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Abstract

Let G be a Lie group and K a compact subgroup of G. Then the homogeneous
space G/K has an invariant Riemannian metric and an invariant volume form ΩG.
Let M and N be compact submanifolds of G/K, and I(M ∩ gN) an “integral
invariant” of the intersection M ∩ gN . Then the integral

(1)
∫

G

I(M ∩ gN) ΩG(g)

is evaluated for a large class of integral invariants I. To give an informal definition
of the integral invariants I considered, let X ⊂ G/K be a submanifold, hX the
vector valued second fundamental form of X in G/K. Let P be an “invariant
polynomial” in the components of the second fundamental form of hX . Then the
integral invariants considered are of the form

IP(X) =
∫

X

P(hX) ΩX .

If P ≡ 1 then IP(M∩gN) = Vol(M∩gN). In this case the integral (1) is evaluated
for all G, K, M and N .

For P of higher degree the integral (1) is evaluated when G is unimodular and
G is transitive on the set on tangent spaces of each of M and N . Then, given P,
there is a finite set of invariant polynomials (Qα,Rα) (depending only on P) so
that for all appropriate M and N

(2)
∫

G

IP(M ∩ gN) ΩG(g) =
∑
α

IQα(M)IRα(N).

This generalizes the Chern-Federer kinematic formula to arbitrary homogeneous
spaces with an invariant Riemannian metric and leads to new formulas even in the
case of submanifolds of Euclidean space.

The approach used here also leads to a “transfer principle” that allows integral
geometric formulas to be moved between homogeneous spaces that have the same
isotropy subgroups. Thus if G/K and G′/K ′ are homogeneous spaces with both G
and G′ unimodular and the subgroups K and K ′ are isotropic equivalent, then any
integral geometric formula of the form (2) that holds for submanifolds of G/K also
holds for submanifolds of G′/K ′. In particular the transfer principle shows that
the Chern-Federer holds in all simply connected space forms of constant sectional
curvature and not just in Euclidean space.

1991 Mathematics subject classification: 53C65
Key words and phrases : Integral geometry, Kinematic formula, Integral invariants,
Crofton formula, Poincaré formula.
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1. Introduction

Let G be a Lie group and K a closed subgroup of G. If M and N are compact
submanifolds of the homogeneous space G/K. Then a good deal of energy in
integral geometry has gone into computing integrals of the following type

(1-1)
∫

G

I(M ∩ gN) ΩG(g)

where I is an “integral invariant” of the submanifold M ∩ gN . For example in
the case that G is the group of isometries of Euclidean space Rn, M and N are
submanifolds of Rn and I(M∩gN) = Vol(M∩gN) then evaluation of (1-1) leads to
formulas due to Poincaré, Blaschke and others (see the book [l8] for references) or
in the same case if we let I(M ∩ gN) be one of the integral invariants arising from
the Weyl tube formula then the evaluation of (1-1) gives the kinematic formula of
Federer [8] and Chern [6]. In the case G is the unitary group U(n + 1) acting on
complex projective space CPn and M and N are complex analytic submanifolds of
CPn then letting I(M ∩gN) = Vol(M ∩gN) in (1-1) leads to results of Santaló [17]
or letting I(M ∩ gN) be the integral of a Chern class leads to the recent kinematic
formula of Shifrin [19]. In this paper we will assume that G/K has an invariant
Riemannian metric and evaluate (1-1) for arbitrary M and N in the case that
I(M ∩ gN) = Vol(M ∩ gN) (this generalizes the results of Brothers [2]) and for
“arbitrary” integral invariants I in the case G is unimodular and acts transitively
on the sets of tangent spaces to each of M and N . That is we will give a definition of
integral invariant general enough to cover most cases that have come up to date and
for I(M ∩gN) one of these invariants we will evaluate (1-1) in terms of the integral
invariants of M and N . This leads to new formulas (at least modulo evaluating
some constants) even for submanifolds of Euclidean space Rn.

Before giving a summary of our results we give a reasonably exact statement of
our results for submanifolds of Euclidean space. This should make what follows
more concrete. Recall that if Mp is a p dimensional submanifold of Rn and x ∈M
then the second fundamental form hM

x of M at x is a symmetric bilinear map from
TMx×TMx to T⊥Mx (here TM is the tangent bundle of M and T⊥M is the normal
bundle of M in Rn). If e1, . . . , en is an orthonormal basis of Rn such that e1, . . . , ep

is a basis of TMx and ep+1, . . . , en is a basis of T⊥Mx then the components of hM
x

in this basis are the numbers (hM
x )α

ij = 〈hM
x (ei, ej), eα〉 1 ≤ i, j ≤ p, p + 1 ≤ α ≤ n

where 〈 , 〉 is the usual inner product on Rn.
Call a polynomial P(Xα

ij) in variables Xα
ij 1 ≤ i, j ≤ p, p + 1 ≤ α ≤ n and

Xα
ij = Xα

ji which is invariant under the substitutions

(1-2) Xα
ij 7→

∑
s,t,β

aisajtX
β
stbαβ

for all p by p orthogonal matrices [aij] and all (n−p) by (n−p) orthogonal matrices
[bαβ] an invariant polynomial defined on the second fundamental forms
of p dimensional submanifolds. If P is such a polynomial then

P(hM
x ) = P((hM

x )α
ij)

Received by the editor January 30, 1986.
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is defined independently of the choice of the orthonormal basis e1, . . . , en. For
each such polynomial define an integral invariant IP on compact p dimensional
submanifolds of Rn by

IP(M) =
∫

M

P(hM
x ) ΩM(x)

where ΩM is the volume density on M . Using the invariance of P under the
substitution (1-2) it follows that IP has the basic invariance property IP(gM) =
IP(M) for all isometries g of Rn. This set of invariants contains a large number of
the integral invariants which occur in geometry.

We now state the kinematic formula:

Theorem. Let p, q be integers with 1 ≤ p, q ≤ n and p + q ≥ n. Let P
be an invariant polynomial defined on the second fundamental forms of p + q −
n dimensional submanifolds and assume that P is homogeneous of degree ≤ p+ q−
n + 1. Then there is a finite set of pairs (Qα,Rα) such that:

(1) Each Qα is a homogeneous invariant polynomial on the second fundamental
forms of p dimensional submanifolds,

(2) Each Rα is a homogeneous invariant polynomial on the second fundamental
forms of q dimensional submanifolds,

(3) For each α degreeQα + degreeRα = degreeP,
(4) For all compact p dimensional submanifolds M and q dimensional subman-

ifolds N of Rn (each possibly with boundary)

(1-3)
∫

G

IP(M ∩ gN) ΩG(g) =
∑
α

IQα(M)IRα(N)

where G is the group of isometries of Rn and ΩG its invariant measure.

Once the group theoretic ideas involved in proving this have been isolated it
becomes no harder to prove (1-3) for submanifolds M and N of an arbitrary Rie-
mannian homogeneous space G/K provided only that G is unimodular and G is
transitive on the sets of tangent spaces to each of M and N . One advantage to
working in this generality is that it becomes clear that the form of kinematic for-
mulas in a homogeneous space G/K does not depend on the full group of motions
G, but only on the invariant theory of the isotropy subgroup K. This this observa-
tion leads to a “transfer principle” allows us to “move” kinematic formulas proven
for a homogeneous space G/K to any other homogeneous space with an isotropy
subgroup equivalent to K. For example, the Chern-Federer kinematic formula for
submanifolds of Rn is

(1-4)
∫

G

µ2l(Mp ∩ gNq) ΩG(g) =
l∑

k=0

c(n, p, q, l, k)µ2k(Mp)µ2(l−k)(Nq)

where the µ’s are the integral invariants from the Weyl tube formula (defined in
section 10 below), G is the group of isometries of Rn and c(n, p, q, l, k) is a con-
stant only depending on the indicated parameters. The transfer principle tells us
this formula holds in all simply connected spaces of constant sectional curvature



INTRODUCTION 3

(the sphere and the hyperbolic space form) with the same values for the constants
c(n, p, q, l, k). (Here the integrand in the definition of µ2k(M) must be expressed—
and this is an important point—as a polynomial in the components of the second
fundamental form of M and not as a polynomial in the components of the curvature
tensor of M .)

We now summarize our results. In section 2 we prove our “basic integral formula”
for submanifolds M and N of a Lie group G on which all our latter integral formulas
will be based. The idea behind its proof is extremely simple: Apply the Federer
coarea formula to the function f : M × N → G, given by f(ξ, η) = ξη−1, and
interpret the result geometrically. Although the details are quite different the proofs
are very much in the style of the papers of Federer [8] and Brothers [2] to which
the present paper is greatly indebted. One big difference between the proofs here
and those in [2] and [8] is that we work in the smooth category and thus avoid
the measure theoretic problems which Federer and Brothers have to deal with. In
section 3 the integral (1-1) is evaluated for any compact submanifolds M and N
of a Riemannian homogeneous space G/K in the case I(M ∩ gN) = Vol(M ∩ gN)
and examples are given of how the transfer principle in this context can be used to
compute the various constants occurring in the formulas in an efficient and elegant
manner. The proofs here precede by applying the integral formula of section 2 to the
submanifolds π−1M and π−1N of G (where π : G→ G/K is the natural projection)
and then “pushing” the result of this back down to G/K. In an appendix to this
section a general Crofton type formula is proven. Apart from its own interest this
Crofton formula lets us to identify the invariant measures used in Chern’s paper
[4] with Riemannian invariants. This allows examples to be given of homogeneous
spaces (in particular CP2) where these measures are different from the Riemannian
volume of the submanifold and where these measures are not unique, so that the
choice of the measure to be used is determined by the type of integral geometric
formula to be proven.

In section 4 we give a general definition of an integral invariant of a compact
submanifold M of a Riemannian homogeneous space G/K. Once this has been
done the general kinematic formula and the transfer principle are stated and in an
appendix a general analogue of the “linear” kinematic formulas in section 8 of [6]
and section 3 of [19] is given. The next two sections contain the lemmas needed to
prove these results. In particular, section 5 gives the needed results on the geometry
of intersections of submanifolds and section 6 gives the required algebraic facts and
definitions.

In section 7 a restatement of the kinematic formula is given in terms of the
algebraic definitions of section 6. This new form of the kinematic formula makes the
results of section 4 quite transparent and is better adapted to concrete calculations.
This theorem is then proven. As with the results of section 3 the proof proceeds by
replacing the submanifolds M and N of G/K by π−1M and π−1N (π : G→ G/K
natural projection), using the basic integral formula of section 2, and then pushing
the result back down to G/K.

The next section gives a proof that for spaces of constant sectional curvature the
integrals involved in equation (1-3) converge when degree(P) ≤ p + q − n + 1. The
main tool in the proof is a formula from Chern’s paper [6].

The last two sections of the paper are devoted to giving a new proof of the
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Chern-Federer kinematic formula (1-4) which works in all simply connected spaces
of constant sectional curvature. This could be done by using the transfer principle
to “move” the result from Rn, where it is known, to the other space forms. However,
this does not lead to any new insights. The idea in our proof of (1-4) is to give
an algebraic characterization of the polynomials appearing as the integrands of the
µ’s, which is of interest in its own right, and which exhibits both the Weyl tube
formula and (1-4) as consequences of the invariant theory of the orthogonal group.

In an appendix we give a short proof of the coarea formula for smooth maps
which avoids the measure theoretic complications arising in the case of Lipschitz
maps.

It is worth remarking at this point that the methods used here seem to be best
adapted to proving integral geometric formulas involving purely Riemannian invari-
ants. For example it is possible to give a proof of the main result of Shifrin’s paper
[19] in the style of the proof given here of the Chern-Federer kinematic formula.
This can be done (at least for complex hypersurfaces) by giving a characterization
of the integral invariants arising in the formula for the volume of a tube about a
complex analytic submanifold of CPn similar to the one given in section 9 below
for the µ’s (see [23], [10] or [12] for the tube formula in CPn). The resulting for-
mula is in terms of integrals over the submanifolds of invariant polynomials in the
components of the second fundamental forms. But then one of the prettiest facts
about these invariants becomes almost invisible, they are also integrals of Chern
forms which represent cohomology classes on the submanifolds. The proof in [19]
not only makes this clear, it uses this fact strongly in the proof. On the other hand,
there are Riemannian integral invariants IP of complex analytic submanifolds of
CPn which are not covered by the theorems in [19] (he only considers invariant poly-
nomials in the Chern forms and the Kaehler form) for which (1-1) can be evaluated
by the methods given here.

Our notation and terminology is standard. By “smooth” we mean of class C∞.
If M is a smooth manifold then TM is its tangent bundle and TMx its tangent
space at x. If f : M → N is a smooth map between manifolds then f∗x : TMx →
TNf(x) is the derivative of f at x ∈ M . If M and N are Riemannian manifolds
then f : M → N is a Riemannian submersion iff for all x ∈ M the derivative
f∗x : TMx → TNf(x) is surjective and f∗x restricted to the orthogonal complement
of kernelf∗x is a linear isometry. In the case dim(M) = dim(N) then a Riemannian
submersion is a local isometry. We regard discrete subsets S of a manifold as
submanifolds of dimension zero in which case the volume of S is defined to be the
number of points in S. Lastly, if f : M → N is an immersed submanifold of M ,
then we will repress the immersion f and just say that “N is a submanifold of M”.
In this case the tangent spaces to N will be identified with subspaces to tangent
spaces to M in the natural way.

It is my pleasure to acknowledge, first of all, Ted Shifrin who spent a morning
explaining the results of [19] to me. This got me hooked on the idea of trying to
understand kinematic formulas in the context of Riemannian homogeneous spaces.
This paper is very much a result of that conversation. I also would like to thank
Paul Hewitt for some conversations on invariant theory which greatly speeded up
my coming up with the correct formulation and proof of theorem 9.9. Finally
the referee made a very thorough reading of the manuscript and made suggestions
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leading to numerous improvements.

2. The Basic Integral Formula for Submanifolds of a Lie Group.

2.1 We start with a discussion on angles between subspaces. If V is an n dimen-
sional and W is an m dimensional subspace of an inner product space with inner
product 〈 , 〉 then let v1, . . . , vn be an orthonormal basis of V and w1, . . . , wm an
orthonormal basis of W and define

(2-1) σ(V, W ) = ‖v1 ∧ · · · ∧ vn ∧w1 ∧ · · · ∧ wm‖

where

(2-2) ‖x1 ∧ · · · ∧ xk‖2 = det(〈xi, xj〉).

If V and W are both one dimensional then σ(V, W ) = | sin θ| where θ is the angle
between V and W . In general 0 ≤ σ(V, W ) ≤ 1 with σ(V, W ) = 0 if and only if
V ∩W 6= {0} and σ(V, W ) = 1 if and only if V is orthogonal to W . Also if ρ is
a linear isometry of the inner product space containing V and W into some other
inner product space then

σ(ρV, ρW ) = σ(V, W )

σ(V, W ) = σ(V, W )(2-3)

2.2 Let G be a Lie group and ξ ∈ G. Then left and right translation by ξ on G
will be denoted by Lξ and Rξ respectively, that is Lξ(g) = ξg and Rξ(g) = gξ. Left
translation can be used to identify all tangent spaces to G with TGe, the tangent
space to G at the identity element e. Assume that G has a left invariant metric
〈 , 〉 then this identification of the tangent spaces of G with each other allows the
above definition of angles to be extended to compare angles between subspaces of
tangent spaces to G at different points. To be exact if V is a subspace of TGξ and
W is a subspace of TGη then set

(2-4) σ(V, W ) = σ(Lξ−1∗V, Lη−1∗W ).

With this definition it follows that for all g ∈ G

(2-5) σ(Lg∗V, W ) = σ(V, Lg∗W ) = σ(V, W ).

Also if a ∈ G and the metric is invariant by Ra then

(2-6) σ(Ra∗V, Ra∗W ) if R∗a〈 , 〉 = 〈 , 〉

This follows from (2-3) with ρ = Ra∗. By convention σ(V, W ) = 1 if V = {0} or
W = {0}.

2.3 We now define the modular function ∆ of G. Let E1, . . . , En (n = di-
mension of G) be any basis for the left invariant vector fields on G. Then, for each
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g ∈ G, Rg−1∗E1, . . . , Rg−1∗En is also a basis for the left invariant vector fields and
thus

(2-7) ‖Rg−1∗E1 ∧ · · · ∧Rg−1∗En‖ = ∆(g)‖E1 ∧ · · · ∧ En‖

for some positive real number ∆(g). From this definition it follows that ∆ is a
smooth homomorphism of G into the multiplicative group of positive real numbers.
The following equivalent definition will also be used in the sequel. If ξ is any point
of G and u1, . . . , un any basis of TGξ then

(2-8) ∆(g)‖u1 ∧ · · · ∧ un‖ = ‖Rg−1∗u1 ∧ · · · ∧Rg−1∗un‖

This follows from (2-7) by extending each ui to a left invariant vector field on G.

2.4 Remark. A Lie group G is called unimodular if ∆ ≡ 1. It is well known that
all compact groups, all semisimple groups and all nilpotent groups are unimodular.

2.5 Recall that if M and N are immersed submanifolds of some manifold S then
M and N intersect transversely if and only if x ∈M ∩N implies TMx +TNx =
TSx (here TMx + TNx is the subspace of TSx generated by TMx and TNx). If S
has a Riemannian metric this is the same as requiring T⊥Mx ∩ T⊥Nx = {0}. If
M and N have nonempty intersection and intersect transversely then M ∩N is a
smooth submanifold of S whose dimension is dim M + dim N − dim S.

2.6 A remark on notation. For any Riemannian manifold M we will denote
the volume density on M by ΩM . Then ΩM can be thought of either as a measure
on M or as the absolute value of one of the two locally defined volume forms on
M . (See [25] page 53 for a more detailed discussion of densities.) In particular ΩM

and integration with respect to ΩM are defined without any assumption about the
orientablity of M . Despite this it will often be useful when doing calculations to
assume that M is oriented and that ΩM is one of the two volume forms on M . In
all cases where it is convenient to do this the calculation is local, and thus we can
restrict down to an oriented subset of M , do the calculation just as if ΩM was a
form and then take absolute values when we are done. This will be done without
mention in the sequel and hopefully no confusion will result.

2.7 Basic integral formula. Let G be a Lie group with a left invariant
metric 〈 , 〉. Let M and N be immersed submanifolds (possibly with boundary) of G
with dim(M) + dim(N) ≥ dim(G). Then for almost all g ∈ G the submanifolds M
and gN intersect transversely and if h is any Borel measurable function on M ×N
such that the function (ξ, η) 7→ h(ξ, η)∆(η) is integrable on M ×N , then
(2-9)∫

G

∫
M∩gN

h◦ϕg ΩM∩gN ΩG(g) =
∫∫

M×N

h(ξ, η)∆(η)σ(T⊥Mξ, T
⊥Nη) ΩM×N (ξ, η)

where ϕg : M ∩N →M ×N is given by

(2-10) ϕg(x) = (ξ, g−1ξ).
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2.8 Remarks. (1) The formula (2-9) is closely related to the formula of theorem
5.5 in the paper [2] of Brothers.

(2) It is possible that M and gN do not have nonempty transverse intersection
for any g ∈ G (in which case the set of g ∈ G with M ∩ gN 6= ∅ has measure zero
and so (2-9) reduces to 0 = 0). As an example of this let G be the additive group R2

and let M and N be segments parallel to the x-axis, say M = {(x, y0) : a ≤ x ≤ b},
N = {(x, y1) : c ≤ x ≤ d}. In this case it is still possible to give a version of (2-9)
which gives a nonzero result. This is done by using the generalized coarea formula
given in section 10 of the paper of Brothers just quoted in the proof of (2-9) at the
places where we use the coarea formula. For details of this type of construction see
section 11 of Brothers’ paper and remark 3.10(2) below.

2.9 In proving the basic integral formula it can be assumed that M and N are
embedded submanifolds of G. To see this use a partition of unity on M × N to
restrict the support of h down to a subset of M × N of the form U × V where
U is an open orientable submanifold of M with smooth boundary, V is an open
orientable submanifold of N both U and V are embedded in G. Then prove (2-9)
with M replaced by U and N replaced by V and then sum over the partition of
unity.

For the rest of this section we will use the following notation f : M ×N → G is
the function

(2-11) f(ξ, η) = ξη−1

Then for all g ∈ G

f−1[g] = {(ξ, η) ∈M ×N : f(ξ, η) = ξη−1 = g}.

By the coarea formula (see the appendix for the statement of this formula and
for the definition of the Jacobian Jf(ξ, η)),

(2-12)
∫

G

∫
f−1[g]

hΩf−1[g] ΩG(g) =
∫∫

M×N

h(ξ, η)Jf(ξ, η) ΩM×N(ξ, η).

What we will do is compute the Jacobian Jf(ξ, η) in terms of the geometric data
(which will relate its value to the angle σ(T⊥Mξ, T

⊥Nη)) and show that for almost
all g ∈ G the map ϕg is a diffeomorphism of M ∩ gN with f−1[g] and use this to
relate the integrals

∫
f−1[g]

hΩf−1[g] to the integrals
∫

M∩gN
h ◦ ϕg ΩM∩gN .

In what follows we will use the standard isomorphism of T (M × N)(ξ,η) with
TMξ ⊕ TNη. Vectors in T (M × N)(ξ,η) will be written as (X, Y ) with X ∈ TMξ

and Y ∈ TMη.

