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ABSTRACT. We define a new class of knot energies (knowreasrmalization energigsand prove

that a broad class of these energies are uniquely minimized by the round circle. Most of O’'Hara’s

knot energies belong to this class. This proves two conjectures of O’Hara and of Freedman, He, and
Wang. We also find energies not minimized by a round circle. The proof is based on a theorem of

L{iké on average chord lengths of closed curves.

1. INTRODUCTION

For the past decade, there has been a great deal of interest in defining new knot invariants by
minimizing various functionals on the space of curves of a given knot type. For example, imagine a
loop of string bearing a uniformly distributed electric charge, floating in space. The loop will repel
itself, and settle into some least energy configuration. If the loop is knotted, the potential energy of
this configuration will provide a measure of the complexity of the knot.

In 1991 Jun O’Hara began to formalize this picture [12, 14] by proposing a family of energy
functionaISe§ (for j, p > 0) which are based on the physicists’ concept of renormalization, and

which are defined by![c] := (1/7)(EY[c])"/?, where

@D wrie = [ <|c<s> o d(it)j)p At

c: S* — R3 is a unit-speed curvee(s) — c(t)| is the distance betweertis) andc(t) in space,
andd(s, t) is the shortest distance betwedgr) andc(t) along the curve. O’Hara showed [15] that
these integrals converge if the curvis smooth and embeddefi< 2 + 1/p, and that a minimizing
curve exists in each isotopy class whgn> 2.

It was then natural to try to find examples of these energy-minimizing curves in various knot
types. O’Hara conjectured [13] in 1992 that the energy-minimizing unknot would be the round
circle for all¢®’ energies wittp > 2/ > 1, and wondered whether this minimum would be unique.
Later that year, he provided some evidence to support this conjecture by proving [14] that the limit
of e? asp — oo andj — 0 was the logarithm of Gromov'distortion, which was known to be
minimized by the round circle (see [10] for a simple proof).
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Two years later, Freedman, He, and Wang investigated a family of energies almost identical to
the e? energies, proving that the; energy was Ndbius-invariant [4], and as a corollary that the
overall minimizer fore} was the round circle. For the remainiaQ energies, they were able to
show only that the minimizing curves must be convex and planad far j < 3 (Theorem 8.4).

They conjectured that these minimizers were actually circles.
We generalize the energies of O’Hara and Freedman-He-Wang as follows:

Definition 1.1. Given a curve: parametrized by arclength, Ie{s) — ¢(t)| be the distance between
c(s) andc(t) in space, andl(s,t) denote the shortest distance betweeandt along the curve.
Given a functionF” : R? — R, the energy functional in the form

(1.2) flei= [[ F et~ o). (s, 1)) ds.
is called therenormalization energpased or¥ if it converges for all embedded!:! curves.

The main result of this paper is that a broad class of these energies are uniquely minimized by
the round circle.

Theorem 1.2. Supposé'(z, y) is a function fromR? toR.. If F(y/z,y) is convex and decreasing in
x for z € (0,y?) andy € (0, 7) then the renormalization energy based Biis uniquely minimized
among closed unit-speed curves of lengjttby the round unit circle.

It is easy to check that the hypotheses of Theorem 1.2 are slightly weaker than requirifAg that
be convex and decreasing:in The theorem encompasses both O’'Hara’s and Freedman, He, and
Wang’s conjectures:

Corollary 1.3. Supposé < j < 2+ 1/p, whilep > 1. Then for every closed unit-speed curve
in R™ with length2,

(1.3) Ef[c] > 233'7977/02 ((Si;)j - <%>]>p ds.

with equality if and only it: is the circle.

We must include the conditioh< 2+ 1/p in our theorem, for otherwise the integral definiﬁg
does not converge. We do not know whether the condijtion 1 is sharp, since the energies are
well-defined for) < p < 1, but it is required for our proof.

