It is well known that, for allz € R™, Ohk (x) is a nonempty compact convex set and is a
singleton precisely at those points whérg is differentiable in the classical sense (cf. [13,

pp. 30-31]). Foru € S"~! the setdhx (u) is exactly the set of € AK such thatu is

an outward pointing normal t& atx (cf. [13, Thm 1.7.4]). But this is just the definition

of the reverse Gauss map (which in general is not single valued, but a set valued function)
and so the functiom — Ohg (u) gives a formula for the reverse Gauss map in terms of
the support function.

In the following, by “almost everywhere” on the unit sphere or by “for almost all unit
vectors” we mean for all unit vectors with the possible exclusion of a set of spherical
Lebesgue measure zero. A theorem of Aleksandrov states that a convex function has a
generalized second derivative almost everywhere, which we will view as a positive semi-
definite symmetric linear map rather than a symmetric bilinear form. This generalized
derivative can either be defined in terms of a second order approximating Taylor polyno-
mial at the point, or in terms of the set valued functior~ dhk () being differentiable
in the sense of set valued functions (both these definitions are discussed in [13, p. 32]). At
points where the Aleksandrov second derivative exi$tg is single valued. Becaugey
is positively homogeneous of degree one, if it is Aleksandrov differentiable at a:point
then it is Aleksandrov differentiable at all poinks: with A > 0. Then Fubini’s theorem
implies that not only iix Aleksandrov differentiable @™ almost all points oR", but it
is also Aleksandrov differentiable &t” ' almost all points o§™~!. For pointsy € S™~*
where it exists, leti?hx (u) denote the Aleksandrov second derivativehgf. Letu. de-
note the orthogonal complement@f Then the restrictiom?h x (u)|ut is the derivative
of the reverse Gauss maprat The eigenvalues of?h (u)|u’ are the principal radii of
curvature ai:. As the discussion above shows these exist at almost all poiStsof

A useful tool for the study of projection functions of convex bodies are the surface area
measures. An introduction to these Borel measures on the unit sphere is given in [13], a
more specialized reference (for the present purpose) is contained in the preceding work [8].
The top order surface area measfe | (K, -) of the convex body< C R™ can be ob-
tained as thén — 1)-dimensional Hausdorff measut¢®* ! of the reverse spherical image
of Borel sets of the unit sphe&®~!. The Radon-Nikodym derivative of,, _; (K, -) with
respect to the spherical Lebesgue measure is the product of the principal radii of curvature
of K. Since for almost every € S"~!, the radii of curvature oK atu € S~ ! are the
eigenvalues ofi?hx (u)|ut, the Radon-Nikodym derivative of,,_;(K,-) with respect
to spherical Lebesgue measure is the function det (d*hx (u)|u'), which is defined
almost everywhere oB"~!. In particular, ifS,_1(K,-) is absolutely continuous with
respect to spherical Lebesgue measure, the density function is just the Radon-Nikodym
derivative. For explicit definitions of these and other basic notions of convex geometry
needed here, we refer to [13] and [8].
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The following lemma contains more precise information about the Radon-Nikodym
derivative of the top order surface area measure. We denote the support function of a
convex bodyK by A, if K is clear from the context. For a fixed unit vectoe S"~! and
i € N, we also putv; := {v € S" ' : (v,u) >1— (2i%)"'}, whenevern is clear from
the context. Hence; | {u}, asi — oo, in the sense of Hausdorff convergence of closed
sets.

2.1.Lemma. Let K C R" be a convex body. i € S"~! is a point of second order
differentiability of the support functioh of K, then
. S (K wy)
1 - - ' 7
)

Proof. This is implicitly contained in the proof of Hilfssatz 2 in [10]. A similar argument,
in a slightly more involved situation, can be found in [9]. O

= det (d®h(u)|ut) .

An analogue of Lemma 2.1 for curvature measures is provided in [12, (3.6) Hilfssatz].

As another ingredient in our approach to Nakajima’s problem, we need two simple

algebraic lemmas. Here we writd/| for the cardinality of a seb. If z4,...,z, are

real numbers and = {é,...,ix} C {1,...,n} we setzy := z;, ...z, . We also put
Ty = 1.

2.2.Lemma. Letb > 0 be fixed. Letry,...,z,_1,91,...,Yn_1 D€ NnoONnegative real

numbers satisfying

Ty =2 and rr+yr =2b
foralli=1,...,n—1andalll C {1,...,n—1}with |I| = k, wherek € {2,...,n—2}.
Then|{$1, - ,.Z‘n_l}‘ <2 and|{y1, - 7yn—1}| < 2.

Proof. We can assume that < --- < x,_;. Thenwe have; > --- > y,_1.

If x; = 0, theny, = 2. Further, forl’ C {2,...,n — 1} with |I'| = k — 1, we have
y1yrr = 2b, hencey; = b. Sincek > 2, we getys,...,y,—1 > 0. Moreover, since
k—1 < n-3,we conclude thay; = --- = y,,_1. Thisshows thatalsg; = --- = x,,_1,
and thug{z1,...,zn—1}| < 2and|{y1,...,yn-1} < 2.