2.10 Lemma. If (X, Y ) ∈ T (M ×N)(ξ,η) then

f∗(ξ,η)(X, Y ) = Rη−1∗X −Rη−1∗Lξη−1∗Y

= Rη−1∗(X − Lξη−1∗Y )(2-13)

Proof. It is enough to show f∗(ξ,η)(X, 0) = Rη−1∗X and f∗(ξ,η)(0, Y ) = −Rη−1∗Lξη−1∗Y .
To show the first of these let c be a smooth curve in M with c′(0) = X. Then
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f∗(ξ,η)X = d
dt |t=0c(t)η−1 = Rη−1∗X. To show the second recall that if c and c1

are curves in a Lie group then d
dt (c(t)c1(t)) = Rc1(t)∗c

′(t) + Lc(t)∗c
′
1(t) (for ex-

ample this follows from the “Leibnitz formula” on page 14 of [14] Vol. 1). If
c1(t) = c(t)−1 then c(t)c1(t) is constant whence 0 = Rc(t)−1∗c

′(t) + Lc(t)∗
d
dt

c(t)−1

i.e. d
dt

c(t)−1 = −Lc(t)−1∗Rc(t)−1∗c
′(t). Now let c be a smooth curve in N with

c′(0) = Y . Then using what was just shown and that left and right translation
commute,

f∗(ξ,η)(0, Y ) =
d

dt

∣∣∣∣
t=0

ξc(t)−1

= Lξ∗
d

dt

∣∣∣∣
t=0

c(t)−1

= −Lξ∗Lη−1∗Rη−1∗Y

= −Rη−1∗Lξη−1∗Y

This completes the proof.

2.11 Lemma. The kernel of f∗(ξ,η) is {(X, Lηξ−1∗X) : X ∈ TMξ ∩Lξη−1∗TNη}
and the image of f(ξ,η)∗ is Rη−1∗(TMξ + Lξη−1∗TNη). Therefore (ξ, η) is a regular
point of f if and only if TMξ + Lξη−1∗TNη = TGξ.

Proof. See the appendix for the definition of a regular point. This lemma
follows directly from the last one.

2.12 Lemma. For all g ∈ G define a function πg : f−1[g]→M ∩ gN by

(2-14) πg(ξ, η) = ξ.

Then for all g ∈ G, ϕg is a bijection of M ∩ gN onto f−1[g] and the inverse of ϕg

is πg. If g is a regular value of f then M and gN intersect transversely and thus
M ∩ gN is a smooth submanifold of G for almost all g ∈ G. If g is a regular value
of f then ϕg : M ∩ gN → f−1[g] is a diffeomorphism.

Proof. That ϕg is a bijection with inverse πg is left to the reader. If g is a
regular value of f and ξ ∈M ∩ gN then let η ∈ N with ξ = gη. Thus g = ξη−1 =
f(ξ, η) and as g is a regular value of f using lemma 2.11 in the last line,

TMξ + T (gN)ξ = TMξ + Lg∗TNη

= TMξ + Lξη−1∗TNη

= TGξ.

This proves M and gN intersect transversely when g is a regular value of f , and
by Sard’s theorem (see appendix) almost every g ∈ G is a regular value of f .

If g is a regular value of f then f−1[g] is an embedded submanifold of M × N
and M ∩ gN is a submanifold of G as M and gN intersect transversely. From the
definitions of ϕg and πg it is clear they are both smooth functions and as they are
inverse to each other this implies that both are diffeomorphisms. This completes
the proof.
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2.13 We now compute the Jacobian (Jf)(ξ, η) at a regular point (ξ, η) of f .
First some notation. Let (ξ, η) be a regular point of f and set

n = dim(G), p = dim(M), q = dim(N), k = dim(Kernel(f∗(ξ,η)))

Then, using 2.11,

k = p + q − n = dim(TMξ ∩ Lξη−1TNη).

Let X1, . . . , Xk be an orthonormal basis of TMξ ∩ Lξη−1∗TNη. Then, as the
metric is left invariant,

(2-15) Yi = Lξη−1∗Xi 1 ≤ i ≤ k

is an orthonormal basis of Lηξ−1∗TMξ ∩ TNη.
Complete X1, . . . , Xk to an orthonormal basis X1, . . . , Xp of TMξ and Y1, . . . , Yk

to an orthonormal basis Y1, . . . , Yq of TNη. From 2.11 it follows that

(2-16) Zi =
1√
2
(Xi, Lηξ−1∗Xi) =

1√
2
(Xi, Yi) 1 ≤ i ≤ k

is an orthonormal basis of Kernel(f∗(ξ,η)) and therefore if

(2-17) Wi =
1√
2
(Xi,−Lηξ−1∗Xi) =

1√
2
(Xi,−Yi) 1 ≤ i ≤ k

then the p + q − n vectors

(2-18) W1, . . . , Wk, (Xk+1, 0), . . . , (Xp, 0), (0, Yk+1), . . . , (0, Yq)

are an orthonormal basis of Kernel(f∗(ξ,η))⊥. Using lemma 2.10

f∗(ξ,η)Wi = f∗(ξ,η)
1√
2
(Xi,−Lηξ−1∗Xi)

=
1√
2
Rη−1∗Xi + Rη−1∗Lξη−1Lηξ−1∗Xi

=
1√
2
(Rη−1∗Xi + Rη−1∗Xi)

=
√

2Rη−1∗Xi

f∗(ξ,η)(Xi, 0) = Rη−1∗Xi

f∗(ξ,η)(0, Yi) = −Rη−1∗Lξη−1∗Yi

Using these formulas in the definition of the Jacobian Jf(ξ, η) (see appendix) and
the formula (2-8) for the modular function,

Jf(ξ, η) = ‖f∗W1 ∧ · · · ∧ f∗Wk ∧ f∗(Xk+1, 0) ∧ · · ·
∧ f∗(Xp, 0) ∧ f∗(0, Yk+1) ∧ · · · ∧ (0, Yq)‖

= 2
k
2 ‖Rη−1∗X1 ∧ · · · ∧Rη−1∗Xp ∧Rη−1∗Lξη−1∗Yk+1 ∧ · · · ∧Rη−1∗Lξη−1Yq‖

= 2
k
2 ∆(η)‖X1 ∧ · · · ∧Xp ∧ Lξη−1∗Yk+1 ∧ · · · ∧ Lξη−1∗Yq‖

= 2
k
2 ‖Lξ−1∗X1 ∧ · · · ∧ Lξ−1∗Xp ∧ Lη−1∗Y

k+1 ∧ · · · ∧ Lη−1∗Yq‖

= 2
k
2 ‖u1 ∧ · · · ∧ uk ∧ vk+1 ∧ · · · ∧ vp ∧wk+1 ∧ · · · ∧ wq‖

(2-19)
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where, to simplify notation, we have set

ui = Lξ−1∗Xi = Lη−1∗Yi 1 ≤ i ≤ k
vi = Lξ−1∗Xi k + 1 ≤ i ≤ p
wi = Lη−1∗Yi k + 1 ≤ i ≤ q

Also set V = Lξ−1TMξ and W = Lη−1∗TNη. Then from the left invariance of the
metric and the definition of the Xi’s and Yi’s it follows

u1, . . . , uk is an orthonormal basis of V ∩W

vk+1, . . . , vp is an orthonormal basis of (V ∩W )⊥ ∩ V

wk+1, . . . , wq is an orthonormal basis of (V ∩W )⊥ ∩W

Therefore each ui is orthogonal to each vj and each wj whence (Ia = a×a identity
matrix)

‖u1 ∧ · · · ∧ uk∧vk+1 ∧ · · · ∧ vp ∧ wk+1 ∧ · · · ∧q ‖2

= det

 〈ui, uj〉 〈vi, uj〉 〈wi, uj〉
〈ui, vj〉 〈vi, vj〉 〈wi, wj〉
〈ui, wj〉 〈vi, wj〉 〈wi, wj〉


= det

 Ik 0 0
0 Ip−k 〈vi, wj〉
0 〈wj , vi〉 Iq−k


= det

[
Ip−k 〈vi, wj〉
〈wi, vj〉 Iq−k

]
= ‖vk+1 ∧ · · · ∧ vp ∧wk+1 ∧ · · · ∧wq‖2

Using this in equation (2-19) yields

(2-20) (Jf)(ξ, η) = 2
k
2 ∆(η)‖vk+1 ∧ · · · ∧ vp ∧wk+1 ∧ · · · ∧wk‖

We still have to relate this to the angle σ(T⊥Mξ, T
⊥Nη). To do this let

U = span{vk+1, . . . , vp, wk+1, . . . , wq}.

This is a vector space of dimension n − k. Complete vk+1, . . . , vp to an orthonor-
mal basis vk+1, . . . , vn of U . Then vp+1, . . . , vn is an orthonormal basis of V ⊥ =
Lξ−1∗T

⊥Mξ. Likewise if wk+1, . . . , wq is completed to an orthonormal basis wk+1, . . . , wn

of U then wq+1, . . . , wn is a basis of W⊥ = Lη−1∗T
⊥Nη.

Because the dimension of U is n − k the Hodge star on U maps
∧r(U) to∧n−k−r(U) (see the book [11] page 15) and

vk+1 ∧ · · · ∧ vp = ± ∗ (vp+1 ∧ · · · ∧ vn)

wk+1 ∧ · · · ∧wq = ± ∗ (wq+1 ∧ · · · ∧ wn)
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Using known identities for ∗ (see page 16 of [11]) and the last two equations,

vk+1 ∧ · · · ∧ vp∧wk+1 ∧ · · · ∧ wq

= ±(vk+1 ∧ · · · ∧ vp) ∧ ∗(wq+1 ∧ · · · ∧ wn)

= ±(∗vk+1 ∧ · · · ∧ vp) ∧wq+1 ∧ · · · ∧wn

= ±vp+1 ∧ · · · ∧ vn ∧wq+1 ∧ · · · ∧wn.

Using this in (2-20) and recalling the definition of σ(T⊥Mξ, T
⊥Nη),

Jf(ξ, η) = 2
k
2 ∆(η)‖vp+1 ∧ · · · ∧ vn ∧wq+1 ∧ · · · ∧ wn‖

= 2
k
2 ∆(η)σ(T⊥Mξ, T

⊥Nη).(2-21)

2.14 It remains to relate
∫

f−1[g]
hΩf−1[g] to

∫
M∩gN

h ◦ ϕg ΩM∩gN . Let g be a
regular value of f . Then, by 2.12, ϕg : M ∩ gN → f−1[g] is a diffeomorphism with
inverse πg. If (ξ, η) ∈ f−1[g] then, using the notation of equation (2-16), Z1, . . . , Zk

is an orthonormal basis of Kernel(f∗(ξ,η)) = T (f−1[g])(ξ,η). From the definition
of πg and Zi it is clear πg∗Zi = 1√

2
πg∗(Xi, Xi) = 1√

2
Xi. But X1, . . . , Xk is an

orthonormal basis of T (M ∩ gN)ξ and πg is the inverse of ϕg. Therefore we have
just shown ϕg∗Xi =

√
2Zi for 1 < i < k. This implies ϕ∗gΩf−1[g] = 2k/2 ΩM∩gN , so

that by the change of variable formula,∫
f−1[g]

hΩf−1[g] = 2
k
2

∫
M∩gN

h ◦ ϕg ΩM∩gN .

Using this equation and equation (2-21) in equation (2-12) yields (2-9) and com-
pletes the proof of the basic integral formula.

3. Poincaré’s formula in homogeneous spaces.

3.1 In this section G will be a Lie group and K a compact subgroup of G. Let
G/K be the homogeneous space of left cosets ξK of K in G. Then G can be viewed
as a group of transformations of G/K by letting g ∈ G send ξK ∈ G/K to gξK.
Let π : G → G/K be the natural projection. Then π(e) (e is the identity element
of G) will be called the origin of G/K a and denoted by “o”.

It will be assumed that G has a left invariant Riemannian metric 〈 , 〉 that is
also right invariant under elements of K. This metric induces a unique Riemannian
metric on G/K, which will also be denoted by “〈 , 〉”, that makes π into a Riemann-
ian submersion. It can be defined as follows. Let x ∈ G/K and choose any element
ξ ∈ G with π(ξ) = x. Then π∗ξ restricted to Kernel(π∗ξ)⊥ is a linear isomorphism
of Kernel(π∗ξ)⊥ onto T (G/K)x. Define the metric on T (G/K)x by

(3-1) 〈X, Y 〉T (G/K)x = 〈π∗|−1
ker(π∗ξ)

X, π∗|−1
ker(π∗ξ)

Y 〉

The right invariance of the metric on G under elements of K shows that this is
independent of the choice of ξ with π(ξ) = x. This metric on G/K is invariant
under G. We remark that for every Riemannian metric on G/K that is invariant
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under G there is a left invariant metric on G that is also right invariant byK that
induces the given metric on G/K in the above manner.

3.2 We would like to be able to define angles between subspaces tangent to G/K
at different points as we did in the case of subspaces of tangent spaces to G. In
the latter case we left translated both subspaces back to the identity element of G
and then found the angle between these subspaces. If V is a subspace of T (G/K)x

and W is a subspace of T (G/K)y then there are ξ, η ∈ G with ξ(o) = x, η(o) = y
and we could try to define the angle between V and W as the angle between ξ−1

∗ V
and η−1

∗ W but this is not well defined as the choice of ξ and η is not unique. This
problem can be overcome by averaging over all possible choices of η.

3.3 Definition. If x, y ∈ G/K and V is a subspace of T (G/K)x and W is a
subspace of T (G/K)y then define σK(V, W ) by

σK(V, W ) =
∫

K

σ(ξ−1
∗ W, a−1

∗ η−1
∗ W ) ΩK(a)

where ξ, η are elements of G with ξ(o) = x, η(o) = y (or what is the same thing
π(ξ) = x, π(η) = y).

3.4 Proposition. The function σK(V, W ) is independent of the choice of ξ and
η and for all g ∈ G satisfies

σK(V, W ) = σK(W, V ) = σK(g∗V, W ) = σK(V, g∗W ),

σK(V, {0}) = Vol(K).(3-2)

Proof. This follows from equation (2-3) and that K is compact (and thus
unimodular) so that the measure ΩK is invariant under the changes of variable
a 7→ a−1, a 7→ ab and a 7→ ba for fixed b ∈ K. For example if ξ1 is any other
element of G with ξ1(o) = x then ξ1 = ξb for some b ∈ K. Therefore∫

K

σ(ξ−1
1∗ V, a−1

∗ η−1
∗ W ) ΩK(a) =

∫
K

σ(b−1
∗ ξ−1
∗ V, a−1

∗ η−1
∗ W ) ΩK(a)

=
∫

K

σ(ξ−1
∗ V, b∗a

−1
∗ η−1
∗ W ) ΩK(a)

=
∫

K

σ(ξ−1
∗ V, a−1

∗ η−1
∗ W ) ΩK(a)

where the step going from the first to the second line uses equation (2-3) with
ρ = b∗ and the last step used the invariance under the change of variable a 7→ ab.
That σK(V, {0}) = Vol(K) follows from σ(V, {0}) = 1.

3.5 It is convenient to list one more elementary property of the averaged angle
σK(V, W ) that allows angles between pairs of subspaces on one homogeneous space
to be related to angles between pairs of subspaces on another homogeneous space.
This is a preliminary to the transfer principle of the next section. Let G′ be another
Lie group and K ′ a compact subgroup of G′ so that G and G′ have the same
dimension, K and K ′ have the same dimension. Suppose that G′ has a Riemannian
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metric 〈 , 〉′ that is left invariant by G′ and right invariant by K ′. Give G′/K ′

the metric that makes the natural projection from G′ onto G′/K ′ a Riemannian
submersion. Assume that there is a smooth isomorphism ρ : K → K ′ and a linear
isometry ψ : T (G/K)o → T (G′/K ′)o that intertwines ρ, that is

ψ ◦ a∗ = ρ(a)∗ ◦ ψ

for all a ∈ K. Given x, y ∈ G/K, V a subspace of T (G/K)x, W a subspace of
T (G/K)y, and ξ, η ∈ G with ξ(o) = x and η(0) = y Also let x′, y′,∈ G′/K ′, V ′ a
subspace of T (G′/K ′)x′ , W ′ a subspace of T (G′/K ′)y′ . Let ξ′, η′ be elements of
G′ with ξ(o′) = x′ and η(o′) = y′. Assume that

ψξ−1
∗ V = (ξ′)−1

∗ V ′

ψη−1
∗ W = (η′)−1

∗ W ′

Vol(K) = Vol(K ′)

Then

(3-3) σK(V, W ) = σ′K(V ′, W ′)

The proof is nothing more than a change of variable in the integral defining σK(V, W )
and is left to the reader.

3.6 The modular function ∆ defined in paragraph 2.3 is a smooth homomorphism
of G into the multiplicative group of positive real numbers. Therefore ∆[K] is a
compact group and as the only compact subgroup of the positive reals is the group
{1} it follows that ∆(a) = 1 for all a ∈ K. If η ∈ G/K and π(η1) = π(η) then
η1 = η for some a ∈ K and thus ∆(η1) = ∆(ηa) = ∆(η)∆(a) = ∆(η) thus the
following makes sense.

3.7 Definition. Let ∆K : G/K → (0,∞) be given by

∆K(y) = ∆(η) where π(η) = y.

3.8 Poincaré’s formula for homogeneous spaces. Let M , N be com-
pact submanifolds (possibly with boundary) of G/K with dim(M) + dim(N) ≥
dim(G/K). Then for almost all g ∈ G the submanifolds M and gN intersect
transversely and

(3-4)
∫

G

Vol(M ∩ gN) ΩG(g) =
∫∫

M×N

σK(T⊥Mx, T⊥Ny)∆K(y) ΩM×N(x, y)

3.9 Corollary. Under the hypothesis of 3.8:
(a) If G is transitive on the set of tangent spaces to M then∫

G

Vol(M ∩ gN) ΩG(g) = Vol(M)
∫

N

σK(T⊥Mx0 , T
⊥Ny)∆K(y) Ω(y)



14 THE KINEMATIC FORMULA IN RIEMANNIAN HOMOGENEOUS SPACES

where x0 is any point of M . (The function y 7→ σK(T⊥Mx0 , T
⊥Ny) is independent

of the choice of x0 by equation (3-2).)
(b) If in addition to the hypothesis of (a) G is transitive on the set of tangent

spaces to N then∫
G

Vol(M ∩ gN) ΩG(g) = σK(T⊥Mx0 , T
⊥Ny0)

∫
N

∆K(y) Ω(y)

where y0 is any point of N . (The number σK(T⊥Mx0 , T
⊥Ny0) is independent of

the choice of x0 ∈M and y0 ∈ N).
(c) If in addition to the hypothesis of (a) and (b) G is unimodular then

(3-5)
∫

G

Vol(M ∩ gN) ΩG(g) = σK(T⊥Mx0 , T
⊥Ny0) Vol(M) Vol(N)

where x0 is any point of M and y0 any point of N .

Proof of corollary. It follows at once from 3.8 and the transformation rules
(3-2) for σK .

3.10 Remarks. (1) All the results of the corollary are in section 5 of the paper
[2] of Brothers. He does not state the more general result (3.8), however his methods
can clearly be modified to cover this case also. His proofs are harder as he proves
the results in the case that M and N are normal currents; thus the analysis involved
in the proof becomes much more complicated, in particular an entire section of [2]
is devoted to the intersection theory of currents in a homogeneous space, something
that is trivial in the smooth case covered here.

(2) In section 11 of [2], Brothers gives an interesting generalization of 3.8 that
covers the case that σK(T⊥Mx, T⊥Nx) = 0 for all x ∈ M and and y ∈ N . By use
of the generalized version of our basic integral formula mentioned in remark (2.8)
(2) the methods here can also be used to prove this generalization. In the example
of remark (2.8) (2), where G is the group of translations of R2 and M and N are
segments parallel to the x-axis, then Brothers result reduces to∫

G

length(M ∩ gN) dH1(g) = length(M)length(N)

where H1 is the one dimensional Hausdorff measure on G = R2.