We use several ideas from a prophetic paperiddd_Gabor [11], written almost thirty years be-
fore the conjectures of O’Hara and Freedman, He, and Wang were miaki#.dhowed that among
closed, unit-speed planar curves of lengith circles are the only maximizers of any functional in
the form

2
(1.4) [[ 10ets) ~ et asa,
wheref is increasing and concave.
IThere are references in the literature to papers authored botlikiyGabor and by @bor Lilké. We are informed

that these people are identical and thakd is the family name; the confusion likely results from the Hungarian conven-
tion of placing the family name first.
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Our arguments are modeled in part on Hurwitz's proof of the planar isoperimetric inequal-
ity [8] [3, p.111]. In Section 2, we derive a Wirtinger-type inequality (Theorem 2.2), which we
use in Section 3 to generalizalkd's theorem (Theorem 3.1). We then apply this result to obtain
sharp integral inequalities for average chord lengths and distortions. In the process, we find another
proof that the curve of minimum distortion is a circle. In Section 4, we give the proof of the main
theorem.

All our methods depend on the concavity pfin functionals of the form of Equation 1.4. In
Section 5, we consider the case whgrie convex, as in the case of the functional

(1.5) / / lo(s) — c(O)|P ds dt

for p > 2. Numerical experiments suggest that the maximizing curve for this functional remains a
circle forp < «a, with 3.3 < a < 3.5721, while forp > 3.5721, the maximizers form a family of
stretched ovals converging to a doubly-covered line segmaentaso.

2. A WIRTINGER TYPE INEQUALITY
Definition 2.1. Let \: R — R be given by
(2.1) A(s) := 2sin g
For0 < s < 2w, A(s) is the length of the chord connecting the end points of an arc of length
the unit circle.

Our main aim in this section is to prove the following inequality, modeled after a well known
lemma of Wirtinger [3, p. 111]. For simplicity, we restrict our attention to closed curves of I@agth
in R™.
Theorem 2.2. Letc: S! := R/27Z — R™ be an absolutely continuous functioncIft) is square
integrable, then for any € R

(2.2) /yc(t +8) —c(t)]* dt < \2(s) / I (t)|? dt,
with equality if and only if is an integral multiple o7 or
(2.3) c(t) = ap + (cost)a+ (sint) b

for some vectorag, a,b € R".

We give two proofs of this result, one based on the elementary theory of Fourier series, and one
based on the maximum principle for ordinary differential equations.

Fourier series proof.We assume that: S — R" c C", as the complex form of the Fourier series
is more convenient.C" is equipped with its standard positive definite Hermitian inner product
(v,wy = >, zxwy Wherev = (vq,...,v,) andw = (w1, ..., wy). This agrees with the usual
inner product o™ C C™. The norm ofv € C" is given by|v| := /{v,v), andi := /—1.

The facts about Fourier series required for the proof are as follows: § — C” is locally
square integrable then it has a Fourier expansion

o(t) = Y oret,

k=—o00
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(the convergence is ih? and the series may not converge pointwise). Th@orm of¢ is given by

(2.4) [ 160 at =2 3 lonl

k=—o00

If ¢ is absolutely continuous andl is locally square integrable the#l has the Fourier expansion
o't) =437 koret and therefore

(2.5) LR 3 k2|¢k|2—2w2k2 6 l? + e ),

k=—00

as the contribution to the middle sum from the ters 0 is zero.
Let 3°%° ___ ape* be the Fourier expansion oft), wherea;, € C™. Then

c(t+s/2) —c(t—s/2) = Z (e’m/2 — e*k“ﬂ) apet

k=—o00

=20 i sinE akem.
— 2

(2.6) =87TZ< ) la—r* + |arl?) .

Also, by (2.5) and (2.1),
2 s)/c’(t)|2dt: (4sin2 g) <2ﬂ2k2(\ak\2+ |a_k]2)>

(2.7) —8#2( sin? ) (lak|* + la—g|?).

Subtracting (2.6) from (2.7), we set

5) = A2(s)/|c’(t)|2dt—/]c(t+s)—c(t)2dt
WZ <k2 sin® = — sin %) (la— k|2 + |ak| ).