If y,_1 = 0, the same conclusion is obtained by symmetry.

If z; > 0andy,_1 > 0,thenxy,...,zn_1,91,...,yn—1 > 0. Now we fix any set
J C{1,...,n—1} with |J| = k 4+ 1. The argument at the beginning of the proof of
Lemma 4.2 in [8] shows thad{x; : ¢ € J}| < 2. Sincek + 1 > 3, we first obtain that
Hz1,...,2n-1}] <2,and then als¢{y,...,yn—1} < 2. O

2.3.Lemma. Letn > 4, and letb > 0 be fixed. Letry,..., 2 1,y1,...,Yn_1 D€
nonnegative real numbers satisfying

T, +y; =2 and rr+yr =2b
foralli=1,...,n—1landalll C {1,...,n— 1} with |I| =n — 2. Then
(2.1) IEESIPEL

l#1,j l#1,5
whenevet, j € {1,...,n — 1} are such that; # ;.
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Proof. For the proof, we may assume thiat 1 andj = n — 1, to simplify the notation.
Then we have

Ty T2+ Y1 Yn—2 = 2b,

To Tp_1+Y2 Yp_1= 267
which implies that

Ty Tpo(Tno1 —21) + Y2 Yn—2(Un—1 —y1) = 0.

Moreoverx, +y; =2 = 2,1 + yn_1 Yields

Tp_1 —T1 =Y1 — Yn—1 7 0,
and thus

To T =Y Yn_o.
Hence
229 Tp2 = (T1+Y1)T2 T2 =T1T2+ Tp_2 + Y172+ Tp_2
=1%o Tp—2 T Y1Y2 " Yn—2 = 2b,

and thus

b=x3 - Tp-2=yY2" " Yn—2.

3. PROOFS

First, by possibly dilatings<, we can assume that= 1. Hence the assumption can be
stated as

(3.1) 771(K)=7T1(K0) and Wk(K)Zﬂﬂ'k(Ko)

for somek € {2,...,n — 2}. Let K* denote the reflection oK in the origin. Then (3.1)
yields that

K+ K*=2K, and Vi (K|U) = B Vi(Ko|U)
forall U € G(n, k). Minkowski’s inequality (cf. [13]) then implies that

Vi(2Ko|U) = Vi(K|U + K*|U)

1 1 k
> (Vk(KlU)E + Vk(K*|U)F)
= (2v(x0)t)"
— BV(2K|U).

Equality in Minkowski's inequality will hold if and only if*|U and K'|U are homothetic.
As they have the same volume this is equivalent to their being translates of each other, in
which caseX |U is centrally symmetric. Hencé < 1 with equality if and only ifK|U is
centrally symmetric for all linear subspadésc G(n, k). Sincek > 2, this is the case if
and only if K is centrally symmetric (cf. [4, Thm. 3.1.3]). So/f = 1, thenK and K,
must be homothetic.

In the following, we assume that € (0,1). This will lead to a contradiction and thus
prove the theorem.

We write h, hq for the support functions ok, K. Here and in the following, “almost
all” or “almost every” refers to the natural Haar probability measur&®n'. Moreover
a linear subspaceE” as an upper index indicates that the corresponding functional or
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measure is considered with respectiias the surrounding space. By assumption there
is a Borel subseP C S™~! with positive measure such that for alle P all the radii
of curvature ofK in the directionu exist and are positive. AK, is symmetric we can
assume that. € P if and only if —u € P. Let N be the set of points € S"~! where
the principal radii of curvature oK do not exist. SinceV is the set of points where the
Alexandrov second derivative éfdoes not exist, it is a set of measure zero. By replacing
P by P~ (NU(—N))we can assume that the radii of curvature of bisthand K exist
at all points of P. As bothN and— N have measure zero this set will still have positive
measure.

Letw € S"~! be such that andhk are second order differentiableatind at—w« and
that the radii of curvature oK, atwu are positive. This is true of all points€ P, which is
not empty as it has positive measure. 2t G(n, k + 1) be such that. € E. Then the
assumption implies that also

wl (K|E) = Bl (Ko|E).
Hence we conclude as in [8] that
SE(K|E,-) + SE(K*|E,-) = 28 S (Kol E,-).
Sinceh(K|E, ) = hx|E andh(Ky|E, ) = hk,|E are second order differentiable at
and at—u with respect toF, Lemma 2.1 applied with respect to the subsp&cdenplies
that
det (d*hg p(u)|E Nut) + det (d®hg p(w)|ENut)
=23 det (d®hg, p(v)|ENut).
Sinceh andhg are second order differentiablewatind at—u, the linear maps
L(h)(uw): T,S" ' - T,S"7 ', v d*h(u)(v),
L(ho)(u): T,S" ™' — T,S" 1, v d®ho(u)(v),

are well defined and positive semidefinite. Since the radii of curvatu&oét v are
positive, we can define