3.11 We now give the proof of 3.8. Let M̂ = π−1M and N̂ = π−1N be the
preimages of M and N under the natural projection π : G → G/K. Apply the
basic integral formula (2.7) to the submanifolds M̂ and N̂ of G with h ≡ 1 to get
that for almost all g ∈ G that M̂ and gN̂ intersect transversely and

(3-6)
∫

G

Vol(M̂ ∩ gN̂) ΩG(g) =
∫∫

bN×cM
∆(η)σ(T⊥M̂ξ, T

⊥N̂η) Ω
cM× bN (ξ, η)

Because π is a submersion, M̂ = π−1M and gN̂ = gπ−1N = π−1gN intersect
transversely if and only if M and gN intersect transversely. Thus M and gN
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intersect transversely for almost all g ∈ G. If g ∈ G is so that M and gN intersect
transversely then the restriction of π to M̂ ∩ gN̂ is a Riemannian submersion of
M̂ ∩gN̂ onto M ∩gN that fibers with each fibre isometric to K. Therefore Vol(M̂ ∩
gN̂) = Vol(K) Vol(M ∩ gN) for almost all g ∈ G so that

(3-7)
∫

G

Vol(M̂ ∩ gN̂) ΩG(g) = Vol(K)
∫

G

Vol(M ∩ gN) ΩG(g)

We now go to work on the right side of equation (3-6). The map (ξ, η) 7→ (πξ, πη)
from M̂ × N̂ to M × N is a Riemannian submersion with fibres π−1[x] × π−1[y]
that are isometric with K ×K. The right side of equation (3-6) can therefore be
written as∫∫

cM× bN
∆(η)σ(T⊥M̂ξ, T

⊥N̂η) Ω
cM× bN (ξ, η)

=
∫∫

M×N

∫∫
π−1[x]×π−1[y]

∆(η)σ(T⊥M̂ξ, T
⊥N̂η) Ωπ−1[x]×π−1[y](ξ, η) ΩM×N(x, y)

=
∫∫
I(x, y) ΩM×N(x, y)

(3-8)

where

(3-9) I(x, y) =
∫∫

π−1[g]×π−1[y]

∆(η)σ(T⊥M̂ξ, T
⊥N̂η) Ωπ−1[x]×π−1[y](ξ, η)

Choose any (ξ0, η0) ∈ π−1[x] × π−1[y]. Then, because the metric on G is right
invariant under elements of K, the map (a, b) 7→ (ξ0a, η0b) is an isometry of K×K
with π1 [x]×π−1[y]. Therefore we can change variables in the last equation and use
that ∆(η) = ∆K(y) for all η ∈ π−1[y] to get

(3-10) I(x, y) = ∆K(y)
∫

K

∫
K

σ(T⊥M̂ξ0a, T⊥N̂η0b) ΩK(a) ΩK(b)

We now work on the integrand in the last equation. Using equation (2-5)

(3-11) σ(T⊥M̂ξ0a, T⊥N̂η0b) = σ(L(ξ0a)−1∗T
⊥M̂ξ0a, L(η0b)−1∗T

⊥N̂η0b)

Both L(ξ0a)−1∗T
⊥M̂ξ0a and L(η0b)−1∗T

⊥N̂η0b are subspaces of Kernel(π∗e)⊥ and
the restriction of π∗e to Kernel(π∗e)⊥ is a linear isometry onto T (G/K)o. Therefore
by equation (2-3) (with ρ = π|Ker(π∗e)⊥)

σ(L(ξ0a)−1∗T
⊥M̂ξ0a,L(η0b)−1∗T

⊥N̂η0b)

= σ(π∗eL(ξ0a)−1∗T
⊥M̂ξ0a, π∗eL(η0b)−1∗T

⊥N̂η0b)(3-12)

But πLg = gπ so that

π∗eL(ξ0a)−1∗T
⊥M̂ξ0a = (ξ0a)−1

∗ π∗ξ0aT⊥M̂ξ0a = (ξ0a)−1
∗ T⊥Mx
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where π∗ξ0aT⊥M̂ξ0a = T⊥Mx as π is a Riemannian submersion. Likewise π∗eT
⊥N̂η0b =

(η0b)−1
∗ T⊥Ny. Using these in (3-12) and the result of that in (3-11) yields

σ(T⊥M̂ξ0a, T⊥N̂η0b) = σ((ξ0a)−1
∗ T⊥Mx, (η0b)−1

∗ T⊥N̂y)

= σ((ξ0a)−1
∗ T⊥Mx, b−1

∗ η−1
0∗ TNy)(3-13)

Put this in (3-10) and recall the definition of σK to get

I(x, y) = ∆K(y)
∫

K

∫
K

σ((ξ0a)−1
∗ T⊥Mx, (b−1

∗ η−1
0∗ )T⊥Ny) ΩK(b) ΩK(a)

= ∆K(y)
∫

K

σK(T⊥Mx, T⊥Ny) ΩK(a)

= Vol(K)∆K(y)σK(T⊥Mx, T⊥Ny).(3-14)

The equations (3-14), (3-8), (3-7) and (3-6) together imply equation (3-4). This
completes the proof of 3.8.

3.12 Examples Here we will show how the constant σK(T⊥Mx0 , T
⊥Ny0) in

equation (3-5) can be computed by evaluating the integral
∫

G Vol(M ∩ gN) ΩG(g)
for the proper choice of M and N and how equation (3-3) can then be used to
transfer the value of this constant to other homogeneous spaces with the same
isotropy subgroup K. This is the transfer principle of the next section in the
present context. The first two examples are well known, the third seems to be new,
the fourth is a lemma that will be used later and the fifth is a proposition about
hypersurfaces in two point homogeneous spaces and is rather more sophisticated. In
these examples the values of all constants will be expressed in terms of the volumes
of the standard spheres Sk (the set of unit vectors in Rk+1). These volumes have
the well known values

Vol(Sk) =
2(π)

k+1
2

Γ
(

k+1
2

)
where Γ is the gamma function.

(a) We start with the case G/K has constant sectional curvature. First consider
Sn, which has constant sectional curvature one. The group of orientation preserving
isometries of Sn is the matrix group SO(n+1) (the group of real orthogonal matrices
with determinant +1) and the isotropy subgroup of Sn at the north pole is the
subgroup SO(n), imbedded in in the natural way. Therefore SO(n + 1)/SO(n) =
Sn. To define a Riemannian metric on SO(n+1), first define an inner product 〈 , 〉
on the vector space of (n + 1) × (n + 1) matrices by 〈A, B〉 = 1

2 trace(ABt) (Bt is
the transpose of B); and then give SO(n +1) the metric it has as a submanifold of
this inner product space. This metric is both left and right invariant by elements of
SO(n+1) and makes the natural projection π : SO(n+1)→ Sn into a Riemannian
submersion. Thus Vol(SO(n + 1)) = Vol(SO(n)) Vol(Sn). So by induction

(3-15) Vol(SO(k)) = Vol(S1) Vol(S2) · · ·Vol(Sk−1).

Because SO(n + 1) is transitive on the set of p planes tangent to Sn and also on
the set of q planes tangent to Sn the value of σSO(n)(V ⊥, W⊥) is the same for
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any p plane V and q plane W tangent to Sn. This value is easily computed by
letting M = Sp (imbedded in Sn as a totally geodesic submanifold, i.e. as the
intersection of Sn with a p + 1 dimensional linear subspace of Rn+1) and N = Sq

in equation (3-5) and noting that Sp ∩ gSq is isometric with Sp+q−n for almost all
g ∈ SO(n + 1). Thus (3-5) yields

(3-16) σSO(n)(T⊥Mx0 , T
⊥Ny0) =

Vol(Sp+q−n) Vol(SO(n + 1))
Vol(Sp) Vol(Sq)

Now let G/K be any simply connected Riemannian manifold of constant sectional
curvature c, where c can be positive, negative, or zero and let G be the group of ori-
entation preserving isometries of G/K. Then K is smoothly isomorphic with SO(n)
and we assume that the volume of K is normalized so that Vol(K) = Vol(SO(n)).
Then we can use equation (3-3) to conclude that if Mp is any compact p dimen-
sional submanifold of G/K and Nq is any compact q dimensional submanifold of
G/K, x0 ∈ M , y0 ∈ N that σ(T⊥Mx0 , T

⊥Ny0) is given by the value on the right
side of (3-16). Thus from (3-5) it follows∫

G

Vol(Mp ∩ gNq) ΩG(g) =
Vol(Sp+q−n) Vol(SO(n + 1))

Vol(Sp) Vol(Sq)
Vol(Mp) Vol(Nq)

In particular, this holds when M and N are compact submanifolds of Euclidean
space. See the book [18] of Santaló, paragraph 15.2, for another derivation of this
formula.

(b) This time we consider complex analytic submanifolds of Kaehler manifolds
of constant holomorphic sectional curvature. To begin CPn let be the complex
projective space of n complex (and 2n real) dimensionals. Then the group U(n+1)
(the group of (n + 1) by (n + 1) complex unitary matrices) acts on CPn in a
natural way. The stabilizer of a point of CPn is then U(1) × U(n) imbedded in
U(n + 1) in the natural way. Thus CPn can be realized as a homogeneous space
as CPn = U(n + 1)/(U(1)× U(n)). Put a Riemannian metric on U(n + 1) by first
putting a real inner product 〈 , 〉 on the (n + 1) by (n + 1) complex matrices by

〈A, B〉 = 1
2
real part of trace(AB∗)

(where B∗ = conjugate transpose of B) and giving U(n + 1) the metric induced
on it as a submanifold of this inner product space. This metric is invariant under
both left and right translations by elements of U(n + 1). Give CPn the metric
that makes the natural projection π : U(n + 1)→ U(n + 1)/(U(1)× U(n)) = CPn

into a Riemannian submersion. (For details of the construction just outlined see
volume 2 of [14] example 10.5 on pages 273-278.) With this metric CPn is a Kaehler
manifold such that all the holomorphic sectional curvatures are 4 and all the totally
real sectional curvatures are 1. There is a Riemannian submersion of S2k+1 onto
CPk (the Hopf fibration) that fibers with fibre S1. Thus

Vol(CPk) =
1
2π

Vol(S2k+1)
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Considering Sk as the set of unit vectors in Ck+1 we see that U(k + 1) acts
transitively on S2k+1 and that the stabilizer in U(k + 1) of a point of S2k+1

is conjugate to U(k). Thus S2k+1 = U(k + 1)/U(k) and the natural projec-
tion induced from U(k + 1) to S2k+1 is a Riemannian submersion. Therefore
Vol(U(k + 1)) = Vol(S2k+1) Vol(U(k)) and whence

Vol(U(n + 1)) = Vol(S2n+1) Vol(S2n−1) · · ·Vol(S3) Vol(S1).

If Mp is any complex submanifold of CPn of complex dimension p and Nq is any
complex submanifold of complex dimension q then the number σU(1)×U(n)(T⊥Mp

x0
, T⊥Nq

y0
)

with x0 ∈Mp and y0 ∈ Nq is independent of x0, y0, M and N . Therefore it can be
computed from equation (3-5) by letting Mp = CPp, Nq = CPq, and noting that
in this case Mp ∩ gNq = CPp+q−n for almost all g ∈ U(n + 1). This yields

(3-17) σU(1)×U(n)(T⊥Mq
x0

, T⊥Nq
y0

) =
Vol(CPp+q−n) Vol(U(n + 1))

Vol(CPp) Vol(CPq)

Now let E be any simply connected Kaehler manifold of constant holomorphic
sectional curvature c and complex dimension n. Then E can be realized as a
homogeneous space G/K where K is smoothly isometric with U(1)× U(n) and G
acts on E by Kaehler isometries. In the case c is positive G is isomorphic with
U(n + 1) and in the case c is negative G is isomorphic with U(1, n). Normalize the
metric on K so that Vol(K) = Vol(U(1)×U(n)). Let Mp be any compact complex
submanifold (possibly with boundary) of complex dimension p and Nq a compact
complex submanifold (also possibly with boundary) of complex dimension q. Then
by (3-3) the number σK(T⊥Mp

x0
, T⊥Nq

y0
) with x0 ∈M and y0 ∈ N is given by the

right side of (3-17). Therefore (3-5) yields∫
G

Vol(Mp ∩ gNq) ΩG(g) =
Vol(CPp+q−n) Vol(U(n + 1))

Vol(CPp) Vol(CPq)
Vol(Mp) Vol(Nq)

(c) In this example we again let E be the simply connected Kaehler manifold
of constant holomorphic curvature c and complex dimension n; we realize E as a
homogeneous space G/K just as before. Then let Mp be a totally real (see [24] for
the definition) submanifold of E of real dimension p and Nq a complex submanifold
of complex dimension q where p+2q ≥ 2n. If M and N are compact (possibly with
boundary) then∫

G

Vol(Mp ∩ gNq) ΩG(g) =
∫

G

Vol(Nq ∩ gMp) ΩG(g)

=
Vol(RPp+2q−2n) Vol(U(n + 1))

Vol(RPp) Vol(CPq)
Vol(Mp) Vol(Nq).

where RPk is a real projective space with its metric of constant sectional curva-
ture one. It is double covered by Sk, thus Vol(RPk) = 1/2 Vol(Sk). In the case
E = G/K = CPn the above formula is proven by letting Mp = RPp imbedded in
CPn as a totally real and totally geodesic submanifold of CPn, Nq = CPq imbed-
ded as a totally geodesic submanifold, verifying that M ∩ gN is isometric with
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RPp+2q−2n for almost all g ∈ U(n + 1) and using this in equation (3-5) to compute
σK(T⊥Mx0 , T

⊥Ny0). The details follow the last two examples exactly and are left
to the reader.

(d) If in 3.8 we assume that dim(N) = dim(G/K), that is, N is the closure of an
open set with smooth boundary in G/K, then T⊥Ny = {0} for all y ∈ N0 whence,
by equation (3-2), σK(T⊥Mx, T⊥Ny) = Vol(K). Therefore equation (3-4) yields∫

G

Vol(M ∩ gN) ΩG(g) = Vol(K)
∫

K

∆K(y) ΩG/K(y) Vol(M)

If G is unimodular the right side of this equation reduces to Vol(K) Vol(N) Vol(M).
(e) We now give a less trivial application of the duality principle. Recall that a

Riemannian homogeneous space G/K is a two point homogeneous space if and
only if the action of K on the unit sphere of T (G/K)o is transitive. This easily
implies that G is transitive on the set of tangent spaces to any hypersurface in
G/K. The two point homogeneous spaces have been classified ([26] page 295) and
in all cases the group G is unimodular.

Proposition. Let G/K be a two point homogeneous space of dimension n. Let
Mp be a p dimensional submanifold of G/K and let Nn−1 a hypersurface of G/K.
If Mp and Nn−1 have finite volume then∫

G

Vol(Mp ∩Nn−1) ΩG(g) =
Vol(K) Vol(Sk) Vol(Sn)

Vol(Sp) Vol(Sn−1)
Vol(Mp) Vol(Nn−1)

Remark. This result is somewhat surprising as in most cases G will not be
transitive on the set of tangent spaces to Mp.

Proof. Identify Rn with the tangent space T (G/K)o of G/K at o. Let K o
Rn be K × Rn with the product Riemannian metric and view it as a group of
transformation on Rn by the rule (a, v)X = a∗X + v. The group K oRn then acts
on Rn by isometries. Let V be any p dimensional subspace of Rn at 0 = o and let Bp

be the unit ball in V . Then the translations of Rn, and thus also KoRn, is transitive
on the set of tangent spaces to Bp. View Sn−1 as the unit sphere of Rn = T (G/K)o.
Because G/K is a two point homogeneous space the group K oRn is transitive on
the set of tangent spaces to Sn−1. Note that with the obvious notation SO(n)oRn

is the group of orientation preserving isometries of Rn and thus the results of
example (a) apply to this group. By corollary 3.9(c) example (a), obvious symmetry
properties of the sphere Sn−1 and that Vol(SO(n + 1)) = Vol(Sn) Vol(SO(n)) for
any y0 ∈ Sn−1

σK(V ⊥, T⊥(Sn−1)y0) Vol(Bp) Vol(Sn−1) =
∫
Rn

∫
K

Vol(Bp ∩ (a∗Sn−1 + v)) ΩK(a) ΩRn(v)

=
Vol(K)

Vol(SO(n))

∫
Rn

∫
SO(n)

Vol(Bp ∩ (b∗Sn−1 + v)) ΩSO(n)(b) ΩRn(v)

=
Vol(K)

Vol(SO(n))
Vol(Sp−1) Vol(SO(n + 1))

Vol(Sp) Vol(Sn−1)
Vol(Bp) Vol(Sn−1)

=
Vol(K) Vol(Sp−1) Vol(Sn) Vol(Bp)

Vol(Sp)
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So that

σK(V ⊥, T⊥(Sn−1)y0) =
Vol(K) Vol(Sp−1) Vol(Sn)

Vol(Sp) Vol(Sn−1)
.

Now let Mp, Nn−1 be as in the theorem, and let x ∈ Mp, y ∈ Nn−1. Because V
was an arbitrary p dimensional subspace of Rn = T (G/K)o it follows from equation
(3-3) that σK(T⊥Mp

x , T⊥Nn−1
y ) is given by the right side of the last equation. The

Proposition now follows from Poincaré’s formula (3-4). This completes the proof.

Appendix to Section 3: Cauchy-Crofton
type formulas and invariant volumes.

3.13 In this appendix the Poincaré formula 3.8 will be used to extend the Cauchy-
Crofton formula in Brother’s paper [2] from submanifolds M of Riemannian homo-
geneous spaces G/K for which the group G is transitive on the set tangent spaces
to M to arbitrary submanifolds. This formula is of interest not only for its own
sake but also because it throws light on the “p-dimensional area” or p dimensional
volumes used in the foundational paper [4] of Chern. In his paper Chern proved
a Crofton type formula that relates the p dimensional volume of a submanifold to
its “average” number of intersections with a “moving plane” (see Chern’s paper
for details; a brief statement of some of his results is given below.) This p dimen-
sional volume is not defined in terms of an invariant Riemannian metric (Chern
does not assume the space G/K has a metric) but is defined “by the method of
moving frames of Cartan”. In his review of Chern’s paper Andre Weil [20] points
out that in many homogeneous spaces that there are several distinct ways to define
the p dimensional volume so that some clarification is needed. In the case that
G/K does have an invariant Riemannian metric it is possible to combine the result
proven here with Chern’s results to give an explicit formula for Chern’s p dimen-
sional volume in terms of the Riemannian data involved. Once this is done it is
possible to give examples of (1) submanifolds of a Riemannian homogeneous space
where the p dimensional volume of a submanifold in the sense of Chern is different
from its Riemannian volume. (2) Distinct p dimensional volumes that both lead to
correct Crofton formulas (for different choices of the “moving plane”).

In particular we will show there are three notions of two dimensional area for two
dimensional submanifolds of CP2 that are invariant under U(3), only one of which
is the usual Riemannian area, and that all three lead to a Crofton type formula.
(However for the most interesting set of surfaces in CP2 the complex curves, the
three only differ by a constant factor.) This shows that when constructing the
moving frames on the submanifold used to define the invariant p dimensional volume
these frames must not only be adapted to the submanifold but also to the type of
integral geometric formula that is to be proven.

3.14 The classical formula of Crofton computes the length of a curve in the plane
from its average number of points of intersection with a moving line (see [18] for
details). We will show that this type of formula can be reduced to the Poincaré
formula of 3.8 in a straight forward manner. Many of the details will be left to the
reader. In particular the verification that various transversality statements hold
almost everywhere will be the readers task. Let G, K, G/K etc. be as in paragraph
3.1.



APPENDIX TO SECTION 3: CAUCHY-CROFTON FORMULAS 21

3.15 Definition. If S is any subset of G/K let G(S) be the stabilizer of S in
G, that is

G(S) = {g : gS = S}.

3.16 For the rest of this section we will fix a submanifold L0 of G/K and make
the following assumptions and normalizations:

(I) L0 is a closed imbedded submanifold of G/K of dimension q,
(II) G(L0) is transitive on L0,

(III) o ∈ L0 (o = π(e) is the origin of G/K) and set W0 = T (L0)o.
(IV) The homogeneous space G/G(Lo) has a G invariant measure ΩG/G(L0)

3.17 Remarks. (1) The homogeneous space G/G(L0) parameterizes the set of
all subsets of G/K of the form gL0 with g ∈ G. For example, if G is the group of
isometries of Rn, G/K = Rn and L0 is a q dimensional linear subspace of Rn then
G/G(L0) is the Grassmann manifold of all affine q planes in Rn. In general the
analogy between G/G(L0) and a Grassmann manifold is good, at least with respect
to the type of integral geometric formulas that arise. This analogy becomes better
in the case that L0 is totally geodesic.

(2) It follows from (II) that G(L0) and thus G is transitive on the set of tangent
spaces to L0.

(3) The measure ΩG/G(L0), when it exists, is unique up to a positive multiple.

3.18 Our object is to evaluate the integral
∫

G/G(L0) Vol(M ∩ L) ΩG/G(L0)(L)
where M is a compact submanifold of G/K with dim(M) + dim(L0) ≥ dim(G/K).
To start with, recall that there is a positive constant c1 (depending only on the
choice of the measure ΩG/G(L0)) such that for all integrable functions h on G

(3-18)
∫

G/G(L0)

∫
π−1

0 [L]

h(g) Ωπ−1
0 [L](g) ΩG/G(L0)(L) = c1

∫
G

h(g) ΩG(g)

where π0G→ G/G(L0) is the natural projection. For a proof of this see §33 of the
book [15] of Loomis. For each L ∈ G/G(L0) choose a ξL ∈ G with with ξLL0 = L.
Then, by the left invariance of the metric on G, the map a 7→ ξLa is an isometry
of π−1

0 [L0] = G(L0) with π−1
0 [L] = ξL(L0). Therefore a change of variable in the

inner integral on the left side of the last equation leads to

(3-19)
∫

G/G(L0)

∫
G(L0)

h(ξLa) ΩG(L0)(a) ΩG/G(L0)(L) = c1

∫
G

h(g) ΩG(g)

Let M be any compact p dimensional submanifold (possibly with boundary) with
p + q ≥ n (here q = dim(L0)) and let N0 be any open subset of L0 with smooth
boundary and compact closure. If L0 is compact choose N0 = L0. Set h(g) =
Vol(M ∩ gN0) in (3-19). Because G is transitive on the set of tangent spaces to L0

it is also transitive on the set of tangent spaces to N0. Therefore equation (3-4)
allows us to conclude

(3-20)
∫

h(g) ΩG(g) =
∫

N0

∆K(y) ΩL0(y)
∫

M

σK(T⊥Mx, W⊥
0 ) ΩM (x)
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where W⊥
0 = T⊥(L0)o.