Lemma 2.3 (below) implies thaic(s) > 0 with equality if and only ifs is a multiple of2x, or
ar = a_g = 0 forall k > 2. The latter occurs if and only if

(2.8) c(t) = a_1e”" 4 ag + are’ = ag + (cost)a + (sint) b
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wherea := a; + a_; andb :=i(a; — a_1). O
Lemma 2.3. Letk > 2 be an integer. Then

(2.9) sin?(kf) < k*sin?(9),

with equality if and only i) = mz for some integem

Proof. If & = mm, for some integern, then equality holds in (2.9). H is not an integer multiple
of m, we sety; () := | sin(k0)/sin(0)|. Then| cos(f)| < 1, and the addition formula for sine yields

(2.10) Q+1(0) = | cos(0) q(0) + cos(kb)| < qu(0) + 1,

Sinceq; () = 1, we then havey(0) < k by induction, which completes the proof. O

Maximum principle proofThis method is an adaptation ofikd’s original approach [11]. In that
paper, he solves a discrete version of the problem, showing that the average squared distance be-
tween the vertices of am-gon of constant side length is maximized by the regulgion. He then
obtains the main result by approximation. We go directly to the continuum case, which turns out to
be simpler.

To simplify notation, letL = [ |c/()|? dt. Let

:/\c(t+s)—c(t)|2dt,
)= A(s /|c = L)\%(s).

We claim thatf is C? with

(2.11) f(0y=0,  f(0)=0, f"0)= 2/ | (t)|? dt = 2L.

These formulas are clear whers C? and hold in the general case by approximating’Byfunc-
tions. The explicit formula for” makes it clear thaf is C2.

Next we derive a differential inequality fgf, using an elementary geometric fact (which appears
in a slightly different form in lilkd's paper as Lemma 7):

Lemma 2.4. For any tetrahedror4, B, C, D in R",
(2.12) |AC> +|BD* < |BC|* + |AD*> + 2|AB| |CD|,

with equality if and only ifAB and DC are parallel as vectors.
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Proof. Denote the vectord B, BC, CD, DA by vy, ve, v3, v4. Then)  v; = 0, and

1
[ACI? +[BD[? = 2 ([vr + val* + |vz + vs[* + [v + vaf* + [vg + 01 [?)

4
= Z |vil> + (v1,v2) + (v2,v3) + (v3, va) + (v4, 01)
i=1

4
= Z ”Ui‘Q + <1)1 + v3,v2 + 1}4>
i=1

4
= |oil* = o1 + vs]?
=1

4
<D loil® = (jor| = Jus])?
i=1

= |va|? + |v4]? + 2|v1||vs| = |BC|* 4+ |AD|? + 2|AB| |CD|.

Equality holds if and only iv3 = —pwv; for somep > 0, which is equivalent tod B and DC being
parallel as vectors. O

For anyt, s andh, we can apply Lemma 2.4 to the tetrahede(t), c(t+s+h), c(t+s), c(t+h)
to derive the equation

le(t + 8) — c(t)]* + |e(t + 5 + h) — c(t + h)|?
<le(t+s+h) —c(t+8))* +|c(t + h) — c(t)]?
+2)c(t + s+ h) —c(t)||c(t + s) — c(t + h)|.
Holding s, h fixed and integrating with respect tp

2f(s) < 2/(h) +2/\c(t+s+h) — o(t)||e(t + 5) — clt + h)| dt

<2f(h)+2/f(s+h)f(s —h)

by the Cauchy-Schwartz inequality. Therefgi@) < f(h)++/f(s + h)f(s — h). For any fixeds,
this can be rewritten

g(h) := 5 (108 f(s + h) +log f(s — 1) ~log (£(s) — £(1)) > 0.

Whens is not a multiple o2, f(s) > 0 andg is well-defined for smalh. Further,g has a local
minimum ath = 0, and so the second derivativepis non-negative at zero. Using (2.11), this tells
us that

d? —2L
2.1 — 1 > .
(2.13) 77 089 = 715
Meanwhile,A(s) satisfies the differential equation

d? —2L
2.14 ——log A(s) = .
( ) d82 og (8) A(S)
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We are trying to show thaf(s) < A(s) and that if equality holds for any € (0,2~), then
f(s) = A(s). Let
fls) _
) log f(s) —log A(s).