Ling (h)(u) := L(ho)(u) /% o L(h)(u) o L(ho)(u) "/
as in [8] in the smooth case.
In this situation, the arguments in [8] can be repeated to yield that
Ly (h)(u) + Ly (h)(—u) =2id
AR Lo (B)(u) + A¥ Ly, (R)(—u) =23 AFid,
whereid is the identity map off;,S"~!. Lemma 3.4 in [8] shows thak,,, (k)(u) and

Ly, (h)(—u) have a common orthonormal basis of eigenvectars. ., e,_1, with cor-
responding eigenvalues (relative principal radii of curvaturge) . ., z,,_1 atu and with

(3.2)

eigenvaluey;, . . ., y,_1 at—u. After a change of notation (if necessary), we can assume
that0 < z; < x5 < --- < x,_1. By (3.2) we thus obtain
(3.3) Ti+uy; =2 and xr +yr =20

fori=1,...,n—1andl C {1,...,n— 1} with |I| = k.

Proof of Theorem 1.3 when2 < k < (n + 1)/2. From (3.3) and Lemma 2.2 we
conclude that there is sonde= {0, ...,n — 1} such that

xlz...:xe<xe+1:...:xn71 and y1:"':y£>y6+1:"':yn71'
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(@) If k < ¢, then
r1+1y =2 and .’Elf—‘rylf:Qﬁ
Hence

k
2 - 2 ’

contradicting the assumption that< 1.
(b) Letk > ¢. Sincek < (n+1)/2 we have2k < n+1ork < n+1— k. Hence
k<n-—k<n—/{ andthust <n—1-— ¢ Butthen
Tot1 + Yep1 = 2 and x?ﬂ + y§+1 =20,

and we arrive at a contradiction as before. This proves Theorem 1.3 whenk <
(n+1)/2 O

Proof of Theorem 1.3 whenk = 3,n = 5. In this case we are assuming thj
has positive radii of curvature at almost all pointsS6f-'. As i has Alexandrov second
derivatives at almost all points, for almost alle S”~! the radii of curvature o exist
at bothu and —u and at these unit vectors, has positive radii of curvature. Recall that
x1 < --- < x4 are the eigenvalues @f,, (h)(u). We distinguish three cases each of which
will lead to a contradiction.

(8) r1 # xo. Then Lemma 2.2 yields that; < z, = x3 = x4 and therefore also
Y2 = y3 = y4. Hence
+ys =28 and wy+yp =2,
and thus

5 5 =P

contradicting thatg < 1. So this case can not arise.

3
1— <x2+y2> < x5+ y3

(b) x1 = 29 andxy = x3, i.e.x1 = xo = x3. Then alsq;; = y2 = y3, and we get
ai+yt =28 and oz +y =2,
which, as before, leads to a contradiction and thus this case can not arise.

(C) r1 = T2 andxl 75 xs3, i.e.xl = To < T3 = T4 by Lemma 2.2. Since:l 7’5 xs3,
Lemma 2.3 implies that

(3-4) ToZa = B = YaYa-
In addition, we have
(3.5) To+y2 =2 =14 +Ys.

We show that these equations determiner 4, 2, y4 as functions ofs. Substituting (3.4)
into (3.5), we get

£+y2:2, $4+£=2~

Ty Y2
Combining these two equations, we arrive at

28 =2

Y2

Y2 +



8 RALPH HOWARD AND DANIEL HUG

where we used thaty = 2 — y% = 0. This equation fog, can be rewritten as

Y3 —2y2 + B =0.
Hence, we find that (recall that< g < 1)
Yo = 1+ 1-— ﬂ

$2:2—y2:1:F\/1—ﬁ.

Consequently,

From (3.4), we also get

_s__ B8  _ -
e = 1_ﬂ71i 1- 3,
and finally again by (3.4)
_s8__ B _ A3
= 1t a=g T V! B

Sincex; = x5 < x3 = 14, this shows that

(3.6) r1=xz9=1—+/1-0, r3=xz4=14++1-0.
By assumption the surface area meastifeKy,-) of K, is absolutely continuous with
density functionu — det(d?ho(u)|ut). SinceK + K* = 2K, the non-negativity of
the mixed surface area measuf&d([i|, K*[4 — 7], -) and the multilinearity of the surface
area measures yields that
1 /4
K, )< K[, K*[4 —1],-
1) < 3 (1) U6t Kt 1)
= S4(K + K™, ) =24 S4(K0, )

This implies thatS, (K, -) is absolutely continuous as well, with density function—
det(d?h(u)|ut). Now observe that the cases (a) and (b) have already been excluded and
therefore the present case (c) is the only remaining one. Hence, using the definition of

Lho (h)(u)'
det(d?h(u)|ut)
det(d?ho(u)|ut)
for almost allu € S*. Thus we deduce that
Su(K,-) = 3% S4(Ky, ).

Minkowski’s uniqueness theorem now implies tiatand Ky are homothetic, henck is
centrally symmetric. Symmetric convex bodies with the same width function are translates
of each other. But then agaih= 1, a contradiction.

= det(Lp, (h)(u)) = 21222324 = B2,
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