For almost all L ∈ G/G(L0) the submanifolds L and M intersect transversely so
that M ∩L is a p+ q−n dimensional submanifold of L. In this case let a ∈ G(L0).
Then ξL induces an isometry of L0 with L and ξLaN0 = ξLaN0∩L (as ξLaN0 ⊆ L)
whence

h(ξLa) = Vol(M ∩ (ξLa)N0) = Vol(M ∩ L ∩ ξLaN0)

= Vol(ξ−1
L M ∩ ξ−1

L L ∩ aN0) = Vol((ξ−1
L M ∩ L0) ∩N0)

Let K(L0) = {g ∈ G : g(o) = o} = G(L0) ∩ K and let ∆0 be the modular
function of G(L0). Then ∆0 induces a function ∆K(L0) on L0 = G(L0)/K(L0) just
as ∆ induced ∆K on G/K in §3.7. We now apply the results of example 3.12(d) to
the submanifolds (ξ−1

L M ∩ L0) and N0 of the homogeneous space L0 = G(L0)/K0

and use the last equation to get∫
G(L0)

h(ξLa) ΩG(L0)(a) =
∫

G(L0)

Vol((ξ−1
L M ∩ L0) ∩ aN0) ΩG(L0)(a)

= Vol(K(L0))
∫

N0

∆K(L0)(y) ΩL0(y) Vol(ξ−1
L M ∩ L0)

= c2 Vol(M ∩ ξLL0)

= c2 Vol(M ∩ L)

where c2 denotes the obvious constant. Putting this and (3-20) into (3-19)

(3-22)
∫

G/G(L0)

Vol(M ∩ L) ΩG/G(L0)(L) = c

∫
M

σK(T⊥Mx, W⊥
0 ) ΩM (x)

where

c =

∫
N0

∆K(y) ΩN0(y)

Vol(K(L0))
∫
N0

∆K(L0)(y) ΩL0(y)
c1

If both G and G(L0) are unimodular then this reduces to c = c1/(Vol(K(L0))).
Equation (3-21) is the Cauchy-Crofton formula for Riemannian homogeneous spaces.
If G is transitive on the set of tangent spaces to M this becomes∫

G/G(L0)

Vol(M ∩ L) ΩG/G(L0)(L) = cσK(T⊥Mx0 , W
⊥
0 ) Vol(M)

where x0 is any point of M . This last equation is due to Brothers (section 7 of
[2]). His methods are quite different from those used here and involve a good deal
of analysis. In the case that L0 is compact then (3-21) can be directly related to
the Poincaré’s formula (3-4) by∫

G/G(L0)

Vol(M ∩ L) ΩG/G(L0)(L) = c

∫
M

σK(T⊥Mx, W⊥
0 ) ΩM(x)

=
c∫

L0
∆K(y) ΩL0(y)

∫
G

Vol(M ∩ gL0) Ω(g)(3-23)
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3.19 We now consider the Crofton’s formula in Chern’s paper [4] and its relation
to the result proven in the last paragraph. Using the same notation as before we will
only consider submanifolds M of G/K of dimension p = n−q. Thus if L ∈ G/G(L0)
intersects M transversely then M ∩L is discrete, so if M is compact M ∩L is finite
and Vol(M ∩ L) = #(M ∩ L), the number of points in M ∩ L. Chern does not
assume that G/K has a Riemannian metric invariant under G, or even that K is
compact, but instead uses moving frames to construct on each (or at least most)
p dimensional submanifolds M a canonically defined p form. Then the p dimensional
volume V0(M) of M is defined to be the integral over M of this form (see section
3 of his paper). This volume has the property that all g ∈ G and p dimensional
submanifolds M of G/K for which V0(M) defined that V0(gM) = V0(M). Thus
this volume is invariant. Chern then proves the Crofton formula

(3-24)
∫

G/G(L0)

#(M ∩ L) ΩG/G(L0)(L) = CV0V0(M)

where CV0 is a constant that only depends on the choice of the invariant p dimen-
sional volume V0. (It should be remarked that Chern does not choose a submanifold
L0 and consider the homogeneous space G/G(L0), but rather starts with any closed
subgroup H of G of codimension q and defines a notation of incidence between ele-
ments of G/K and G/H. Thus his formula is much more general than the one just
given.) The construction of the volume V0 is rather subtle therefore it would be
nice to have an explicit formula for it in the case that G/K does have an invariant
Riemannian metric. Combining equations (3-24) and (3-22) yields required formula

(3-25) V0(M) =
c

CV0

∫
M

σK(T⊥Mx, W⊥
0 ) ΩM (x)

This expression for V0(M) shows at once that if the map V 7→ σK(V, W⊥
0 ) defined on

the set of all p dimensional linear subspaces of T (G/K)o is not constant then V0(M)
is distinct from the Riemannian volume of M . However if V0 is a p dimensional
subspace of T (G/K)o and we restrict our attention to submanifolds M of G/K of
type V0 (as defined in the next section) then V0 is just a constant (depending on
V0) times the Riemannian volume.

The formula also shows that V0 depends not only on just the dimension p of the
submanifold M but also on W0 = T (L0)o. This raises the question: If L1 is another
submanifold of G/K of the same dimension q as L0 and L1 satisfies the conditions
(I), (II), (III) and (IV) given in 3.16 does the Crofton formula

(3-26)
∫

G/G(L1)

#(M ∩ L) ΩG/G(L1)(L) = (const.)V0

hold for all p dimensional submanifolds M of G/K? The answer is “no” as we now
show. If it did hold then it would imply that∫

σK(T⊥Mx, W⊥
1 ) ΩM (x) = (const.)

∫
M

σK(T⊥Mx, W⊥
0 ) ΩM(x)
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(with W1 = T (L1)o) for all p dimensional M . This in turn gives

(3-27) σK(V, W⊥
1 ) = (const.)σK(V, W⊥

0 )

for all p dimensional subspaces V of T (G/K)o as a necessary and sufficient condition
for (3-26) to hold.

The simplest examples where this fails can be constructed by letting K = {e} so
that G/K = G. In this case in it is not hard to show that (3-27) holds if and only
if W1 = W0. Thus we only have to choose L0 and L1 with T (L0)o = W0 6= W1 =
T (L1)o to get a counterexample. It is also worth noting that in this case Chern’s
invariant volume V0(M) is the integral over M of a left invariant p form defined on
all of G/K = G; on more complicated homogeneous spaces this is not the case.

These last examples are not very satisfying as the spaces where we do most of our
geometry have large isotropy subgroup. Thus let G/K = U(n+1)/(U(1)×U(n)) =
CPn with the metric defined in example 3.10(b) and assume that n = 2k is even.
Let L0 = CPk imbedded in CP2k in the usual manner and let L1 = RP2k imbedded
as a totally real totally geodesic submanifold of CP2k. Let x0 be any point of
L0 = CPk and x1 any point of L1 = RP2k. Then (3-27) is equivalent to

σK(V, T⊥RP2k
x1

) = γσK(V, T⊥CPk
x0

) (K = U(1)× U(n))

for some constant γ and all real linear subspaces V of T (CP2k)o of real dimension
2k. Putting this in equation (3-4) (and using that ∆H ≡ 1 in this case) yields that∫

U(2k+1)

#(M ∩ gRP2k) ΩU(2k+1) = γ

∫
U(2k+1)

#(M ∩ gCPk) Ω(g)

for all compact submanifolds M of CP2k of real dimension 2k. If M = CPk then
#(M ∩ gRP2k) = 1 and #(M ∩ gCPk) = 1 for almost all g ∈ U(2k + 1) so the last
equation gives γ = 1. On the other hand, if M = RP2k then #(M ∩ gRP2k) =
2k + 1 and #(M ∩ gCPk) = 1 for almost all g which would give γ = 2k + 1. (See
the following paragraph for the computation of these intersection numbers.) This
contradiction shows that (3-26) cannot hold.

Therefore there are two invariant volumes V0, V1 given by

V0(M) =
∫

M

σK(T⊥Mx, T⊥(CPk)x0) ΩM (x)

and

V1(M) =
∫

M

σK(T⊥Mx, T⊥(RP2k)x1) ΩM (x)

in addition to the Riemannian volume of M and all three have integral geometric
meaning via one of the various Crofton formulas.

We now compute the intersection numbers used above. Let M and N be totally
geodesic submanifolds of CPn with dim(M) + dim(N) = n and assume M and N
intersect transversely. Then M ∩ N is a finite subset of CPn. Because CPn has
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positive sectional curvatures (see [27]) a theorem of Frankel [28] implies M ∩ N
contains at least one point x. Let C(x) be the cut locus of x in CPn (see [27] for
definition). Then any other point of M ∩ N is in C(x). (For if x 6= y ∈ M ∩ N ,
y /∈ C(x) then there is a unique length minimizing geodesic segment [xy] joining x
to y. But M and N are totally geodesic so this would imply that [xy] ⊂ M ∩ N
contradicting that M ∩N is finite.) Therefore

(3-28) #(M ∩N) = 1 + #((M ∩C(x)) ∩ (N ∩ C(x)))

But (see [27]) C(x) is isometric to CPn−1 and is imbedded as a totally geodesic
submanifold. Also M ∩ C(x) and N ∩ C(x) intersect transversely in C(x) and
dim(N ∩C(x)) ≤ dim(N)−1. If M is a totally geodesic CPk in CPn then M ∩C(x)
is a totally geodesic CPk−2 in C(x) and so dim(M ∩C(x)) = dim(M)− 2. Thus

dim(M ∩ C(x)) + dim(N ∩ C(x)) ≤ dim(M) + dim(N)− 3 < dim(C(x)).

Therefore the only way M ∩C(x) and N ∩C(x) can have transverse intersection
in C(x) is if the intersection is empty. Thus if M or N is isometric with CPk then
(3-28) implies #(M ∩N) = 1.

If M and N are both isometric to RPn then M ∩ C(x) and N ∩ C(x) are both
totally geodesic copies of RPn−1 in C(x) = CPn−1. If n = 1 then CP1 is the
Riemann sphere and a copy of RP1 in CP1 is a great circle (i.e. a geodesic). Two
distinct geodesics intersect in two points. So when n = 1, #(M ∩ N) = 2. An
induction using (3-28) now shows that if M and N are totally geodesic copies of
RPn in CPn which intersect transversely then #(M ∩N) = n + 1.

4. Integral Invariants of Submanifolds of Homogeneous
Spaces, the Kinematic Formula and the Transfer Principle

4.1 In this section G, K, G/K and the Riemannian metrics on these spaces
will be as described in paragraph 3.1. A very general class of integral invariants of
compact submanifolds of the homogeneous space G/K will now be given. Loosely
these will be integrals over the submanifold of polynomials in the components of
the second fundamental form of the submanifold where, for this to be well defined,
the polynomial must be invariant under the isotropy subgroup K in an appropriate
sense. In making this definition it is useful to distinguish the case where G is
transitive on the set of tangent spaces to the submanifold from the general case.

4.2 Definition. Let V0 be a p dimensional subspace of T (G/K)o. Then a
p dimensional submanifold M of G/K is of type V0 if and only if for all x ∈ M
there is a ξ ∈ G with ξ∗V0 = TMx.

4.3 Remark. Clearly M is a type V0 for some V0 if and only if G is transitive
on the set of tangent spaces to M .

4.4 Recall that if M is a submanifold of the Riemannian manifold S then the sec-
ond fundamental form hM of M in S is defined as follows; let∇S be the Riemannian
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connection on S and ∇M the Riemannian connection of M then for smooth vector
fields X, Y on S

(4-1) ∇S
XY = ∇M

X Y + h(X, Y )

where ∇M
X Y is the tangent and h(X, Y ) the normal component to TM of ∇S

XY .
For each x ∈M hx is a symmetric bilinear from TMx × TMx to T⊥Mx.

4.5 Let V0 be a linear subspace of T (G/K)o and define II(V0) to be

II(V0) = vector space of all symmetric bilinear forms from V0 × V0 to V ⊥0 .

The elements of II(V0) can be thought of as the second fundamental forms of
submanifolds of G/K which pass through o and have V0 as tangent space at o.

Let K(V0) be the subgroup of K of elements that stabilize V0, that is

(4-2) K(V0) = {a ∈ K : a∗V0 = V0}

The group K(V0) acts on II(V0) in the natural way, that is for a ∈ K(V0) and
h ∈ II(V0) then ah is given by

(4-3) (ah)(u, v) = a∗h(a−1
∗ u, a−1

∗ v).

Since II(V0) is a vector space it makes sense to speak of polynomials on II(V0).
Then a polynomial P is invariant under K(V0) if and only if P(ah) = P(h) for all
a ∈ K(V0).

4.5 Let V0 be a p dimensional subspace of T (G/K) and let M be a submanifold
of G/K of type V0. Then for each x ∈M there is a ξ ∈ G with ξ∗V0 = TMx. Thus
ξ−1M is a submanifold of G/K through o whose tangent space at o is V0. Therefore
hξ−1M

o ∈ II(V0). If ξ1 is another element of G with ξ1∗V0 = TMx then ξ1 = ξa

for some a ∈ K(V0) and h
ξ−1
1 M

o = a−1hξ−1M
0 . Therefore if P is any polynomial on

II(V0) invariant under K(V0),

P(hξ−1
1 M

o ) = P(a−1hξ−1M
o ) = P(hξ−1M

o ).

So if x ∈M define P(hM
x ) by

P(hM
x ) = P(hξ−1M

o )

where ξ is any element of G with ξ∗V0 = TMx. We have just shown that this is
independent of the choice of ξ with ξ∗V0 = TMx. It is easy to check that if g ∈ G
then

(4-4) P(hgM
gx ) = P(hM

x ).

The integral invariants we are interested in can now be defined.
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4.6 Definition. Let V0 be a subspace of T (G/K) and P a polynomial on II(V0)
which is invariant under K(V0). Then for each compact submanifold M (possibly
with boundary) of G/K of type V0 define

(4-5) IP(M) =
∫

M

P(hM
x ) ΩM(x)

4.7 Remarks. (1) First note that if g ∈ G then (4-4) implies

(4-6) IP(gM) = IP(M).

Thus IP(M) is independent of the position of M in G/K up to G motions.
(2) In the case that G/K a space of constant sectional curvature of n dimensions

then many of the integral invariants that are usually encountered are of the form
IP . For example, if IP ≡ 1 then IP(M) = Vol(M). Also the integral invariants
that appear in the Weyl tube formula and the integral of the square of the length
of the second fundamental form or of the mean curvature vector are of this form.

To define these integral invariants for submanifolds M of G/K even when G is
not transitive on the tangent spaces to M we extend the second fundamental form
of M at x to a bilinear map of T (G/K)x × T (G/K)x with values in T (G/K)x.

4.8 Definition. If M is a submanifold of some Riemannian manifold S then
the extended second fundamental form HM

x of M in S at x is the symmetric
bilinear form from TSx × TSx to TSx given by

HM
x (u, v) = hM

x (Pu, Pv)

where P is the orthogonal projection of TSx onto TMx.

4.9 With this definition the extension of our definitions is easy. Let

EII(T (G/K)o) =vector space of symmetric bilinear forms from T (G/K)o × T (G/K)o
to T (G/K)o

Then K acts on EII(T (G/K)o) in the same way that K(V0) acted on II(V0).
If M is a submanifold of G/K, x ∈ M and ξ ∈ G with ξ(o) = x then Hξ−1M

o ∈
EII(T (G/K)o). Moreover, if P is a polynomial on EII(T (G/K)o) which is invariant
under K then P(HM

x ) can be defined by

P(HM
x ) = P(Hξ−1M

o )

where ξ is any element of G with ξ(o) = x and this definition will be independent
of the choice of x. Therefore IP(M) can be defined just as before by

IP(M) =
∫

M

P(HM
x ) ΩM(x).

For this definition we still have that IP(gM) = IP(M) for all g ∈ G.
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4.10 The Kinematic Formula. Let G, K, G/K be as in paragraph 3.1 and
also assume that G is unimodular. Let V0, W0 be linear subspaces of T (G/K)o with
dim(V0) + dim(W0) ≥ dim(G/K) and P be a polynomial on EII(T (G/K)o) such
that

(a) P is homogeneous of degree l, invariant under K and,
(b) ∫

K

σ(V ⊥0 , a∗W
⊥
0 )1−l ΩK(a) <∞

Then there is a finite set of pairs (Qα,Rα) such that:
(1) each Qα is a homogeneous polynomial on II(V0) invariant under K(V0),
(2) each Rα is a homogeneous polynomial on II(W0) invariant under K(W0),
(3)

degree(Qα) + degree(Rα) = l

for each α, and
(4) for all compact submanifolds M of G/K of type V0 and N of type W0 (they

may have boundaries) the kinematic formula

(4-7)
∫

G

IP(M ∩ gN) ΩG =
∑
α

IQα(M)IRα(N)

holds.

4.11 Remark. If all the polynomials on II(V0) which are invariant under K(V0)
and all the polynomials on II(W0) invariant under K(W0) are known then for a given
polynomial P on EII(T (G/K)o) invariant under K and homogeneous of degree l
it is in theory possible to prove a kinematic formula for

∫
G IP(M ∩ gN) ΩG(g) as

follows; For each i with 0 ≤ i ≤ l let {Qi
α} be a basis for the polynomials on II(V0)

invariant under K(V0)} and homogeneous of degree i and {Rl−i
β a basis for the

polynomials on II(W0) invariant under K(W0) and homogeneous of degree l − i.
Then by the theorem there are constants ci,α,β with

(4-8)
∫

G

IP(M ∩ gN) ΩG(g) =
∑
i,α,β

ci,α,βIQ
i
α(M)IR

l−i
β (N)

for all compact submanifolds M , N with M of type V0 and N of type W0. By then
evaluating both sides of this equation for several choices of submanifolds M , N it
is possible to get enough equations to solve for the ci,α,β’s. This last step is clearly
formidable and is to be avoided if possible. Alternately theorem 7.2 below can be
used to evaluate

∫
G IP(M ∩ gN) ΩG(g). In practice it seems that a combination

of these two methods works the best. First use theorem 7.2 and the form of the
particular polynomial P to conclude that most of the ci,α,β are zero. Then evaluate
both sides of (4-8) for M and N having enough symmetry that the calculations are
manageable. As a nontrivial example of this we will use these methods to give a
new proof of the kinematic formula of Chern and Federer that works in all spaces
of constant sectional curvature and not only in Euclidean space.
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4.12 The Transfer Principle. The set up here is similar to that of paragraph
3.5. That is G′ is another unimodular Lie group of the same dimension as G and K ′

is a compact subgroup of G′ the same dimension as K. Assume there is a smooth
isomorphism ρ : K → K ′ and a linear isometry ψ : T (G/K)o → T (G′/K ′)o′ such
that

(a) Vol(K) = Vol(K ′) (no other assumption is put on the metrics on K and
K ′),

(b) ψ ◦ a∗ = ρ(a)∗ ◦ ψ for all a ∈ K.
Let V0 and W0 be linear subspaces of T (G/K)o and set V ′0 = ψV0 and W ′

0 = ψW0.
The map ψ induces isomorphisms of II(V0), II(W0) and EII(T (G/K)o) onto II(V ′0),
II(W ′

0) and EII(T (G′/K ′)o′) respectively and thus isomorphisms of the rings of
polynomials on II(V0), II(W0) and EII(T (G/K)o) onto the rings of polynomials on
II(V ′0), II(W ′

0) and EII(T (G′/K ′)o′) respectively. If P is a polynomial on II(V0) then
let P ′ be the polynomial on II(V ′0) which is the image of P under this isomorphism.
Likewise for polynomials on II(W0) and EII(T (G/K)o). See paragraph 6.8 below
for the details involving this isomorphism.

Condition (b) above implies ρK[V0] = K ′[V ′0 ], ρK[W0] = K ′[W ′
0] and if P is a

polynomial on II(V0) (resp. II(W0) or EII(T (G/K)o)) then P is invariant under
K[V0] (resp. K[W0] or K) if and only if P ′ is invariant under K ′[V ′0 ] (resp. K ′[W ′

0]
or K ′).

With this notation the duality principle can be stated. Assume the formula
(4-7) holds in G/K then for very compact submanifold M ′ of G′/K ′ of type V ′0
and compact submanifold N ′ of G′/K ′ of type W ′

0 (they may have boundaries) the
kinematic formula

(4-9)
∫

G′
IP
′
(M ′ ∩ gN ′) ΩG′(g) =

∑
α

IQ
′
α(M ′)IR

′
α(N ′)

holds.

Appendix to Section 4: Crofton Type Kinematic Formulas.

4.13 In this section we will use the same notation as in the appendix to section
3 except that we make the additional assumption that G is unimodular. Using the
methods of that appendix we sketch a proof of the following:

4.14 Crofton and Linear Kinematic Formula. Let V0 be a subspace of
T (G/K)o such that dim(V0) + dim(L0) ≥ dim(G/K). Let P be a polynomial on
EII(T (G/K))o which is

(a) homogeneous of degree l and invariant under K and assume
(b)

∫
K

σ(V ⊥0 , a−1
∗ W⊥

0 )1−l ΩK(a) <∞ (where W0 = T (L0)).
Then there are polynomials Q0, . . . ,Ql on II(V0) such that

(1) Qi is homogeneous of degree i and is invariant under K(V0),
(2) for each compact submanifold M of G/K of type V0 (possibly with boundary)

the formula

(4-10)
∫

G/G(L0)

IP(M ∩ gN) ΩG/G(L0)(L) =
l∑

i=0

IQi(M)
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holds. If in addition L0 is totally geodesic and l ≥ 1 then Qi = 0 for
0 ≤ i ≤ l − 1 and so the last equation reduces to

(4-11)
∫

G/G(L0)

IP(M ∩ gN) ΩG/G(L0)(L) = IQl(M).

4.15 Remark That (4-10) reduces to (4-11) when L0 is totally geodesic jus-
tifies our earlier claim that as far as the type of integral geometric formulas that
arise G/G(L0) behaves very much like a Grassmann manifold. Compare with the
formulas in section 8 of [6] and the linear kinematic formula in section 3 of [19].