In these terms, we want to show thdk) < 0 and that ifu(s) = 0 for somes € (0, 27) thenu = 0.
Using (2.13) and (2.14),

2L 2L _ 2L (f() |\ _ 2L () 2L
=5 TG T I <A<s> 1> 77 (9 =1) 2 75u0e)

u(s) = log

u//(s)

By two applications of L'Hospital’s rule, we compulen,_,o u(s) = 0. Thuslim,_.o, u(s) = 0,
as well. So ifu is ever positive, it will have a positive local maximum at some peine (0, 27).
At that point,

0>u"(sg) > u(sp) > 0,

2L
f(s0)
which is a contradiction. So is non-positive or{0, 27). Further, ifu is zero at any point if0, 27),
the strong maximum principle [21, Thm 17 p. 183] implies thatanishes on the entire interval.
Thus f(s) < A(s) with equality at any point of0, 27) if and only if f(s) = A(s).

Last, we show that iff (s) = [ |e(t + s) — c(t)[*dt = N(s) [ |/ (t)|*dt = A(s), thencis an
ellipse. By our work above, if = A, then for each fixed, ¢ maximizes| |c(t + s) — ()| dt
subject to the constraint thdit|c’(¢)|* dt is held constant. The Lagrange multiplier equation for this
variational problem is

"(t) = M(c(t + s) — 2c(t) + c(t — s))
whereM is a constant depending an Whens = 7 we can use the fact thathas perio®= and
this becomes
d"(t) = 2M (c(t + ) — c(t)).
Differentiating twice with respect t and using both the periodicity and the equation,
")y =2M (" (t+ ) — "(t))

= 4AM?(c(t) — c(t — ) — c(t + 7) + (1))

= —8M? (c(t+m) — c(t))

= —4AM"(t).

Soc” satisfies the equatiofi’ = —4M g and has perio@r. This implies thattM/ = k? for some
k€ Z,andd(t) = (coskt)V + (sinkt)W with V andW in R". Butk = =1, for otherwise
f(2n/k) = 0 # A(27/k), a contradiction. Taking two antiderivatives,

(2.15) c(t) = ap + thy + (cost) a + (sint) b,
with ag, bg, a, b in R™. Periodicity implies thaby = 0, completing the proof. g

Remark 2.5. By equation (2.8), extremals for the inequality of Theorem 2.2 are either ellipses or
double coverings of line segments, depending on whettardb are linearly independent. Thus
the set of extremal curves is invariant under affine mapR'6f When the extremal is an ellipse,
the parameterization is a constant multiple of spbecial affine arclengtfc.f. [2, p. 7], [20, p. 56]).

It would be interesting to find an affine invariant interpretation of inequality (2.2) or of the deficit
pc(s) used in the first proof—especially whetis a convex planar curve.
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3. INEQUALITIES FORCONCAVE FUNCTIONALS

We now apply Theorem 2.2 to obtain an inequality for chord lengths. Recall Definition 2.1, that
A(s) is the length of a chord of arclengtton the unit circle.

Theorem 3.1.Letc be a closed, unit-speed curve of lengthin R™. For0 < s < 27, if f: R - R
is increasing and concave df), d(0, s)?], whered(s, t) is the shortest distance along the curve
betweerr(s) andc(t), then

1
(3.1) or [ £(ett+9) = (o)) dt < 1 (3¥(5))
and equality holds if and only if is the unit circle.

Proof. The shortest distance betwegin) andc(t + s) along the curve ig(0, s). Thus, the squared
chord lengthc(t + s) — c(t)|* is in (0, d(0, s)?], except whers = 0. Being undefined at this point

does not affect the existence of the integrals. Using Jensen’s inequality for concave functions [16,
p. 115], Theorem 2.2, thdtis increasing, and that’(¢)| = 1 for almost all¢, we have

o [ttt s ety dr< g (o [lete+s) - et )

)‘2(8) N2
< M S
<1 (%2 [wra)
= f (X(9)) -
If equality holds in (3.1), then the above string of inequalities implies that equality holds between the

two middle terms, i.e., equality holds in (2.2). Thus, sifice s < 27, we may apply Theorem 2.2
to conclude that(t) must be as in (2.3). Sineehas unit speed, it follows that

d(t) = —(sint) a + (cost) b

is a unit vector for alt, which forces the vectors andb to be orthonormal, and so implies thais
the unit circle. Conversely, ifis the unit circle, thete(t + s) — ¢(t)| = A(s) for all t and therefore
equality holds in (3.1).