4.16 Outline of the proof. Proving 4.14 from 4.10 follows exactly the same
steps as proving equation (3-21) from equation (3-4). As before start with equation
(3-19) only this time let h(g) = IP(M ∩ gN0). Then use theorem 4.10 to conclude
that

(4-12)
∫

G

h(g) ΩG(g) =
∑

α

IQα(M)IRα(N0)

where the pairs (Qα,Rα) are given to us by 4.10. With ξL and as in paragraph
3.18 we can use the invariance properties of IP ,

h(ξLa) = IP(M ∩ (ξLa)N0) = IP(M ∩ L ∩ ξLaN0)
= IP(ξ−1

L M ∩ ξ−1
L L ∩ aN0) = IP((ξ−1

L M ∩ L0) ∩ aN0).

This implies

(4-13)
∫

G(L0)

h(ξLa) ΩG(L0)(a) =
∫

G(L0)

IP((ξ−1
L M ∩ L0) ∩ aN0) ΩG(L0)(a)

We need one extra piece of information.

Lemma. If N0 is as in paragraph 3.18 then there is a constant c2 such that for
every compact p + q − n dimensional (p = dim(M), q = dim(L0), n = dim(G/K))
submanifold M0 of L0 = G(L0)/K(L0) and every continuous function f : M0 → R
the formula

(4-14)
∫

G(L0)

∫
M0∩aN0

f ΩM0 ΩG(L0)(a) = c2

∫
M0

f ΩM0

holds.

This can be proven directly from the basic integral formula 2.7 or by first assum-
ing that f is a simple function, i.e. one that, except for a set of measure zero, is
constant on each of a finite number of open subsets of M0 that have well behaved
boundaries. Applying the result of example 3.12(d) to each of the open sets on
which f is constant will yield (4-14) in the case f is simple. The general case then
follows by taking limits.
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This lemma with M0 = ξ−1
L M∩L0 and f(x) = P(hξ−1

L M∩L0
x ) (= P(h(ξ−1

L M∩L0)∩aN0)
when x is in the interior of aN0) implies.∫

G(L0)

h(ξLa) ΩG(L0)(a) =
∫

G(L0)

∫
(ξ−1
L M∩L0)∩aN0

P(hξ−1
L M∩L0

x ) Ωξ−1
L M∩L0

(x) ΩG(L0)(a)

= c2

∫
ξ−1
L M∩L0

P(hξ−1
L M∩L0

x ) Ωξ−1
L M∩L0

(x)

= c2I
P(ξ−1

L M ∩ L0) = c2I
P(M ∩ L).

Putting this and (4-12) in (3-19) yields∫
G/G(L0)

IP(M ∩ L) ΩG/G(L0)(L) =
c1

c2

∑
α

IQα(M)IRα(N0)

=
l∑

i=0

∑
degQα=i

c1

c2
IRα(N0)IQα(M)

which easily implies equation (4-10). If L0 (and thus N0) is totally geodesic then
hN0

x = 0 for all x. But then deg(Rα) > 0 implies IRα(N0) = 0. Using this in the
last equation implies 4-11. This completes the proof.

5. The Second Fundamental Form of an Intersection

5.1 The first task toward proving the kinematic formula is to get an explicit
formula for the second fundamental form of a transverse intersection M ∩ N in
terms of the second fundamental forms of M and N . An estimate on the length of
the second fundamental form of M ∩N in terms of the second fundamental forms
of M and N and the angle σ(T⊥Mx, T⊥Nx) will also be needed.

5.2 If S is a smooth Riemannian manifold and M a smooth submanifold of S
then recall that the length of the second fundamental form hM

x of M at x is defined
by

‖hM
x ‖2 =

∑
1≤i,j≤p

‖hM
x (ei, ej)‖2

where p = dim(M), n = dim(S) and e1, . . . , ep is an orthonormal basis of TMx.
Recalling definition 4.8 of the extended second fundamental form HM

x of M at x
we define its length to be

‖HM
x ‖2 =

∑
1≤i,j≤n

‖HM
x (ei, ej)‖2

where e1, . . . , en is any orthonormal basis of TSx. It is left to the reader to verify
that ‖HM

x ‖ = ‖hM
x ‖.

5.3 Definition. Let V and W be linear subspaces of a finite dimensional real
inner product space T such that V + W = T . Then define PV

W by

(5-1) PV
W = projection onto (V ∩W )⊥ ∩W with kernel V

Note that (V ∩W )⊥ = V ⊥ + W⊥ and that there is a direct sum decomposition

(5-2) T = V ⊕ ((V ⊥ ⊕W⊥) ∩W ) = V ⊕ ((V ∩W )⊥ ∩W )

and therefore this definition makes sense.
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5.4 Proposition. Let S be a smooth Riemannian manifold and M and N
submanifolds of S that have nonempty transverse intersection. Then for each
x ∈M ∩N the second fundamental form of M ∩N is given by

(5-3) hM∩N (X, Y ) = PTMx

TNx
hM

x (X, Y ) + PTNx
TMx

hN
x (X, Y )

for all X, Y ∈ T (M ∩N)x = TMx ∩ TNx and therefore the extended second funda-
mental form of M ∩N is given by

HM∩N
x (X, Y ) = PTM

TN hM
x (PX, PY ) + PTN

TMhN
x (PX, PY )

where P : TSx → T (M ∩N)x is orthogonal projection. Also

(5-4) ‖hM∩N
x ‖ = ‖HM∩N

x ‖ ≤
√

2
σ(T⊥Mx, T⊥Nx)

(‖hM
x ‖2 + ‖hN

x ‖2)
1
2

5.5 Remark In the case that S is a Euclidean space the equation (5-3) is
equivalent to formula (3) on page 112 of Chern’s paper [6], however the notation is
much different.

5.6 Proof. Let ∇S , ∇M , ∇N , ∇M∩N be the Riemannian connections of the
indicated manifolds. Then for smooth vector fields X, Y on M ∩N defined near x

∇S
XY = ∇M

X Y + hM (X, Y )

∇S
XY = ∇N

XY + hN (X, Y )

∇S
XY = ∇M∩N

X Y + hM∩N (X, Y )(5-5)

The vector HM∩N(X, Y ) is in T⊥(M ∩N) = (TM ∩ TN)⊥ = ((TM ∩ TN)⊥ ∩
TM) ⊕ ((TM ∩ TN)⊥ ∩ TN). Therefore hM∩N (X, Y ) can be decomposed as
hM∩N (X, Y ) = Z1+Z2 with Z1 ∈ (TM∩TN)⊥∩TM and Z2 ∈ (TM∩TN)⊥∩TN .
Whence

PTM
TN ∇M∩N

X Y = 0, PTM
TN Z1 = 0, PTM

TN Z2 = Z2

PTN
TM∇M∩N

X Y = 0 PTN
TMZ1 = Z1, PTM

TN Z2 = 0

PTM
TN ∇M

X Y = 0, PTM
TN ∇N

XY = 0(5-6)

Using (5-5) and (5-6)

hM∩N (X, X) = Z1 + Z2

= PTM
TN (∇M∩N

X Y + Z1 + Z2) + PTN
TM (∇M∩N

X Y + Z1 + Z2)

= PTM
TN (∇S

XY ) + PTN
TM (∇S

XY )

= PTM
TN (∇M

X Y + hM (X, Y )) + PTN
TM (∇N

XY + hN (X, Y ))

= PTM
TN hM (X, Y ) + PTN

TMhN (X, Y )

which completes the proof of equation (5-3).

The inequality (5-4) requires more work. We start with
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5.7 Lemma. With the notation of definition 5.3

‖PW
V X‖ ≤ 1

σ(V ⊥, W⊥)
‖X‖

for all X ∈ T .

Proof. First note T = (V ∩W ) ⊕ (V ∩W )⊥, PV
W (V ∩W ) = {0}, and that

(V ∩W )⊥ is stable under PV
W . Thus in proving the lemma T can be replaced by

(V ∩W )⊥, V by V ∩ (V ∩W )⊥ and W by W ∩ (V ∩W )⊥. Then T = V ⊕W and
PV

W is the projection of T onto W with kernel V . Also in this case T = V ⊥ ⊕W⊥.
Let p = dim(V ) = dim(W⊥) and q = dim(W ) = dim(V ⊥). Then we claim that
it is possible to choose an orthonormal basis v1, . . . , vq of V ⊥ and an orthonormal
basis w1, . . . , wq of W in such a way that

(5-8) 〈vi, wj〉 = 0 i 6= j, 1 ≤ i, j ≤ q.

To see this start with arbitrary orthonormal bases v′1, . . . , v
′
q of V ⊥ and w′1, . . . , w

′
q

of W . If P = [pij ] and Q = [qij ] are any q × q orthogonal matrices, vi =
∑

j pijv
′
j ,

wi =
∑

J qijwj , A′ is the matrix with entries aij = 〈vi, vj〉, and A is the matrix
with entries aij = 〈vi, vj〉 then v1, . . . , vq is an orthonormal basis of V ⊥, w1, . . . , wq

is an orthonormal basis of W and a little calculation shows A = PA′Qt where Qt

is the transpose of W . It is well known that any matrix A′ can be factored as
A′ = HU with H symmetric and U orthogonal and that any symmetric matrix
H can be written as H = U1DU t

1 where D is diagonal and U1 orthogonal. If
we set P = U t

1 and Q = U t
1U then P and Q are orthogonal and A = PA′Qt =

U t
1(U1DU t

1U)(U t
1U)t = U t

1U1DU t
1UU tU1 = D. But A being a diagonal matrix is

easily seen to be equivalent to the orthogonality relationships (5-8).
Complete v1, . . . , vq to v1, . . . , vp+q and w1, . . . , wq to w1, . . . , wp+q orthonormal

bases of T . Then vq+1, . . . , vp+q is an orthonormal basis of V and wq+1, . . . , wp+q

is an orthonormal basis of W⊥. From the definition of PV
W it follows PV

W vj = 0
for q + 1 ≤ j ≤ p + q and PV

W wi = wi for 1 ≤ i ≤ q. Using these facts and the
orthogonality relations (5-8) it follows for 1 ≤ i ≤ q that

wi = PV
W wi = PV

W

( q∑
j=1

〈wi, vj〉vj

)

= PV
W

(
〈wi, vi〉vi +

p+q∑
j=q+1

〈wi, vj〉vj

)
= 〈wi, vi〉PV

W vi + 0

and thus

PV
W vi =

1
〈wi, vi〉

wi, 1 ≤ i ≤ q

PV
W vi = 0, q + 1 ≤ i ≤ p + q



34 THE KINEMATIC FORMULA IN RIEMANNIAN HOMOGENEOUS SPACES

Therefore if x ∈ T is written as x =
∑p+q

i=1 xivi then these last equations imply (as
v1, . . . , vp+q and w1, . . . , Wp+q are both orthonormal) that ‖x‖ =

∑p+q
i=1 (xi)2 and

thus

‖PV
W x‖ =

q∑
j=1

(xj)2

〈wj , vj〉2

≤ max
1≤i≤q

1
〈wi, vi〉2

p+q∑
j=1

(xj)2

= max
1≤i≤q

1
〈wi, vi〉2

‖x‖2

Relabel so that |〈w1, v1〉| is the smallest of |〈w1, v1〉|, . . . , |〈wq, vq〉| then we have
just shown that

(5-9) ‖PV
W x‖ ≤ 1

|〈w1, v1〉|
‖x‖

The vectors v1, . . . , vq are an orthonormal basis of V ⊥ and wq+1, . . . , wp+q is an
orthonormal basis of W⊥. The relations (5-8) yield that for 1 ≤ i ≤ q

vi = 〈vi, wi〉wi +
p+q∑

j=q+1

wi = 〈vi, wi〉wi + ŵi

where ŵi is in the span of wq+1, . . . , wp+q = 0 and thus ŵi ∧ wq+1 ∧ · · · ∧ wp+q.
Whence

σ(V ⊥, W⊥) = ‖v1 ∧ · · · ∧ vq ∧ wq+1 ∧ · · · ∧ wp+q‖
= ‖(〈v1, w1〉w1 + ŵ1) ∧ · · · ∧ (〈vq, wq〉wq + ŵq) ∧ wq+1 ∧ · · · ∧p+q ‖
= |〈v1, w1〉| · · · |〈vq, wq〉|‖w1 ∧ · · · ∧wp+q‖
= |〈v1, w1〉| · · · |〈vq, wq〉|

Therefore
1

|〈v1, w1〉|
=
|〈v2, w2〉| · · · |〈vq, wq〉|

σ(V ⊥, W⊥)
≤ 1

σ(V ⊥, W⊥)

as each |〈vi, wi〉| ≤ 1 by the Cauchy-Schwartz inequality. Using this inequality in
(5-9) completes the proof of the lemma.

5.8 We now prove the inequality (5-4). Let k = dim(T (M ∩ N)x), P : TSx →
T (M ∩ N)x be the orthogonal projection and e1, . . . , en (n = dim(S)) be an or-
thonormal basis of TSx such that e1, . . . , ek is an orthonormal basis of T (M ∩N)x.
Then the following two inequalities are elementary∑

1≤i,j≤n

‖hM
x (Pei, Pej)‖2 =

∑
1≤i,j≤k

‖hM
x (ei, ej)‖2 ≤ ‖hM

x ‖2∑
1≤i,j≤n

‖hN
x (Pei, Pej)‖2 =

∑
1≤i,j≤k

‖hN
x (ei, ej)‖2 ≤ ‖hN

x ‖2(5-10)
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Now use the last lemma, the form of hM∩N given by (5-3) and the elementary
inequality (x + y)2 ≤ 2(x2 + y2)

‖hM∩N
x ‖2 = ‖HM∩N

x ‖2 =
∑
i,j

‖PTM
TN hM (Pei, Pej) + PTN

TMhN (Pei, Pej)‖2

≤
∑
i,j

(‖PTM
TN hM (Pei, Pej)‖+ ‖PTN

TMhN (Pei, Pej)‖)2

≤ 2
∑
i,j

(‖PTM
TN hM (Pei, Pej)‖2 + ‖PTN

TMhN (Pei, Pej)‖2)

≤ 2
σ(T⊥Mx, T⊥Nx)2

∑
i,j

(‖hM (Pei, Pej)‖2 + ‖hN (Pei, Pej)‖2)

≤ 2
σ(T⊥Mx, T⊥Nx)2

(‖hM‖2 + ‖hN‖2)

where the last line use the inequalities (5-10). This completes the proof of propo-
sition 5.4.

6. Lemmas and Definitions

6.1 In this section we establish the notation and prove the lemmas that will be
needed to prove the kinematic formula and the transfer principle. For the rest of
this section the following notation will be used:

T = n dimensional real inner product space.

Then, as in section 4, for any subspace V0 of T set

II(V0) = vector space of symmetric bilinear forms V0 × V0 → V ⊥0

and
EII(T ) = symmetric bilinear forms T × T → T .

For 0 ≤ p ≤ n set

IIp(T ) =set of pairs (V, h) where V is a p dimensional subspace of T and h is

a symmetric bilinear form V × V → V ⊥

If (V, h) ∈ IIp(T ) and W is any linear subspace of T such that V + W = T then
define GW (V, h), the geodesic section of (V, h) by W , to be the element of EII(T )
given by

GW (V, h)(u, v) = PV
W h(Pu, Pv)

where PV
W is defined by equation (5-1) and P is the orthogonal projection of T onto

V ∩W .
In the case that T is the tangent space to some n dimensional Riemannian

manifold S at a point x then the above objects have geometric meaning. The
vector space II(V0) can be thought of as the set of all second fundamental forms
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of all submanifolds M passing through x with TMx = V0. The set IIp(T ) can be
viewed as the set of pairs (TMx, hM

x ) for all p dimensional submanifolds M passing
through x.

If S has constant sectional curvature, (V, h) = (TMx, hM
x ) ∈ IIp(TSx) for some

p dimensional submanifold M of S, and W is a linear subspace of TSx with W +
TMx = TSx then there is a totally geodesic submanifold N of S through x with
TNx = W . By proposition 5.4 the extended second fundamental form of M ∩N at
x is GTNx(TMx, hM

x ) = GW (V, h), and therefore GW (V, h) is the extended second
fundamental form of “a totally geodesic section of M in the direction W”.

Also if M and N are submanifolds of S intersecting transversely at x then by
proposition 5.4 and the notation just introduced the extended second fundamental
form of M ∩N at x is

HM∩N
x = GTNx(TMx, hM

x ) + GTMx(TNx, hN
x )

= GW (V, h1) + GV (W, h2)

where (TMx, hM
x ) = (V, h1) and (TNx, hN

x ) = (W, h2).
6.2 Fix a compact Lie group K with volume form ΩK and let a → a∗ be an

orthogonal representation of K on T . Then K acts on IIp(T ) by

a(V, h) = (a∗V, ah)

where a ∈ K, (V, h) ∈ IIp(T ) and ah is given by

(ah)(u, v) = a∗h(a−1
∗ u, a−1

∗ v).

Also K acts on EII(T ) by letting aH (for a ∈ K, H ∈ EII(T )) be defined by the
last equation with h replaced by H. If (V, h) ∈ IIp(T ) and W is a subspace of T
with V + W = T then a chase through the definitions shows that for all a ∈ K

(6-2) a(GW (V, h)) = Ga∗W (a∗V, ah).

6.3 Definition. If p + q ≥ n, (V, h1) ∈ IIp(T ), (W, h2) ∈ IIq(T ) and P is a
polynomial on EII(T ) that is invariant under K then define
(6-2)

IPK(V, h1, W, h2) =
∫

K

P(Gb−1
∗ W (V, h1) + GV (b−1

∗ W, b−1h2))σ(V ⊥, b−1
∗ W⊥) ΩK(b)

provided this integral converges.

6.4 Lemma. Let (V, h1) ∈ IIp(T ) and (W, h2) ∈ IIq(T ) and assume that

(6-4)
∫

K

σ(V ⊥, b−1
∗ W⊥)1−l ΩK(b) <∞.

Then for every polynomial P on EII(T ) which is both homogeneous of degree l and
invariant under K, the integral defining IPK(V, h1, W, h2) converges and

(1) IPK(V, h1, W, h2) = IPK(W, h2, V, h1),
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(2) for all a ∈ K

IPK(a∗V, ah1, W, h2) = IPK(V, h1, a∗W, ah2) = IPK(V, h1, W, h2),

(3) for a ∈ K

a∗V = V implies IPK(V, ah1, W, h2) = IPK(V, h1, W, h2)

a∗W = W implies IPK(V, h1, W, ah2) = IPK(V, h1, W, h2)

Proof. Translating the bound of proposition 4.5 on the length of the second
fundamental form of an intersection into the present context (see equation (6-1))
for all b ∈ K with σ(V, b−1

∗ W ) 6= 0 it follows that

‖Gg−1
∗ W (V, h1) + GV (b−1

∗ W, bh2)‖ ≤
√

2
σ(V ⊥, b−1

∗ W⊥)
(‖h1‖2 + ‖h2‖2)

1
2 .

Because P is homogeneous of degree l there is a constant C(P), only depending on
P, such that
(6-5)
|P(Gb−1

∗ W (V, h1) + GV (b−1
∗ W, b−1h2))| ≤ C(P)(‖h1‖2 + ‖h2‖2)

l
2 σ(V ⊥, b−1

∗ W⊥)−1

Use this inequality in equation (6-3) to conclude that the integral defining IPK(V, h1, W, h2)
converges.

To prove (1) compute;

IPK(W, h2, V, h1)

=
∫

K

P(Gb−1
∗ V (W, h2) + GW (b−1

∗ V, b−1h1))σ(W⊥, b−1
∗ V ⊥) ΩK(b)

=
∫

K

P(b[Gb−1
∗ V (W, h2) + GW (b−1

∗ V, b−1h1)])σ(W⊥, b−1
∗ V ⊥) ΩK(b)

=
∫

K

P(Gb∗W (V, h1) + GV (b∗W, bh2))σ(V ⊥, b∗W
⊥) ΩK(b)

=
∫

K

P(Gb−1
∗ W (V, h1) + GV (b−1

∗ W, b−1h2))σ(W⊥, b−1
∗ V ⊥) ΩK(b)

= IPK(V, h1, W, h2)

where going from the second line to the third used the invariance of P under K, go-
ing from the third line to the fourth used the equation (6-2) and that σ(W⊥, b−1

∗ V ⊥) =
σ(V ⊥, b∗W

⊥) (Which follows from equation (2-2) with ρ = b∗), and going from the
fourth to the fifth line is just the change of variable b 7→ b−1 (K is compact and
thus unimodular).

To prove (2)

IPK(W, h1, a∗W, ah2)

=
∫

K

P(Gb−1
∗ a∗W

(V, h1) + GV (b−1
∗ a∗W, b−1ah2))σ(V ⊥, b−1

∗ W⊥) ΩK(b)

=
∫

K

P(Gb−1
∗ W (V, h1) + GV (b−1

∗ W, b−1h2))σ(V ⊥, b−1
∗ W⊥) ΩK(b)

= IPK(V, h1, W, h2)
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where all that was needed this time was the change of variable b 7→ ab. This last
equation together with (1) implies (2) and (2) implies (3). This completes the proof.

Having set up all this notation we can now give the lemma that does all the rest
of the work needed to prove the kinematic formula that was not done in sections 2
and 3.

6.5 Lemma. Let V0 and W0 be linear subspaces of T and P a polynomial on
EII(T ) such that

(a) P is homogeneous of degree l, invariant under K and,
(b) ∫

K

σ(V ⊥0 , b−1
∗ W⊥

0 )1−l ΩK(b) <∞

Then there is a finite set of pairs (Qα,Rα) such that;
(1) each Qα is a homogeneous polynomial on II(V0) invariant under K(V0) =
{a ∈ K : a∗V0 = V0},

(2) each Rα is a homogeneous polynomial on II(W0) invariant under K(W0),
(3) degree(Qα) + degree(Rα) = l for each α and
(4) for all h1 ∈ II(V0) and h2 ∈ (W0)

IPK(V0, h1, W0, h2) =
∑
α

Qα(h1)Rα(h2).

6.6 Remark The statement of this lemma has been made to parallel the state-
ment of 4.10 to emphasize that the form of a kinematic formula for submanifolds
of a homogeneous space G/K does not depend on the full group of transformations
G, but that the form of the kinematic formula is dictated by the invariant theory
of the isotropy subgroup K.

6.7 Proof. For the moment fix b ∈ K such that V0 + b−1
∗ W0 = T . Then the

map on II(V0)× II(W0) given by

(h1, h2) 7→ Gb−1
∗ W0

(V0, h1) + GV0(b
−1
∗ W0, b

−1h2)

is a linear (it is trivial that GW0(V0, h1 + h′1) = GW0(V0, h1) + GW0(V0, h
′
1) etc.)

from II(V0) × II(W0) to EII(T ). Because P is homogeneous of degree l it follows
that the map

(h1, h2) 7→ P(Gb−1
∗ W0

(V0, h1) + GV0(b
−1
∗ W0, b

−1h1))σ(V ⊥0 , b−1
∗ W⊥

0 )

is a polynomial, homogeneous of degree l, on II(V0) × II(W0) whose coefficients
depend on b. Integration with respect to b over the group K (this integral exists
by lemma 6.4) eliminates the dependence on b and the result that is the map
(h1, h2) 7→ IPK(V0, h1, W0, h2) which must also then have the homogeneity property

(6-6) IPK(V0, λh1, W0, λh2) = λlIPK(V0, h1, W0, h2)
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By choosing bases for II(V0) and II(W0) and writing the polynomial

(h1, h2) 7→ IPK(V0, h1, W0, h2)

in terms of the monomials of these bases define we can express

IPK(V0, h1, W0, h2) =
∑
α

Qα(h1)Rα(h2)

for some homogeneous polynomials Qα on II(V0) and Rα on II(W0).
Define new polynomials Qα on II(W0) and Rα on II(V0) by

Qα(h1) =
1

Vol(K(V0))

∫
K(V0)

Qα(ah1) ΩK(V0)(a)

Rα(h2) =
1

Vol(K(W0))

∫
K(W0)

Rα(bh2) ΩK(W0)(b)

Then clearly Qα is invariant under K(V0), Rα is invariant under K(W0), and
both Qα and Rα are homogeneous polynomials. Using the invariance properties of
IPK(V0, h1, W0, h2) given by part (3) of the last lemma

IPK(V0, h1, W0, h2)

=
1

Vol(K(V0)) Vol(K(W0))

∫∫
K(V0)×K(W0)

IPK(V0, ah1, W0, bh1) ΩK(V0)×K(W0)(a, b)

=
1

Vol(K(V0)) Vol(K(W0))

∑
α

∫
Qα(ah1) ΩK(V0)(a)

∫
K(W0)

Rα(bh2) ΩK(W0)(b)

=
∑
α

Qα(h1)Rα(h2).

Equation (6-5) now implies degree(Qα)+degree(Rα) = l for each α. This completes
the proof.

6.8 We now turn to the algebraic results needed for the proof of the transfer
principle. The notation is similar to that of paragraph 4.12. That is let T ′ be
another real inner product space of the same dimension as T , K ′ another compact
Lie group of the same dimension as K with an orthogonal representation a 7→ a∗
on T ′, ρ : K → K ′ a smooth isomorphism and ψ : T → T ′ a linear isomorphism
that satisfy the conditions (a) and (b) of paragraph 4.12 (with T (G/K)o replaced
by T , T (G′/K ′)o′ by T ′ etc). Also, as before, we denote the isomorphism induced
by ρ from objects defined on T to objects defined on T ′ by putting primes on the
object in question. For example if h1 ∈ II(V0), h2 ∈ II(W0) and H ′ ∈ EII(T ′) then
h′1 ∈ II(V ′0), h′2 ∈ II(W ′

0) and H ′ ∈ EII(T ′) are given by

h′1(u, v) = ψh1(ψ−1u, ψ−1v)

h′2(u, v) = ψh2(ψ−1u, ψ−1v)

H ′(u, v) = ψH(ψ−1u, ψ−1v).
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If P is a polynomial on EII(T ), Q is a polynomial on EII(V0) and R is a poly-
nomial on II(W0) then the polynomials P ′ (on EII(T ′)), Q′ (on II(V ′0)) and R′ (on
II(W ′

0)) are given by

P ′(H ′) = P(H) all H ∈ EII(T ),

Q′(h′1) = Q(h1) all h1 ∈ II(V0),

R′(h′2) = R(h2) all h2 ∈ II(W0).

The condition 4.12(b) implies first that K ′(V ′0) = ρK(V0) and K ′(W ′
0) = ρK(W0)

and second that if H ∈ EII(T ), h1 ∈ II(V0), h2 ∈ II(W ′
0) then (aH)′ = ρ(a)H

(a ∈ K), (ah1)′ = ρ(a)h′1 (a ∈ K(V0)) (ah2)′ = ρ(a)h′ (a ∈ K(W0)). Therefore if P
is a polynomial on EII(T ) then P is invariant under K iff P ′ is invariant under K ′,
with similar statements about polynomials on II(V0) invariant under K(V0) and
polynomials on II(W0) invariant under K(W0) holding.

By chasing through the definitions it can be verified that for all b ∈ K with
V0 + b−1

∗ W0 = T that Gb−1
∗ W0

(V0, h1)′ = Gρ(b)−1
∗ W ′0

(V ′0 , h′1) for all h1 ∈ II(V0) and

that σ(V ⊥0 , b−1
∗ W⊥

0 ) = σ(V ′0
⊥

, ρ(b)−1
∗ W ′

0
⊥). Therefore from the change of variable

b 7→ ρ(b) in the integral defining IPK(V0, h1, W0, h2) it follows

IP
′

K′(V
′
0 , h′1, W

′
0, h
′
0) = IPK(V0, h1, W0, h0)

Whence if
IPK(V0, h1, W0, h0) =

∑
α

Qα(h1)Rα(h2)

is the decomposition of IPK(V0, h1, W0, h2) given by lemma 6.5 that

IP
′

K′(V
′
0 , h′1, W

′
0, h
′
0) =

∑
α

Q′α(h′1)R′α(h′2)

where the pairs (Q′α,R′α) have all the properties listed for the pairs (Qα,Rα) in
lemma 6.5.

7. Proof of the kinematic formula and the transfer principle

7.1 We will use the notation in the statement of the kinematic formula 4.10. If
h1 ∈ II(V0) and h2 ∈ II(W0) then define IPK(V0, h1, W0, h2) as in definition 6.3. Let
M be a submanifold of G/K of type V0 and x ∈ M . Then there is a ξ ∈ G with
ξ∗V0 = TMx and if ξ1 is any other element of G with ξ1∗V0 = TMx then ξ1 = ξa

for some a ∈ K(V0), both hξ−1M
o and h

ξ−1
1 M

o are in II(V0) and hξ−1
1 M = a−1hξ−1M .

Likewise if N is a submanifold of G/K of type W0, η, η1 elements of G with
η∗W0 = TNy and η1∗W0 = TNy then η1 = bη for some b ∈ K(W0). Therefore by
the invariance properties of IPK given by lemma 6.4 part (3) it follows that if we
define

IPK(V0, h
M
x , W0, h

N
y ) = IPK(V0, h

ξ−1M
x , W0, h

η−1N
y ), ξ∗V0 = TMx, η∗W0 = TNy

then this definition is independent of the choice of ξ with ξ∗V0 = TMx and η with
η∗W0 = TNy. We can now give a statement of a kinematic formula which, together
with what has already been done, easily implies our first statement of the kinematic
formula and the transfer principle.
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7.2 Kinematic formula. With the notation and hypothesis of 4.10 the kine-
matic formula

(7-1)
∫

G

IP(M ∩ gN) ΩG(g) =
∫∫

M×N

IPK(V0, h
M
x , W0, h

N
y ) ΩM×N (x, y)

holds.

7.3 Proof of 4.10 and 4.12. Once the formula just given has been proven
then theorem 4.10 follows at once from lemma 6.5 and the transfer principle 4.12
follows from the results in paragraph 6.8.

7.4 Proof of 7.2. Let M̂ = π−1M and N̂ = π−1N where p : G→ G/K is the
natural projection. Define h : M̂ × N̂ → R by

(7-2) h(ξ, η) = P(HM∩ξη−1N
πξ )

when M and ξη−1N intersect transversely at πξ and h(ξ, η) = 0 otherwise. Using
this function h and the submanifolds M̂ and N̂ of G in the basic integral formula
of paragraph 2.7 (and recalling the assumption ∆ ≡ 1)
(7-3)∫

G

(∫
cM∩g bN

h ◦ ϕg Ω
cM∩g bN

)
ΩG(g) =

∫∫
cM× bN

h(ξ, η)σ(T⊥M̂ξ, T
⊥N̂η) Ω

cM× bN (ξ, η)

Let g be an element of G so that M̂ and gN̂ intersect transversely, which is
equivalent to having M and gN intersecting transversely as π is a Riemannian
submersion. Let ξ ∈ M̂ ∩ gN̂ . Then using the definition of ϕg

(7-4) h ◦ ϕg(ξ) = h(ξ, g−1ξ) = P(HM∩ξξ−1gN
πξ ) = P(HM∩gN

πξ )

Therefore if π(ξ1) = π(ξ) = x ∈M ∩ gN then h ◦ϕg(ξ) = h ◦ϕg(ξ1) = P(HM∩gN
x ).

Whence the restriction of π to M̂∩gN̂ is a Riemannian submersion that fibers with
fibres isometric to K and the function h ◦ϕg has the constant value P(HM∩gN

x ) on
the fibre over x. Whence∫

cM∩g bN

h ◦ ϕg Ω
cM∩ bN = Vol(K)

∫
M∩gM

P(HM∩gN
x ) ΩM∩gN(x)

= Vol(K)IP(M ∩ gN)(7-5)

for all g for which M and gN intersect transversely and by theorem 2.7 this is the
case for almost all g ∈ G. Thus integration with respect to g yields

(7-6)
∫

G

(∫
cM∩g bN

h ◦ ϕg Ω
cM∩g bN

)
ΩG(g) = Vol(K)

∫
G

IP(M ∩ gN) ΩG(g)

provided the integral on the left converges, a consideration we will return to shortly.
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Returning to equation (7-3) we use that the map (ξ, η) 7→ (πξ, πη) is a Riemann-
ian submersion of M̂ × N̂ onto M × N which fibers π−1[x] × π−1[y] isometric to
K ×K. Therefore, at least formally,∫∫

cM× bN
h(ξ, η)σ(T⊥M̂ξ, T

⊥N̂η) Ω
cM× bN (ξ, η)

=
∫∫

M×N

(∫∫
π−1[x]×π−1[y]

h(ξ, η)σ(T⊥M̂ξ, T
⊥N̂η) Ωπ−1[x]×π−1[y](ξ, η)

)
ΩM×N (x, y)

=
∫∫

M×N

I(x, y) ΩM×N(x, y)

(7-8)

with

(7-9) I(x, y) =
∫∫

π−1[x]×π−1[y]

h(ξ, η)σ(T⊥M̂ξ, T
⊥N̂η) Ωπ−1[x]×π−1[y](ξ, η)

Also define

|I|(x, y) =
∫∫

π−1[x]×π−1[y]

|h(ξ, η)|σ(T⊥M̂ξ, T
⊥N̂η) Ωπ−1[x]×π−1[y](ξ, η)

We will now show that integral defining |I|(x, y) converges and that the function
(x, y) 7→ |I|(x, y) on M × N is bounded. Putting this into equation (7-7) and
using Fubini’s theorem (or rather its generalization to the present context see §33
of [15]) will show that the left side of (7-7) and therefore the right side of (7-3)
converges absolutely. By the basic integral formula this is enough to guarantee the
convergence of all our integrals.

First use that M is of type V0 and N of type W0 to choose for each x ∈M and
y ∈ N elements ξx, ηy ∈ G such that

(7-10) ξx∗V0 = TMx and ηy∗W0 = TNy

Then (a, b) 7→ (ξxa, ηyb) is an isometry of K × K with π−1[x] × π−1[y] and thus
doing a change of variable in (7-9)

(7-11) |I|(x, y) =
∫∫

K×K

|h(ξxa, ηyb)|σ(T⊥M̂ξxa, T⊥N̂ηyb) ΩK×K(a, b)

By equation (3-13)

σ(T⊥M̂ξxa, T⊥N̂ηyb) = σ(a−1
∗ ξ−1

x∗ T⊥Mx, b−1
∗ η−1

y∗ T⊥Ny)

= σ(a−1
∗ V ⊥0 , b−1

∗ W⊥
0 )

= σ(V ⊥0 , (ab−1)∗W⊥
0 )(7-12)
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By the estimate (6-5) (with (V, h1) replaced by (V0, h
ξ−1
x M

o ) and (b−1
∗ W, b−1W0)

replaced by ((ab−1)∗W0, (ab−1)hη−1N
o ),

|h(ξxa, ηyb)| = |P(HM∩ξa(ηb)−1N )| = |P(Hξ−1Mab−1η−1N
o )|

=
∣∣∣P(G(ab−1)∗η

−1
∗ TNy

(ξ−1
∗ TMx, hξ−1M

o )

+Gξ−1
∗ TMx

((ab−1)∗TNy, (ab−1)hη−1N
o )

)∣∣∣
=
∣∣∣P(G(ab−1)∗W0(V0, h

ξ−1M
o ) + GV0((ab−1)∗W0, (ab−1)hη−1N

o )
)∣∣∣

≤ C(P)
(
‖hξ−1M

o ‖2 + ‖h(ab−1)η−1N
o ‖2

) l
2

σ(V ⊥0 , (ab−1)∗W⊥
0 )−l

= C(P)(‖hM
x ‖2 + ‖hN

y ‖2)
l
2 σ(V ⊥0 , (ab−1)∗W⊥

0 )−l(7-13)

The function (x, y) 7→ (‖hM
x ‖2 + ‖hN

y ‖2)l/2 is continuous on the compact space
M ×N so there is a constant B with B ≥ (‖hM

x ‖2 + ‖hN
y ‖2)l/2 for all x, y. Using

this bound, equation (7-12), equation (7-13) and a change of variable in (7-9)

|I|(x, y) ≤ C(P)B
∫

K

∫
K

σ(V ⊥0 , (ab−1)∗W⊥
0 )1−l ΩK(b) ΩK(a)

= C(P)B Vol(K)
∫

K

σ(V ⊥0 , b−1
∗ W⊥

0 )1−l ΩK(b).

This integral converges by premise (b) of 4.10. Therefore the integral defining
|I|(x, y) converges and the last inequality gives an upper bound for |I|(x, y) that
holds on all of M ×N . This verifies our claims about |I|(x, y) and shows that all
our integrals converge.

If the absolute values are removed from the first several lines of (7-13) the cal-
culation still holds. Thus,

h(ξxa, ηyb) = P(G(ab−1)∗W0(V0, h
ξ−1
x M

o ) + GV0((ab−1)∗W0, (ab−1)h
η−1
y N

o )).

Using this equation, equation (7-12), and expressing I(x, y) as an integral over
K ×K instead of over π−1[x]× π−1[y] (just as was done with |I|(x, y) in equation
(7-11)) we find

I(x, y) =
∫

K

(∫
K

h(ξxa, ηyb)σ(T⊥M̂ξxa, T⊥N̂ηyb) ΩK(b)
)

ΩK(a)

=
∫

K

(∫
K

P
(
G(ab−1)∗W0(V0, h

ξ−1
x M

o )

+ GV0((ab−1)∗W0, (ab−1)h
η−1
y N

o )
)

σ(V ⊥0 , b−1
∗ W⊥

0 ) ΩK(b)
)

ΩK(a)

=
∫

K

(∫
K

P
(
Gb−1
∗ W0

(V0, h
ξ−1
x M

o )

+GV0(b
−1
∗ W0, b

−1hη−1
y N )

)
σ(V ⊥0 , b−1

∗ W⊥
0 ) ΩK(b)

)
ΩK(a)

=
∫

K

IPK(V0, h
ξ−1
x M , W0, h

η−1
y N ) ΩK(a)

= Vol(K) IPK(V0, h
M
x , W0, h

N
y ).
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Putting this into equation (7-7) and putting the result of that and also equation
(7-6) into equation (7-3) completes the proof of theorem 7.2.

8. Spaces of Constant Curvature

8.1 In this section G/K will be assumed to be the simply connected manifold of
constant sectional curvature c and dimension n and G is the full isometry group of
G/K. The case where G is the group of all orientation preserving isometries of G/K
can be dealt with in the same manner, the details in this case are left to the reader.
If O(T (G/K)o) is the orthogonal group of the inner product space T (G/K)o then
the map a 7→ a∗ gives a smooth isomorphism of K with O(T (G/K)o) and we
will identify K with O(T (G/K)o) via this isomorphism. As in paragraph 3.12
example (a) we normalize so that Vol(K) = Vol(O(n)) = 2 Vol(SO(n)). With the
identification we have just made of K with O(T (G/K)o) it is easy to check that if
V0 is any p dimensional subspace of T (G/K)o that every p dimensional submanifold
of G/K is of type V0 (in the sense of definition 4.2) and

(8-1) K(V0) = O(V0)×O(V ⊥0 )

where O(V0) and O(V ⊥0 ) are the orthogonal groups on V0 and V ⊥0 respectively.
8.2 Therefore the general kinematic formula 4.10 can be restated in this case.

Let V0 be a p dimensional and W0 a q dimensional subspace of T (G/K)o and let
P be a homogeneous polynomial of degree l on EII(T (G/K)o) which is invariant
under O(T (G/K)o) and such that

(8-2) l ≤ p + q − n + 1

Then there is a finite set of pairs (Qα,Rα) such that
(1) each Qα is a homogeneous polynomial on II(V0) invariant under O(V0) ×

O(V0),
(2) each Rα is a homogeneous polynomial on II(V0) invariant under O(W0) ×

O(W0),
(3) degree(Qα) + degree(Rα) = l for each α and
(4) for all compact p dimensional submanifolds M and compact q dimensional

submanifolds N of G/K (they may have boundary)∫
G

IP(M ∩ gN) ΩG(g) =
∑
α

IQαIRα(N).

8.3 Since the invariant theory of orthogonal groups is well understood (for ex-
ample see [22]) for a given degree k it is not hard to list all the invariant polyno-
mials on II(V0) or II(W0) that are homogeneous of degree k and invariant under
O(V0)×O(V0) or O(W0)×O(W0). We will give such a list for k ≤ 4 below.

8.4 To prove the results of paragraph 8.2 from theorem 4.10 it only remains to
show the inequality (8-2) implies the inequality

(8-3)
∫

O(T )

σ(V ⊥0 , aW⊥
0 )1−l ΩO(T )(a) <∞
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where we have set T = T (G/K)o for brevity. To do this we follow Chern [6]. To
start let Gq(T ) be the Grassmann manifold of all q planes in T . Then there is a
submersion of O(T ) onto Gq(T ) given by a 7→ aV0. Put the Riemannian metric on
Gq(T ) that makes this map into a Riemannian submersion. Then this map fibers
with fibres isometric with O(W0) × O(W⊥

0 ) and s constant on each fibre, whence
to prove (8-3) it is enough to prove

(8-4)
∫

Gq(T )

σ(V ⊥0 , W⊥)1−l ΩGq(T )(W ) <∞

We will show this by adapting a formula of Chern’s to the present case. Unfortu-
nately this involves some excess notation. First Let G∗q(T ) be the subset of Gq(T )
of all q planes W with dim(V0 ∩W ) = p + q − n. Then G∗q(T ) differs from Gq(T )
by a set of measure zero whence integrals over Gq(T ) can be replaced by integrals
over G∗q(T ).

Let Gp+q−n(V0) be the Grassmann manifold of all p + q − n planes in V0 with
its standard metric invariant under O(V0). For each U ∈ Gp+q−n(V0) let Gq(U, T )
be the set of all q planes W in T with U ⊆ W . Then there is a natural bijection
between Gq(U, T ) and the Grassmann manifold of q − (p + q − n) = n − p planes
in the quotient space T/U , an n − (p + q − n) = 2n − p − q dimensional vector
space. Give Gq(U, T ) the metric that makes this bijection an isometry of Gq(U, T )
with Gn−p(T/U). Let G∗q(U, T ) be the subset of Gq(U, T ) of q planes W with
W ∩ V0 = U . Then if π : G∗p(T ) → Gp+q−n(V0) is given by π(W ) = V0 ∩ W

then π−1 = Gq(U, T ) and this differs from G∗q(U, T ) by a set of measure zero, thus
integrals over Gq(U, T ) can be replaced by integrals over G∗q(U, T ).

Chern proved (equation (28) of section 2 in [6]) the equality of densities

ΩGq(T )(W ) = σ(V ⊥0 , W⊥)p+q−nΩGq(πW,T ) ∧ π∗ΩGp+q−n(V0)

= σ(V ⊥0 , W⊥)p+q−nΩGq(W∩V0,T ) ∧ π∗ΩGp+q−n(V))(8-5)

which holds for all W ∈ G∗q(T ). This is also proven in Santaló’s book [18] (equation
14.40 on page 241) where the notation is a little closer to that used here.

It follows by the lemma on fibre integration in the appendix that if h is any
measurable function defined almost everywhere on Gq(T ) that∫

Gq(T )

h(W )ΩGp(T )(W )

=
∫

Gp+q−n(V0)

∫
W∩V0=U

h(W )σ(V ⊥0 , W⊥)p+q−n ΩGq(U,T )(W ) ΩGp+q−n(V0)(U)

(8-6)

To prove the inequality (8-4) let h(W ) = σ(V0,
⊥ , W⊥)1−l in (8-6) and use that

l ≤ p + q − n + 1 so that the function W 7→ h(W )σ(V ⊥0 , W⊥)p+q−n is bounded.
This completes the proof.