([l
Letting f(x) = /= in Theorem 3.1, we obtain the following inequality:
Corollary 3.2. Letc be a closed, unit-speed curve of lengthin R™. Then for any € (0, 27),
(3.2) %/\C(HS) — c()|dt < A(s),
with equality if and only it: is the unit circle. O

Next we apply Theorem 3.1 to obtain sharp inequalities for Gromaigtortion [6, 10]. By
definition, the distortion of a curve is the maximum value of the ratio of the distance in space to the
distance along the curve for all pairs of points on the curve. As we mentioned above, distortion is a
limit of O’Hara energiesexp(ef°(c)) = distort(c) [15, p. 150].

The inequality (3.4) is due to Gromov [7, pp. 11-12], [10]. As always, while we state our results
for curves of lengti2r, the corresponding result holds for curves of arbitrary length.
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Corollary 3.3. For every closed, unit-speed curvef length2z in R™

s s
3.3 distorts(c) := sup > ,
33) =R T+ ) — el = A6)
s T
(3.4) distort(c) := sup sup > —,
se(0,x] teR [c(t +8) —c(t)] — 2

with equalities if and only it is the unit circle.

Proof. In both cases equality is clear for the unit circle. By the mean value property of integrals and
inequality (3.2),
1 o e(t+s) —c(t)] 1 / A(s)

- — inf < _ < A7/

distorts(c) ieR s ~ 27s et +5) — ()] dt < s
establishing (3.3). Further, equality in (3.3) implies equality in (3.2), which, by Theorem 3.1,
happens if and only i is the unit circle.

The proof of (3.4) follows easily from (3.3):

distort(c) = sup distorts(c) > distort,(c) > > T =T
s€(0,m] )‘( ) 2’
and again equality implies in particular th#ittort . (¢c) = 7 /A(), which, by (3.3), happens if and
only if ¢ is the unit circle. 0

For general mapg: M — R™ of a compact Riemannian manifold to Euclidean space Gro-
mov [6, p.115] has given, by methods related to ours, lower bounds—which are not sharp—
for the distortion off in terms of the first eigenvalue a¥/ and the average square distance,
Vol(M)™2 [ [y, 4z, y)? dz dy, between points ol (whered is the Riemannian distance).

4. PROOF OF THEINEQUALITY FOR ENERGIES
We are now ready to prove the main theorem. We start by restating it.

Theorem 4.1. SupposeF(x y) is a function fromR? to R. If F(,/z,y) is convex and decreasing
in x for 2 € (0,2] for all y € (0, 7) then the renormalization energy basedBn

// (e(s) — ()], d(t, )) dt ds,

is uniquely minimized among closed unit-speed curves of l@aghlly the round unit circle.

Proof. Making the substitution — s — t, t — t, changing the order of integration, and using the
fact thatd(s,t) = d(s + a,t + a) for anya, we have

// ) —c(t)], d(s, 1)) dsdt = // (le(t + ) — ¢(t)], d(0, s)) dt ds.

For eachs € (0, 2n), if we let f(z) = —F(y/x,d(0, s)), then
/F et + ) — ()], d(0, 5)) dt = /f et +5) — c(t)]?) dt

andf is increasing and concave ¢\, d(0, s)?]. By Theorem 3.1,

4.1) —/f (et + 5) — ()

%) dt > —2rf (N\*(s)),
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with equality if and only ifc is the unit circle. Integrating this from = 0 to s = 2 tells us that

f[c] is greater than or equal to the corresponding value for the unit circle, with equality if and only
if (4.1) holds for almost alk € [0, 2x]. But if equality holds for any € (0, 27), thenc is the unit
circle. O

We now prove the corollary.