8.5 We now give a list of the homogeneous polynomials on II(V0) of small degree
which are invariant under O(V0)×O(V ⊥0 ). Choose an orthonormal basis e1, . . . , en
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of T = T (G/K)o such that e1, . . . , ep is a basis of V0 and ep+1, . . . , en is a basis of
V0. Then if h ∈ II(V0) and H ∈ EII(T ) define the components h and H by

hα
ij = 〈h(ei, ej), eα〉 1 ≤ i, j ≤ p, p + 1 ≤ α ≤ n

Hα
ij = 〈H(ei, ej), eα〉 1 ≤ i, j, α ≤ n.(8-7)

Then there are no homogeneous polynomials of odd degree on II(V0) invariant
under O(V0) × O(V0) (as the polynomial must be invariant under h 7→ −h). The
polynomials homogeneous of degree 2 invariant under O(V0)×O(V ⊥0 ) are spanned
by the two polynomials

(8-8) Q1(h) =
∑
i,j,α

(hα
ij)

2, Q2(h) =
∑
α

(
∑

i

hα
ii)

2

and if 2 < p < n − 1 these polynomials are independent. Geometrically Q1(h) is
the length of the second fundamental form and Q2(h) is p2 times the square of the
length of the mean curvature vector.

The homogeneous polynomials of degree four on II(V0) invariant under O(V0)×
O(V0) are spanned by the eight polynomials

R1 =
∑

hα
iih

α
jjh

β
kkhβ

ll, R2 =
∑

ha
iih

α
jkhβ

jkhβ
ll

R3 =
∑

hα
ijh

α
ijh

β
kkhβ

ll, R4 =
∑

hα
ijh

α
ijh

β
klh

β
kl

R5 =
∑

hα
ijh

α
ikhβ

jkhβ
ll, R6 =

∑
hα

ijh
α
ikhβ

jlh
β
kl

R7 =
∑

hα
ijh

α
klh

β
ijh

β
kl, R8 =

∑
hα

ijh
α
klh

β
ikhβ

jl

and these are linearly independent provided 4 ≤ p ≤ n − 2. To find these write
the expression hα1

11i2
hα2

i3i4
hα3

i5i6
hα4

i7i8
and contract the α’s in pairs and then the i’s in

pairs. For example contracting α1 with α2, α3 with α4, i1 with i2, i3 with i4, i5
with i6 and i7 with i8 leads to R1 above. See [22] for details.

Having this list of invariants does make one thing clear, that every polynomial
P on II(V0) invariant under O(V0) × O(V ⊥0 ) is a restriction of a polynomial P̂ on
EII(T ) which is invariant under O(T ). (Where we view h ∈ EII(T ) as an element
of EII(T ) by setting H(u, v) = h(Pu, Pv) where P : T → V0 is the orthogonal
projection and u, v ∈ T .) To see this suppose that P = R3 in the list above. Then
define P̂ on EII(T ) by

P̂ =
∑

Hα
ijH

α
ijH

β
kkHβ

ll

where this time we sum over the range of indices 1 ≤ i, j, k, k, a, b ≤ n instead of
1 ≤ i, j, k, l ≤ p, p + 1 ≤ α, β ≤ n.

8.6 We now give an example of how to use theorem 4.10 and the invariant
theory of the isotropy subgroup to prove a kinematic formula. For each k with
2 ≤ k ≤ n−1 let Uk be the invariant polynomial defined on the second fundamental
forms of k dimensional submanifolds of Rn by

Uk(h) = kQ1(h)−Q2(h)

= k
∑
i,j,α

(hα
ij)

2 −
∑
α

(∑
i

hα
ij

)2
,
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where Q1 andQ2 are the invariant polynomials defined in equation (8-8). If Sk(r) ⊂
Rk+1 ⊂ Rn is the standard imbedding of a k dimensional sphere of radius r into
Rn then Uk

(
h

Sk(r)
x

)
= 0 for all x ∈ Sk(r).

The invariant polynomials on the second fundamental forms of p dimensional
submanifolds has as a basis Up and Q1. Likewise the invariant polynomials on
the second fundamental forms of q dimensional submanifolds has as a basis the
polynomials Uq and Q1. Thus by the general kinematic formula given by theorem
4.10 there are constants ci so that if G/K is as in the first paragraph of this section
and p + q − n ≥ 2,∫

G

IUp+q−n(Mp ∩ gNq) ΩG(g)

=
(
c1I
Up(Mp) + c2I

Q1(Mp)
)
Vol(Nq) + Vol(Mp)

(
c3I
Uq(Nq) + c4I

Q1(Nq)
)

If we now assume that G/K = Rn, Mp = Sp ⊂ Rp+1 ⊂ Rn is the standard
way and Nq is a bounded domain in Rq ⊂ Rn, then for almost every g ∈ G the
intersection Mp ∩ gNq is either empty or congruent to a standard imbedding of a
sphere Sp+q−n(r). Thus in this case Up+q−n(hMp∩gNq

) ≡ 0 for almost all g ∈ G.
Also hNq ≡ 0, so that Uq(hNq

) ≡ 0 andQ1(hNq

) ≡ 0. But in this case IQ1(Mq) 6= 0.
Using this in the last equation shows that c2 = 0. A similar trick shows that c4 = 0.
This and the transfer principle lead to:

Proposition. There are constants c(p, q, n) (p + q − n ≥ 2) so that for any
compact submanifolds (possibly with boundary) Mp and Nq of a space G/K of
constant sectional curvature with K isomorphic to O(n) and normalized so that
Vol(K) = Vol(O(n)) the kinematic formula∫

G

IUp+q−n(Mp∩gNq) ΩG(g) = c(p, q, n)IUp(Mp) Vol(Nq)+c(q, p, n) Vol(Mp)IUq(Nq)

holds.

We close this section with a more concrete application of the transfer principle to
three dimensional spaces of constant curvature. In his paper [3] C.-S. Chen proved
that if M and N are compact surfaces in R3 and G is the group of orientation
preserving isometries of R3 (with the same normalizations used in example (a) of
paragraph 3.12) that the following very pretty formula holds∫

G

∫
M∩gN

κ2ds ΩG(g)

= π3 Area(M)
∫

N

(2H2 + ‖h‖2) ΩN + π3 Area(N)
∫

M

(2H2 + ‖h‖2) ΩM

where κ is the curvature of the curve M ∩ gN , H2 = ((λ1 + λ2)/2)2 is the square
of the mean curvature, and ‖h‖2 = λ2

1 + λ2
2 is the square length of the second

fundamental form (here λ1 and λ2 are the principle curvatures). By the transfer
principle this formula holds exactly in the form written for all compact surfaces in
any simply connected space of constant sectional curvature.
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9. An algebraic characterization of the
polynomials in the Weyl tube formula.

9.1 In this section we define the polynomials in the components of the second
fundamental form of a submanifold that appear in the Weyl tube formula (this
formula will be stated and its proof sketched in the next section). These polynomials
will be characterized as the unique invariant polynomials which vanish on the second
fundamental forms of “generalized cylinders”. In the next section we will show
this characterization can be used to give an easy proof of Weyl’s formula and an
elementary proof of the kinematic formula of Chern and Federer from theorem 7.2
above.

9.2 For the rest of this section we will use the notation introduced in paragraph
6.1, that is T is an n dimensional real inner product space, V0 a p dimensional
subspace of T etc. If h ∈ II(V0) and H ∈ EII(V0) then the components of h and H
are defined by equation (8-7) above. Define Rst

ij (h) and Rst
ij (H) by

(9-1) Rst
ij (h) =

n∑
α=p+1

(hα
ish

α
jt − hα

ith
α
js) 1 ≤ i, j, s, t ≤ p

(9-2) Rst
ij (H) =

n∑
α=1

(Hα
isH

α
jt −Hα

itH
α
js) 1 ≤ i, j, s, t ≤ n

If h is the second fundamental form of a submanifold of Euclidean space then the
Gauss curvature equation implies that Rst

ij (h) are the components of the curvature
tensor of the submanifold.

w2l(h) =
∑

1≤i1,...,i2l≤p
1≤j1,...,j2l≤p

δi1...i2l
j1...j2l

Rj1j2
i1i2

(h) · · ·Rj2l−1j2l
i2l−1i2l

(h)

= 2l
∑

1≤i1,...,i2l≤p
1≤j1,...,j2l≤p

p+1≤α1,...,αl≤n

δi1...i2l
j1...j2l

hα1
i1j1

hα1
i2j2
· · ·hαl

i2l−1j2l−1
hαl

i2lj2l

= 2l
∑

1≤i1,...,i2l≤p
1≤j1,...,j2l≤p

p+1≤α1,...,αl≤n

δi1...i2l
j1...j2l

l∏
t=1

(hαt
i2t−1j2t−1

hαt
i2tj2t

)

= 2l
∑

1≤i1,...,i2l≤p
p+1≤α1,...,αl≤n

det


hα1

i1i1
hα1

i1i2
. . . hα1

i1i2l
hα1

i2i1
hα1

i2i2
. . . hα2

i2i2l
...

...
. . .

...
hαl

i2l−1i1
hαl

i2l−1i2
. . . hαl

i2l−1i2l

hαl
i2li1

hαl
i2li2

. . . hαl
i2li2l

(9-3)

where δi1...ik
j1...jk

is the generalized Kronecker delta which is zero unless i1, . . . , ik are
all distinct and j1, . . . , jk are all distinct and j1, . . . , jk is a permutation of i1, . . . , ik
in which case it is the sign of this permutation. By definition when l = 0

w0 = 1
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Also define polynomials on EII(T ), also denoted by “w2l”, by

w2l(H) =
∑

1≤i1,...,i2l≤n
1≤j1,...,j2l≤n

δi1...i2l
j1...j2l

Rj1j2
i1i2

(H) · · ·Rj2l−1j2l
i2l−1i2l

(H)

= 2l
∑

1≤i1,...,i2l≤n
1≤α1,...,αl≤n

det


Hα1

i1i1
Hα1

i1i2
. . . Hα1

i1i2l
Hα1

i2i1
Hα1

i2i2
. . . Hα2

i2i2l
...

...
. . .

...
Hαl

i2l−1i1
Hαl

i2l−1i2
. . . Hαl

i2l−1i2l

Hαl
i2li1

Hαl
i2li2

. . . Hαl
i2li2l

(9-4)

9.4 The reason for expressing these polynomials as sums of 2l× 2l determinants
will become clear shortly. We also remark that if h ∈ II(V0) and H ∈ EII(T ) is
the extension of h to EII(T ), that is H(u, v) = h(Pu, Pv) where P : T → V0 is the
orthogonal projection, then it is easily checked that

(9-5) w2l(h) = w2l(H)

For h ∈ II(V0) (resp. H ∈ EII(T )) and for each α with p + 1 ≤ α ≤ n (resp.
1 ≤ α ≤ n) define a selfadjoint linear map hα : V0 → V0 (resp. Hα : T → T ) by

〈hαu, v〉 = 〈h(u, v), eα〉 all u, v ∈ V0, p + 1 ≤ α ≤ n

〈Hαu, v〉 = 〈H(u, v), eα〉 all u, v ∈ T, 1 ≤ α ≤ n

In the case that h is the second fundamental form of a submanifold of a Riemannian
manifold then hα is just the usual Weingarten map of the submanifold correspond-
ing to the normal direction eα.

We now introduce a numerical invariant of h ∈ II(V0) and H ∈ EII(T ) which is
closely related to the relative nullity of the second fundamental of a submanifold
introduced by Chern and Kuiper in their paper [7] on the nonexistence of isometric
imbeddings of low codimension.

9.5 Definition. If h ∈ II(V0) and H ∈ EII(T ) then define the relative rank of
h and H by

relative rank (h) = dim
( n∑

α=p+1

image (ha)
)

relative rank (H) = dim
( n∑

α=1

image (Ha)
)

.

9.6 We will now explain the relation of the relative rank to Chern and Kuiper’s
relative nullity (in doing this we follow [14] Vol. II Note 16 on page 374) and explain
what it means geometrically. If h ∈ II(V0) then Chern and Kuiper introduce the
subspace

N = {u ∈ V0 : h(u, v) = 0 for all v ∈ V0}

=
n⋂

α=p+1

Kernel(hα)(9-6)
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of V0 and define

(9-7) relative nullity (h) = dimN (h)

Because each hα is selfadjoint

Kernel(hα) = V0 ∩ (Image(hα))⊥

and therefore

(9-8) N (h) =
n⋂

α=p+1

Kernel(hα) = V0 ∩
(

n∑
α=p+1

Image(hα)

)⊥
.

It follows that the sum of the relative rank and the relative nullity of h is p =
dim(V0). Thus the two notations contain the same information about h. We note
for future reference that analogous to the last equation there is a decomposition

n∑
α=1

Image(Hα) =
n∑

α=1

Kernel(Hα)

=

(
n⋂

α=1

Kernel(Hα)

)⊥
= {u : H(u, v) = 0 for all v ∈ T⊥}(9-9)

To give some geometric meaning to the relative rank first define an isometric
immersion f : M → Rn from a p dimension Riemannian manifold M to be a
rank k cylinder if and only if there is a k dimension Riemannian manifold M ′,
an isometry φ : M → M ′ × Rp−k (product metric) and an isometric immersion
f ′ : M ′ → Rn−p+k so that the diagram

M
f−−−−→ Rn

φ

y Id

y
M ′ × Rp−k −−−−→

f ′×Id
Rn−p+k ×Rp−k

commutes. If M is a rank k cylinder in Rn then the relative rank of the second
fundamental form of M is at most k and relative nullity at least p− k at all points
of M and the relative rank will be exactly k at the “generic” point of the “generic”
rank k cylinder. Conversely Hartmann [13] has shown that if M is a complete
immersed submanifold of Rn with nonnegative sectional curvatures whose second
fundamental form has relative rank k at each point then M is immersed as a rank k
cylinder. Thus the relative rank of the second fundamental form of a submanifold
of Rn is a measure of the number of independent directions in which M is curving
in Rn.

9.7 It is possible to compute the relative rank of h ∈ II(V0) (resp. H ∈ EII(T ))
in a straight forward manner. Consider the components [hα

ij ] (resp. [Hα
ij ]) of h
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(resp. H) as a p(n− p) by p (resp. n2 by n) matrix with rows indexed by the pairs
(α, i) 1 ≤ i ≤ p; p + 1 ≤ α ≤ n (resp. 1 ≤ i, α ≤ n) and columns indexed by j with
1 ≤ j ≤ p (resp. 1 ≤ j ≤ n). Then the relative rank of h (resp. H) is the same
as the rank of the matrix [hα

ij ] (resp. [Hα
ij ]). To see this note that the components

of h in the basis e1, . . . , ep are (hα
i1, . . . , hα

ip). Thus the columns of [hα
ij ] span the

space
∑n

α=p+1 Image(hα) which shows the rank of [hα
ij ] is as claimed. The same

argument proves the claim for [Hα
ij ]. The definition of the relative rank and the

definitions of w2l(h) and w2l(H) as the sum of determinants of 2l by 2l submatrices
of [hα

ij ] and [Hα
ij ] implies the following;

9.8 Proposition. The polynomial, w2l on II(V0) (resp. on EII(T )) is invariant
under O(V0) × O(V ⊥0 ) (resp. O(T )) and if h ∈ II(V0) (resp. H ∈ EII(T )) has
relative rank less than 2l then

(9-l0) w2l(h) = 0, w2l(H) = 0

Our characterization of the polynomials is a converse of the last proposition.

9.9 Theorem. Let P be a non-zero polynomial on II(V0) such that
(a) P is homogeneous of degree k
(b) P is invariant under O(V0)×O(V ⊥0 )
(c) P(h) = 0 for all h ∈ II(V0) with

relative rank(h) < k.

Then k is even, say k = 2l, and P is a constant multiple of w2l.

9.10 Remark. The theorem implies, using the terminology of the introduc-
tion, if P is an invariant polynomial defined on the second fundamental forms of
p dimensional submanifolds which is homogeneous of degree k and vanishes iden-
tically on the second fundamental forms of the cylinders of rank less than k then
k = 2l and P = cw2l for some real number c. This gives a more or less geometric
characterization of the polynomials w2l.

9.11 Lemma. Let Mm,n be the space of m by n matrices and let P be a homo-
geneous polynomial of degree k on Mm,n that vanishes on all elements of Mm,n of
rank less than k. Then P is a linear combination of the polynomials Di1...ik

j1...jk
for

some 1 ≤ i1 < · · · ik ≤ m, 1 ≤ j1 < · · · < jk ≤ n where

Di1...ik
j1...jk

(X) = det

Xi1j1 . . . Xi1jk
...

. . .
...

Xikj1 . . . Xikjk


and X = [Xij].

Proof. The polynomialP will be a linear combination of terms (Xi1j1)
a1 · · · (Xiljl)

al

with a1 + · · ·+ al = k and at ≥ 1. We claim the coefficient of such a term is zero
unless each at = 1 or, what is the same thing, unless l = k. To see this let
M(λ1, . . . , λk) be the matrix with λt in the (it, jt)-th place and zero in all other
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entries. When l < k this matrix always has rank less than k. Thus the polyno-
mial that sends (λ1, . . . , λl) to P(M(λ1, . . . , λl)) vanishes identically. Therefore the
coefficient of (Xi1j1)

a1 · · · (Xiljl)
al vanishes.

This implies P is a linear combination of terms of the form Xi1j1 · · ·Xikjk . We
now claim the coefficient of any such term is zero unless i1, . . . , ik are all distinct
and also j1, . . . , jk are all distinct. This time let M(λ1, . . . , λk) be the matrix with
λt in the (it, jt)-th place and all other entries zero. If i1, . . . , ik are not all distinct
then this matrix will have at most k−1 nonzero rows and thus its rank is less than
k. Therefore P(M(λ1, . . . , λk)) ≡ 0 and so the coefficient of Xi1j1 · · ·Xikjk must
vanish. A similar argument works in the case j1, . . . , jk are not distinct.

Therefore the nonzero terms of P are each of the form (constant)Xi1j1 · · ·Xikjk

with i1 < · · · < ik and j1, . . . , jk distinct. It follows that P can be written as

(9-12) P(X) =
∑

i1<···<ik
j1<···<jk

Pi1...ik
j1...jk

(X)

where
Pi1...ik

j1...jk
(X) =

∑
σ

Ci1...ik
σ(j1)...σ(jk)Xi1σ(j1) · · ·Xikσ(jk)

and the sum is over all permutations of j1, . . . , jk. For each i1 < · · · < ik and
j1 < · · · < jk and each k × k matrix A = [ast] let M(A) be the m× n matrix with
ast in the (is, jt)-th place and zero in all other places. From the last two equations
it follows P(M(A)) = Pi1...ik

j1...jk
(M(A)) The rank of M(A) is the same as the rank of

A and therefore P (M(A)) vanishes if two rows of A are equal. Also, from equation
(9-13), it is clear that P (M(A)) is a k linear function of the rows of A. But it is well
known that the only functions on the k by k matrices that are k linear as a function
of the rows and vanish whenever two rows are the same are the constant multiples
of the determinant. Restated this implies that Pi1...ik

j1...jk
is a constant multiple of

Di1...ik
j1...jk

. Using this in (9-12) implies the lemma.

9.12 We now return to the proof of theorem 9.9. For pairs (α1, i1), . . . , (αk, ik)
and j1, . . . , jk define

(9-14) D
(α1,i1)...(αk,ik)
j1...jk

(h) = det

hα1
i1j1

. . . hα1
i1jk

...
. . .

...
hαk

j1
. . . hαk

ikjk


Then the last lemma and the remarks in paragraph 9.7 imply

(9-15) P(h) =
∑

(α1,i1)<···<(αk,ik)
j1<···<jk

C
(α1,i1)...(αk,i1)
j1...jk

D
(α1,i1)...(αk,i1)
j1...jk

(h)

where (α, i) < (β, j) iff i < j or i = j and α < β. We now wish to find the
C

(α1,i1)...(αk,i1)
j1...jk

’s by evaluating P on particular choices of the h’s. In doing this
it is much easier if we do not have to assume that h is symmetric. Therefore let
B(V0) be the vector space of all bilinear maps from V0 × V0 to V0. If h ∈ B(V0)
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define the components hα
ij of h by equation (8-7) and the relative rank of h to be

the rank of the matrix [hα
ij ] where rows are indexed by pairs (α, i) and columns by

j. Clearly II(V0) is a subspace of B(V0). We now claim that P can be extended to
a polynomial P̂ on B(V0) That is:

(a) homogeneous of degree k on B(V0),
(b) vanishes on elements of B(V0) of relative rank less than k,
(c) P̂ is invariant under the action of O(V0)×O(V ⊥0 ), and
(d) P̂(h) = P(h) for all h ∈ II(V0).

To see this note the polynomials D
(α1,i1)...(αk,ik)
j1...jk

given by (9-14) make sense as
polynomials on B(V0). Therefore we can extend P to B(V0) by the formula (9-15)
and the resulting polynomial on B(V0) will satisfy (a), (b), and (d). The group
O(V0) × O(V ⊥0 ) is compact and its action on B(V0) preserves relative rank and
leaves the subspace II(V0) invariant. Therefore we can average over O(V0)×O(V ⊥0 )
to get a polynomial P̂ on B(V0) that satisfies (a), (b), (c) and (d). We drop the
“hat” over P̂ and just write P. Using the last lemma again we can assume that P
is defined on B(V0) and is of the form given by (9-15).

We now show that C
(α1,i1)...(αk,ik)
j1...jk

= 0 unless {i1, . . . , ik} = {j1, . . . , jk}. Toward
this end fix (α1, i1), . . . , (αk, ik) and j1, . . . , jk. For each k × k matrix A = [ast]
let h(A) be the element of B(V0) with components defined by h(A)αs

isjt
= ast and

all other components zero. Then in the expansion (9-15) all but one of the terms
vanishes so that

P(h(A)) = C
(α1,i1)...(αk,ik)
j1...jk

D
(α1,i1)...(αk,ik)
j1...jk

(h(A))

= C
(α1,i1)...(αk,ik)
j1...jk

det(A).

Now use the invariance of P under O(V0). Let ρ be the element of O(V0) such that
ρej = εjej for 1 ≤ j ≤ p and εj = ±1 to be chosen later. Then using equation (8-7)
it follows that if hα

ij are the components of h then the components of ρh are

(ρh)α
ij = εiεjh

α
ij

Let Ik be the k by k identity matrix. If {i1, . . . , ik} 6= {j1, . . . , jk} then there is a
js ∈ {j1, . . . , jk} with js /∈ {i1, . . . , ik}. Let εj = +1 for j 6= js and εj = −1. Then
by the last equation

(ρh)(Ik) = h(I ′k)

where I ′k is Ik with the s-th diagonal element replaced by −1 and all other entries
unchanged. Then the last three equations and the invariance under O(V0) imply

C
(α1,i1)...(αk,ik)
j1...jk

= P(h(I ′k)) = P(h(Ik)) = −C
(α1,i1)...(αk,ik)
j1...jk

and therefore this coefficient vanishes when {i1, . . . , ik} 6= {j1, . . . , jk}.
The invariance of P under O(V0) implies that for fixed {i1, . . . , ik} and {j1, . . . , jk}

the coefficients C
(α1,i1)...(αk,ik)
j1...jk

are symmetric functions of α1, . . . , αk (any permu-
tation of the vectors ep+1, . . . , en can be done by an orthogonal matrix). Using this
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along with the fact that C
(α1,i1)...(αk,ik)
j1...jk

vanishes when {i1, . . . , ik} 6= {j1, . . . , jk}
implies that equation (9-15) can be rewritten as

(9-16) P(h) =
∑

α1,...,αk
i1<···<ik

C
(α1,i1)...(αk,i1)
i1...ik

D
(α1,i1)...(αk,i1)
i1...ik

(h)

Fix β1, . . . , βk and for each j1 < · · · < jk let h(j1, . . . , jk) be the element of B(V0)
with components h(j1, . . . , jk)βs

jsjs
= 1 for 1 ≤ s ≤ k and all other components zero.

Then in the expansion (9-16) for P(h(j1, . . . , jk)) all but one term is zero and

D
(β1,j1)...(βk,jk)
j1...jk

(h(j1, . . . , js)) = 1.

Therefore
P(h(j1, . . . , jk)) = C

(β1,j1)...(βk,jk)
j1...jk

Given any other set 1 ≤ j′1 < · · · < j′k ≤ p then there is an element ρ of O(V0)
with

ρh(j1, . . . , jk) = h(j′1, . . . , j
′
k)

this is because every permutation of the vectors e1, . . . , ep can be realized by an
element of O(V0). The last two equations and the invariance of P under O(V0) im-
plies C

(β1,j1)...(βk,jk)
j1...jk

= C
(β1,j′1)...(βk,j′k)
j′1...j′k

and thus these coefficients are independent
of j1, . . . , jk. Therefore equation (9-16) can be rewritten

P(h) =
∑

i1<···<ik
α1,...,αk

Cα1,...,αkD
(α1,i1)...(αk,ik)
i1...ik

(h)

=
1
k!

∑
i1,...,ik

α1,...,αk

Cα1,...,αkD
(α1,i1)...(αk,ik)
i1...ik

(h)

=
1
k!

∑
j1,...jk
i1,...,ik

α1,...,αk

δi1...ik
j1...jk

hα1
i1j1

hα2
i2j2
· · ·hαk

ikjk
(9-17)

For each i, j with 1 ≤ i, j ≤ p define a vector hij ∈ V ⊥0 by hij = h(ei, ej). Then
P(h) can be viewed as a polynomial in the components of the p2 vectors hij . The
invariance of P under O(V0) implies, by the first main theorem on vector invariants
for the orthogonal group (see [22] page 53), that P is a polynomial in the inner
products

〈hij , hst〉 =
n∑

α=p+1

hα
ijh

α
st

Whence the degree of P must be even, say k = 2l , and in the sum in (9-17) the
upper indices in hα1

i1j1
· · ·hαk

ikjk
must be contracted in pairs. This last fact implies

that Cα1,...,αk is independent of α1, . . . , αk therefore (9-17) becomes

P(h) = (Constant)
∑

i1,...,i2l
j1,...,j2l
α1,...,αl

δi1,...,i2l
j1,...,j2l

l∏
t=1

(hαt
i2t−1j2t−1

hαt
i2tj2t

).
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This completes the proof of the theorem
9.13 Before going on to the proofs of the Weyl tube formula and the Chern-

Federer kinematic formula in the next section we give two lemmas, the first of which
will be used in the tube formula and the second used in the kinematic formula.

9.14 Lemma. If A and B are l × l matrices and the rank of A is less than k
then the coefficient of λj in det(λA + B) vanishes for j ≥ k.

9.15 Lemma. Let H1, H2 ∈ EII(T ) and assume that the relative rank of H1 is
less than 2k Then for l > k the coefficient of λj in w2l(λH1 + H2) vanishes for
j ≥ 2k.

9.16 Proofs. In 9.14 first assume det(B) 6= 0. Then det(λA+B) = det(B) det(λB−1A+
I). The matrix B−1A has rank less than k and therefore at least l − k + 1 of the
eigenvalues of B−1A are zero. Whence the result follow from the Cayley-Hamilton
theorem. The restriction det(B) 6= 0 is removed by a straight forward continuity
argument.

To prove 9.15 use the form of the formula for w2l(λH1 + H2) that expresses it
as a linear combination of determinants of 2l × 2l matrices. Then the remarks in
paragraph 9.7 show that 9.15 reduces to 9.14.

10. The Weyl tube formula and the Chern-Federer kinematic formula.

10.1 In this section we return to the notation of paragraph 8.1, that is G/K is
the n dimensional simply connected manifold of constant curvature c and G is the
full isometry group of G/K. For 0 ≤ 2l ≤ n let w2l be the polynomial defined on
EII(T (G/K)o) in definition 9.3. Then for each compact submanifold M of G/K
(possibly with boundary) define µ2l(M) to be the integral invariant

µ2l(M) = Iw2l(M)

=
∫

M

w2l(HM
x ) ΩM (x)

=
∫

M

w2l(hM
x ) ΩM (x)(10-1)

where HM
x is the extended second fundamental form, hM

x is the second fundamental
form of M at x and the equality between the second and third lines follows from
equation (9-5). This shows that µ2l can be considered an integral invariant in
the sense of paragraph 4.6 (defined in terms of the second fundamental form of a
submanifold on which G is transitive on the set of tangent spaces) or in the sense
of paragraph 4.9 (defined in terms of the extended second fundamental form).

The invariants µ2l were introduced by Hermann Weyl in his famous paper [21] on
the volume of tubes in Euclidean space. To be specific let M be a closed compact
imbedded p dimensional submanifold of Rn and let τrM be the tube of radius r
about M , that is τrM is the set of points at a distance at most r from M . Then
Weyl proved that for small r

(10-2) Vol(τrM) =
∑

0≤2l≤p

γ(n, p, l)µ2l(M)rn−p+2l.
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where the γ(n, p, l)’s are constants only depending on the indicated numbers and
which were given explicitly by Weyl.

10.2 We sketch a proof of Weyl’s formula based on the characterization of the
µ2l’s given in the last section. Locally along M choose an orthonormal moving
frame so that e1, . . . , ep span the tangent space to M and ep+1, . . . , en span the
normal space to M . Let hM be the second fundamental form of M in Rn and for
p + 1 ≤ α ≤ n let (hM

x )α be the linear map on the tangent space to M at x given
by 〈(hM

x )αX, Y 〉 = 〈hM
x (X, Y ), eα〉 for all X, Y ∈ TMx. Then a calculation, which

Weyl informs us is “hardly . . . more than what could have been accomplished by
any student in a course of calculus”, shows that

(10-3) Vol(τrM) =
∫

M

P(hM
x ) ΩM (x)

where P is the polynomial defined on II(TMX) (the symmetric bilinear maps from
TMx × TMx to T⊥Mx) by

(10-4) P(h) =
∫

t2p+1+···+t1n≤r2
det

(
I +

n∑
α=p+1

tαhα

)
dtα · · ·dtn

where I is the identity map on TMx. (See the formula for V (a) on page 464 of
[21]). Define new polynomials P0, . . . ,Pp on II(TMx) by

(10-5)
∫

x2
p+1+···+x2

n≤1

det

(
I + λ

n∑
α=p+1

xαhα

)
dxp+1 · · ·dxn =

p∑
j=0

λjPj(h)

Then each Pj is homogeneous of degree j. If A = [aαβ], p + 1 ≤ α, β ≤ n is an
n−p by n−p orthogonal matrix then a change of variable in the integral on the left
of (10-5) shows that this integral, and thus the polynomials Pj , are unchanged by
replacing each hα by

∑
β aαβhβ . This shows that Pj is invariant under O(T⊥Mx).

Elementary properties of the determinant show that if ρ ∈ O(TMx) then replacing
each hα by ρhαρ−1 in (l0-5) leaves the left side of (l0-5) unchanged. This shows that
Pj is also invariant under O(TMx). Lemma 9.14 and the definition of relative rank
implies that Pj(h) = 0 if the relative rank of h is less than j. Therefore theorem
9.9 implies Pj = 0 if j is odd and if j = 2l is even that

P2l = γ(n, p, l)w2l

for some constant γ(n, p, l). A change of variable in (10-4) implies

P(h) =
∑

0≤2l≤p

P2l(h)rn−p+2l

Using these last two equations in (10-3) proves Weyl’s formula (10-2). The constants
γ(n, p, l) can be computed by letting hp+1 = I, hp+2 = · · · = hn in (l0-4).

Recall that w2l(hM
x ) can be expressed in terms of the Rst

ij (h
M
x ) which are the

components of the curvature tensor of M . Therefore Vol(τrM) is an intrinsic in-
variant of M and thus it is the same for all isometric imbeddings of M into Rn. As
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is well known, this remarkable fact was used by Allendoerfer and Weil [1] to give
the first proof of the generalized Gauss-Bonnet theorem which says that if M is a
compact oriented Riemannian manifold of even dimension 2l then

(10-6) µ2l(M) = (Constant)χ(M)

where χ(M) is the Euler characteristic of M . Their proof has been updated by
Griffiths ([12] page 509 paragraph (iv)) gives a proof of (10-6) that has a lot of
geometric appeal.

10.3 We now turn to the kinematic formula of Chern and Federer. Let M be
a compact p dimensional and N a compact q dimensional submanifold of G/K
(possibly with boundary). Assume that 0 ≤ 2l ≤ p + q − n. Then Federer [8] and
Chern [6] proved that

(10-7)
∫

G

µ2l(M ∩ gN) ΩG(g) =
∑

0≤k≤l

C(n, p, q, k, l)µ2k(M)µ2(l−k)(N)

where each constant c(n, p, q, k, l) only depends on the indicated parameters. In
particular the c(n, p, q, k, l) are independent the curvature of G/K. These constants
were first computed in Chern’s paper. Later Nijenhuis [16] found a much more
compact expression for c(n, p, q, k, l) and the reader is refereed to his paper for their
value. Note that here and in Federer’s paper we integrate over the full isometry
group of G/K while Chern only integrates over the group of orientation preserving
isometries. Thus the values of c(n, p, q, k, l) used in (10-7) or in [8] will be twice as
large as those in [6] and [16].

10.4 Actually Chern and Federer only proved (10-7) in the case where G/K =
Rn, the Euclidean space of n dimensions. But by the transfer principle it follows
that (10-7) holds in all spaces of constant sectional curvature.

However it is of interest to give a proof that works in all cases. We now give
such a proof based on the kinematic formula 7.2 and the algebraic result 9.9. By
theorem 7.2 it is enough to prove (using T = T (G/K)o and the identification of K
with O(T ) given in paragraph 8.1) that

Iw2l
O(T )(V0, h1, W0, h2) =

∑
0≤k≤l

c(n, p, q, k, l)w2k(h1)w2(l−k)(h2)

for all h1 ∈ II(V0) and h2 ∈ II(W0). Define polynomials Pj on II(V0)
⊕

II(W0) by

2l∑
j=0

λjPj(h1, h2) = Iw2l
O(T )(V0, λh1, W0, h2)

=
∫

O(T )

w2l

(
λGb−1W0(V0, h1) + GV0(b

−1, b−1h2)
)
σ(V ⊥0 , b−1W⊥

0 ) ΩO(T )(10-9)

where the equality Gb−1W0 (V0, λh1) = λGb−1W0 (V0, h1) has been used.
The polynomial Pj(h1, h2) is homogeneous of degree j in h1 and homogeneous

of degree 2l − j in h2. By the invariance properties of Iw2l
O(T ) given in lemma 6.4
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part (3) it follows that for fixed h1 the polynomial h2 7→ Pj(h1, h2) is invariant
under O(W0) × O(W⊥

0 ) and for fixed h2 that h1 7→ Pj(h1, h2) is invariant under
O(V0)×O(V ⊥0 ).

We now show that the relative rank Gb−1W0(V0, h1) is less than or equal to
the relative rank of h1. Let r be the relative rank of h1. Then by the results in
paragraph 9.6 it follows

(10-10) p− r = dim{u ∈ V0 : h1(u, v) = 0 for all v ∈ V0}

and by equation (9-9) we wish to show

n− r ≥ dim{u ∈ T : Gb−1
∗ W0

(V0, h1)(u, v) = 0 for all v ∈ T}
= dim{u ∈ T : PV0

b−1
∗ W0

h1(Pu, Pv) = 0 for all v ∈ T}(10-11)

But, as P is the orthogonal projection onto b−1W0 ∩ V0 ⊆ V0, Pu = 0 = Pv for
all u, v ∈ V ⊥. Therefore to deduce (10-11) from (10-10) it is enough to prove

dim{u ∈ V0 : PV0

b−1
∗ W0

h1(Pu, Pv) = 0 for all v ∈ V0}
≥ dim{u ∈ V0 : h1(u, v) = 0 for all v ∈ V0}.

But this relation is elementary.
Fix an element h2 ∈ II(W0) and let h1 ∈ II(V0) have relative rank less than j.

Then Gb−1W0(V0, h1) also has relative rank less than j therefore, using lemma 9.15
in equation (10-9), it follows Pj(h1, h2) = 0. Whence all the hypothesis of theorem
9.9 have been verified for the polynomial h1 7→ Pj(h1, h2). Thus 9.9 implies that j
is even, say j = 2k, and that

(10-12) Pj(h1, h2) = P2k(h1, h2) = C(n, p, q, k, l, h2)w2k(h1).

But by easy variants of the arguments just used we see that h2 7→ C(n, p, q, k, l, h2)
is a polynomial on II(W0) which is invariant under O(W0)×O(W⊥

0 ), homogeneous
of degree 2l − 2k that vanishes on elements of II(W0) of relative rank less than
2l − 2k. Therefore another application of theorem 9.9 implies that

(10-13) C(n, p, q, k, l, h2) = C(n, p, q, k, l)w2l−2k(h2).

Using (10-13) in (10-12) and the result of that in (10-9) implies the required
formula (10-8). This completes the proof of the Chern-Federer formula (10-7). To
find the constants C(n, p, q, k, l) let M be the p dimensional unit sphere imbedded in
Rn in the usual way, N the q dimensional sphere of radius a in (10-7) and evaluate
both sides directly. This is a nontrivial calculation and the reader is referred to the
papers of Chern and Nijenhuis cited above.
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Appendix: Fibre integrals and the smooth coarea formula.

In this appendix we give a proof of Federer’s coarea formula for smooth maps
between Riemannian manifolds that avoids the measure theoretic machinery needed
in the case of Lipschitz maps. For the proof in the more general case the reader is
referred to the paper [8] of Federer or to his book [9].

Let Mn+m be a smooth Riemannian manifold of dimension n+m, Nn a smooth
Riemannian manifold of dimension n (we allow the possibility that m = 0) and
f : Mm+n → Nn a smooth map. Recall that x ∈M is a regular point of f if and
only if f∗x : TMx → TNf(x) is surjective and a critical point otherwise. A point y

in N is a regular value of f if and only if every point of f−1[y] is a regular point of
f (and by convention y is a regular value if f−1[y] is empty) and is a critical value
if it is not a regular value. We are guaranteed the existence of regular values by:

Sard’s Theorem. The set of critical values of f has measure zero.

If y is a regular value of f then, by the implicit function theorem, f−1[y] is either
empty or a closed imbedded m dimensional submanifold of M . Therefore if h is
a smooth function on M with compact support the function y 7→

∫
f−1[y] hΩf−1[y]

(set this integral to be zero when f−1[y] is empty) is defined for all regular values
of f and thus almost everywhere on N . The coarea formula gives the integral of
this function in terms of an integral over M involving the Jacobian Jf of f which
we now define.

Jf(x) =


0 if x is a critical point of f,

‖f∗e1 ∧ · · · ∧ f∗en‖
{

if x is a regular value of f and e1, . . . , en

is an orthonormal basis of Kernel(f∗x)⊥.

Thus Jf(x) 6= 0 if and only if x is a regular point of f . If x is a regular point of f
and e1, . . . , en is an orthonormal basis of Kernel(f∗x)⊥ then it can be verified that
Jf(x) is also given by

(A-1) Jf(x) = |ΩN(f∗e1, . . . , f∗en)|

where ΩN is the volume form on N .
The coarea formula is

(A-2)
∫

N

∫
f−1[y]

hΩf−1[y] ΩN (y) =
∫

M

h(x)Jf(x) ΩM(x)

where h is any Borel measurable function defined almost everywhere on M so that
the integral on the right is finite. We will prove this formula in the case h is smooth
with compact support, the general case then follows by a standard approximation
argument.
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To prove (A-2) we first note, by use of a partition of unity, that the problem is
local and thus we can assume that both M and N are oriented. Let M∗ = {x :
Jf(x) 6= 0} be the set of regular points of f . Then clearly∫

M

h(x)Jf(x) ΩM(x) =
∫

M∗
h(x)Jf(x) ΩM∗(x).

By definition y is a regular value of f if and only if f−1[y] = f−1[y] ∩M∗, and by
Sard’s theorem this is true for almost all y ∈ N . Whence∫

N

∫
f−1[y]

hΩf−1[y] ΩN (y) =
∫

N

∫
f−1[y]∩M∗

hΩf−1[y]∩N∗ ΩN (y).

The last two equations show that in proving (A-2) we can replace M by M∗ and
thus assume that every point of M is a regular point of f , and that f−1[y] is an m
dimensional submanifold of M for all y ∈ N for which f−1[y] is not empty.

For each x ∈M it is possible to choose an oriented orthonormal basis e1, . . . , en+m

of TMx in such a way that em+1, . . . , en+m is an orthonormal basis of Kernel(f∗x)⊥ =
T (f−1[y])⊥ (where y = f(x)) such that f∗em+1, . . . , f∗en+m is an oriented basis
of TNy. Then give the submanifold f−1[y] the orientation such that e1, . . . , em

is an oriented basis of T (f−1[y])x. Let σ1, . . . , σn+m be the one forms dual to
e1, . . . , en+m and define an m form ω1 and an n form ω2 on M by

ω1 = σ1 ∧ · · · ∧ σm

ω2 = σm+1 ∧ · · · ∧ σn+m

The forms ω1 and ω2 and the orientation on f−1[y] are defined independently of
the choice of the orthonormal basis e1, . . . , en+m. Also

ω1 ∧ ω2 = ΩM

ω1|f−1[y] = Ωf−1[y] for all y ∈ N(A-3)

From (A-1)

f∗ΩN (em+1, . . . , en+m) = ΩN(f∗em+1, . . . , f∗en+m) = Jf(x)

and as e1, . . . , em ∈ Kernel(f∗),

f∗ΩN(ei1 , . . . , ein) = ΩN(f∗ei1 , . . . , f∗ein) = 0 if some ij ≤ m

The last two equations imply f∗ΩN = (Jf)ω2. This, along with (A-3), give an
infinitesimal version of the coarea formula; if x ∈M , y ∈ f(x) then

Ωf−1[y] ∧ f∗ΩM = ω1 ∧ Jf(x)ω2 = Jf(x) ΩM .

Using this formula and ω1|f−1[y] = Ωf−1[y] proving the coarea formula reduces
to showing ∫

N

∫
f−1[y]

hω1 ΩN (y) =
∫

M

h(x) ω1 ∧ f∗ΩN .

This is implied by the following elementary and well known
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Lemma on fiber integration. Let f : Mn+m → Nn be a submersion of
smooth oriented manifolds, α an m form on M and β an n form on N . Then for
any smooth compactly supported function h on M∫

N

(∫
f−1[y]

hα

)
β(y) =

∫
M

hα ∧ f∗β

The proof of this is straight forward, by the implicit function theorem and a
partition of unity we may assume M = Rn+m, that N is Rn imbedded into M as
the first n coordinates and that f is the projection onto the first n coordinates.
The lemma then just reduces to Fubini’s theorem. Details are left to the reader.
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[17] L. A. Santaló, Integral geometry in Hermitian spaces, Amer. J. Math. 74 (1952), 423-434.
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