Corollary 4.2. Supposé < j < 2+ 1/p, whilep > 1. Then for every closed unit-speed curve
in R™ with length2,

- , \ p
(4.2) Ef[c} > 23jpﬂ'/2 << _1 )J - <1>J> ds.
0 sin s s

with equality if and only it is the circle.

1 1\”
F(ﬂ?,y) = (ﬂgﬂ) ;

then using (1.1), we see thElj’.’[c] is the renormalization energy based Bn We must show that

F(y\/z,y) is convex and decreasing infor = € (0,4?] for all y € (0, 7). It suffices to check the
signs of the first and second partial derivativesgf/z, i) with respect tac on (0, ?).
Whenp > 1,y # 0, andx € (0,y?),

OF (Vz,y) ip <1 1>“<07

- 22yl

Proof. If we let

oz o 2(5+2)/2

and

0z? C 4gGH4)/2

OPF(Vr,y)  jG+2p [ 1 1N -1 (1 1\
(ﬂ/? - y_J> ) (xj/z - E) > 0.

Sincez/2 can be arbitrarily close tg/ if the curve is nearly straight, examining this equation shows
that the conditiorp > 1 is required to enforce the convexity 6f\/z, y).

So for everyy # 0, F(y/z,y) is decreasing and convex ¢, y2]. Further, a direct calculation
shows that/ F' (A%(s),s) ds < cowhenj < 2+ 1/p.

Thus F' satisfies the hypotheses of Theorem 4.1. Computing the energy of the round circle by
changing the variable — 2s and noting that the resulting integrand is symmetric aBost /2,
we have

Ef[d > 27T/F (A\2(s),d(0,s)) ds
s ((L) ) (ﬁ)) “
e () ()

with equality if and only ifc is the unit circle. 0
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5. CONVEX FUNCTIONALS AND NUMERICAL EXPERIMENTS

All of our work so far has depended on the hypotheses of Theorem 3.1: our energy integrands
must be increasingsoncavefunctions of squared chord length. It is this condition which restricts
Corollary 4.2 tOef energies wittp > 1. To investigate the situation whepe< 1, we focus our

attention on a model problem. f < p < 2, then f(x) = 2P/2 is increasing and concave; so
Theorem 4.1 implies that among closed, unit speed curves of IengthR",

Ayle] = (ﬁ // le(t) — c(s)|P dtds)zl) < (%/(A(s))p ds>; ,

where equality holds if and only if is the unit circle. Whem = 1, this inequality corresponds to
the theorem of Likd [11] mentioned in the introduction. It is natural to ask:

Question 5.1. Which closed, unit speed curves of lengthmaximizeA,, for p > 2?
We begin by sketching a proof that such a maximizing curve exists fof.

Proposition 5.2. Let A,[c] be defined as above. Fpr> 0, there exists a closed, unit-speed curve
of length27 maximizingA,[c]. Further, every maximizer of,[c] is convex and planar.

Proof. Sallee’s stretching theorem [17] (see also [5]) says that for any closed unit-speed space
curve ¢ of length 27, there exists a corresponding closed, convex, unit-speed plane €upfe
length27 such that for every, ¢ in [0, 2],

(5.1) le(t) = c(s)] < |e"(t) — ¢ (B)],

with equality for alls and¢ iff ¢ is convex and planar. Since the integrand definityge| is an
increasing function of chord length fer> 0, this implies that every maximizer of,[c] must be
convex and planar.

Let U denote the space of closed, convex, planar, unit-speed curves of engthich pass
through the origin, with th€° norm. It now suffices to show that a maximizerAf[c| exists inA.

Blaschke’s selection principle [19, p. 50] implies that this space of parametrized curves is com-
pact in theC? norm. It easy to see that,|c] is CP-continuous fore in ¢ (in fact, it is jointly
continuous irp andc on the product0, co) x ), completing the proof. O

We conjecture that these maximizers are unique (up to rigid motions), and depend continuously
onp. Itis easy to see the following:

Lemma 5.3. As above, let/ denote the space of closed, convex, planar, unit-speed curves of
length2 with theC? norm. Then

Max := {(p, ¢p) | ¢p Is @ maximizer ofd,,} C (0,00) x U
is locally compact and projects ont{6, co).

Proof. We know from the proof of Proposition 5.2 thatis aC°-continuous functional on the space
(0,00) x U. If we choose anypy, ¢;, ), and choose a compact intervalZ R containingpy, then
Max; = {(p,¢p) € Max | p € I} contains a neighborhood ¢py, ¢,,). We now showMax; is
compact.
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Take any sequende;, ¢,,) € Max;. Sincel is compact, we may assume that fheonverge to
somep. Sincel/ is C°-compact (see the proof of Proposition 5.2), we may also assume that the
converge to some. It remains to show thatis a maximizer forA,,.

If not, there exists some, with A,[c,] > Ap[c]. But then

lim Ay, [cp] = Aplep] > Aple] = lim Ay, [ep,],

71— 00 1—00
since A, is continuous inp. On the other hand, since thg, are maximizers for thed,,, we
haveA,,[c,,] > Ap, [cp] for eachi, and so

lim Ay, [cp] < lim Ap,[cp,].

O

Together with uniqueness, this would prove that theMexk is a single continuous family of
curves depending op > 0. As it stands, Lemma 5.3 tells us surprisingly little about the structure
of Max. For instance, there are locally compact subseR“ivhich project onto the positive-axis
but which are totally disconnected; one example is

(55,59

>N {i]a;=1}

a; €{0,1,2}, N € Z

In any event, it is interesting to consider how the shape of the maximizers changes as we vary
Since the limit ofL? norms a® — oo is the supremum norm, we have
lim Aplc] =suplc(t) —c(s)| <
p—0 st
with equality if and only ifc double covers a line segment of lengthSo thec, form a family of
convex curves converging to the double-covered segment-asoco, and to the circle ap — 2.

To illuminate this process, we numerically computed maximizerd,pfor values ofp betweerp
and4 using Brakke’s Evolver [1]. Figure 1 shows some of the

FIGURE 1. A collection of curves of lengtBz which maximize average chord
length to thep-th power for various values g@f The curves on the left are labelled
with the corresponding values pf The curves on the right represent value$ of
from 3.462 to 3.484 in increments 00.002. These curves are numerical approxi-
mations of the true maximizers computed with Brakkemlver
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Since the double-covered segment has greater averdmgower chord length than the circle for
p > 3.5721, there must be some critical valpé of p betweer2 and3.5721 where “the symmetry
breaks”, and circles are no longer maximizers Aot

To find an approximate value for*, we computed the ratio(p) of the widest and narrowest
projections of each of our computed maximizersjgdretweer2 and4. Since all these curves are
convex, a value close to unity indicates a curve close to a circle.

r(p) rp) |

4 124

1.1+

T T T T T T T 17 wwwwwwwwww
1 15 2 25 3 35 4 345 3454 3458 3462 3.466

p p

FIGURE 2. This figure shows two plots of the ratt¢p) of the widest and narrowest
projections of the computed maximizers of average chord length to-thgoower
for values ofp betweenl and4.

As Figure 2 shows, by this measure the computed minimizers are numerically very close to
circles for2 < p < 3.45. To check this conclusion, we fit each minimizer to an ellipse using a
least-squares procedure. Figure 3 shows the results of these computations.

-2+

log(e(p)) ]

—st\&/\«W\W«J
1 15 2 25 3 35 4

p

FIGURE 3. The base-0 logarithm of the erroe(p) in a least-squares fit of the com-
puted maximizer for average chord length to thth power to an ellipse, plotted
againstp.
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To give a sense of the accuracy of our computations, this graph includes some computed mini-
mizers forp betweenl and2, for which we have proved that the unique minimizer is the circle. We
also computed the eccentricities of each of the best-fit ellipses.

A conservative reading of all this data supports the surprising conjecturg*timat least3.3.
Further, we note that fgv > p*, the maximizing curves do not seem to be ellipses, as one might
have conjectured by looking at Theorem 2.2.

Acknowledgments.We thank Kostya Oskolkov for pointing out that the complex form of Fourier
series would simplify the first proof of Theorem 2.2. We also owe a debt to the bibliographic notes
in the wonderful book of Santal[18] for the reference toiiké’s paper [11].
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