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Abstract. The comparison theory for the Riccati equation satis-
fied by the shape operator of parallel hypersurfaces is generalized
to semi–Riemannian manifolds of arbitrary index, using one–sided
bounds on the Riemann tensor which in the Riemannian case cor-
respond to one–sided bounds on the sectional curvatures. Starting
from 2–dimensional rigidity results and using an inductive tech-
nique, a new class of gap–type rigidity theorems is proved for semi–
Riemannian manifolds of arbitrary index, generalizing those first
given by Gromov and Greene–Wu. As applications we prove rigid-
ity results for semi–Riemannian manifolds with simply connected
ends of constant curvature.
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1. Introduction

In Riemannian geometry, the comparison results in terms of sec-
tional curvature of Rauch, Toponogov, Morse–Schoenberg and others
(cf. [7]) are basic tools used to prove results such as the sphere theorem,
the Bonnet–Myers theorem, and the maximal diameter theorem of To-
ponogov. More recently, comparison theorems in terms of the Ricci cur-
vature such as the Bishop–Gromov volume comparison theorem have
played an important role leading to such results as the Chen maximal
diameter theorem, see the wonderful survey article by Karcher [23].

In Lorentzian geometry and semi-Riemannian geometry, on the other
hand, it is well known (cf. [17] and Section 5.3 for a discussion) that the
assumption of even a one–sided bound on sectional curvature defined
as

〈R(X,Y )Y,X〉
〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2

,

implies that the space has constant sectional curvature. Therefore such
bounds are not interesting.

In the general semi-Riemannian setting the natural replacement of
a one side bound on the sectional curvature is

Definition 1.1. We will say that R ≥ K0 or R ≤ K0 if and only if for
all X, Y , the inequalities

〈R(X, Y )Y,X〉 ≥ K0(〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2) ,(1.1)

or

〈R(X, Y )Y,X〉 ≤ K0(〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2)(1.2)

hold.

In case g is positive definite these conditions are equivalent to g hav-
ing sectional curvature bounded from below or above by K0. Assuming
bounds of the form given in this definition we are able to prove “gap
type” rigidity results of the type first proved by Greene and Wu [16]
and Gromov [1]. Our main example of such a result is

Theorem 1.2. Let (M, g) be a geodesically complete semi-Riemannian
manifold of dimension n ≥ 3 and index k with curvature satisfying one
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of the two inequalities R ≥ 0 or R ≤ 0 and assume (M, g) has an end
E with R ≡ 0 on E and π1(E) finite. Then (M, g) is isometric to the
flat model space (Rnk , g0).

In the Lorentzian and Riemannian case we also have rigidity results
for comparison with constant, but non-zero, curvature models, cf. Sec-
tion 5.2. Even in the Riemannian case this leads to a new rigidity
result.

Theorem 1.3. Let (M, g) be a complete Riemannian manifold of di-
mension n ≥ 3 with sectional curvatures ≤ 1. Let B ⊂ Sn \ Sn−1 be a
closed set with Sn \ B connected and let ϕ : Sn \ B → M be a local
isometry. Then ϕ extends to a surjective local isometry ϕ̂ : Sn → M .
Therefore (M, g) is a quotient of Sn by a finite fixed point free group
of isometries.

This result differs from most rigidity theorems for the sphere in that
an upper bound, rather than a lower bound, is given on the curvature.

The proofs of the gap theorems rest on two main ideas. The first
is an extension of the comparison theory for matrix Riccati equations
to the semi-definite setting, cf. Section 3. The second is an inductive
argument involving the use of foliations by parallel hypersurfaces, with
base case given by some 2-dimensional rigidity results, see Section 2.3.
The two are related by the fact that the second fundamental form of a
parallel foliation satisfies the Riccati equation.

1.1. Background. One important class of results in Riemannian ge-
ometry are the “gap type” rigidity theorems. Let us mention a few
examples of model gap results. We do not try to state these results
under the weakest hypotheses. Let (M, g) be a complete connected
Riemannian manifold, isometric to Euclidean Rn in the complement of
a compact set with n ≥ 3.

• Scalar curvature: Assume that (M, g) is spin and has non–
negative scalar curvature. Then (M, g) is isometric to Euclidean
R
n. This follows from the Witten argument for the positive mass

theorem.
• Ricci curvature Assume that (M, g) has non–negative Ricci cur-

vature. Then the conclusion follows from the Bishop–Gromov
volume comparison theorem.
• Sectional curvature If (M, g) has either non–negative or non–

positive sectional curvature, then theorems of Greene and Wu [16]
(for non-negative sectional curvature) and Kasue and Sugahara [24]
(for non-positive sectional curvature) imply (M, g) is isometric to
R
n.
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In each of the above cases there are versions where the assumption
that (M, g) is isometric to the standard space in the complement of
a compact set is replaced by asymptotic assumptions. There are also
versions where the Euclidean space is replaced by constant curvature
or homogeneous spaces. Cf. Sections 4, 5.2, 6.1, and 6.2 for further
discussion.

In the Lorentzian case, the most important rigidity type result is of
course the positive mass theorem of Schoen–Yau and Witten (cf. [33,
39, 30]). Witten’s proof has been generalized to the case of the Bondi
mass by various authors [21], [31], [28].

In the Riemannian case, the dependence of the scalar curvature on
g can be viewed as a scalar elliptic operator acting on the conformal
factor, and the Ricci tensor can be viewed as a quasilinear elliptic
system in terms of the metric tensor. This makes the form of the gap
type rigidity theorems natural, in view of the maximum principle and
unique continuation results which hold for elliptic equations.

In the Lorentzian case, the Ricci and Einstein tensors form hyper-
bolic systems in terms of the metric tensor and the positive mass theo-
rems is closely related to the elliptic constraints induced via the Gauss
and Gauss–Codazzi equations on the extrinsic geometry of spacelike
hypersurfaces. Further, in this case, causality is a powerful organizing
principle in the geometry which shows up for example in the conserva-
tion theorem [18, §4.3] and Theorem 5.13 below.

From the PDE point of view, putting conditions on the whole Rie-
mann tensor constitutes an over determined system, regardless of the
signature. More precisely in normal coordinates centered at a point of
a semi-Riemannian manifold it is possible to express all the derivatives
of order at least two of the metric in terms of the curvature tensor and
its derivatives. Thus the operator that takes a metric to its curvature
tensor behaves very much like an elliptic operator in that it is possible
to bound the second and higher derivatives of the unknown metric in
terms of the curvature tensor. Therefore, one expects bounds on the
Riemann tensor to give gap type rigidity theorems regardless of the
signature, as is shown to be the case in the present paper.

In the Lorentzian case, the one-sided curvature bounds used in this
paper implies conditions on the timelike sectional curvatures in the
sense of [3]. For example, R ≥ 0, implies nonpositive timelike sectional
curvatures in the sense of [3]. The condition R ≥ 0 also implies the
strong energy condition, i.e. that Ric(X,X) ≥ 0 for timelike vectors
X. In this situation, the Lorentzian splitting theorems of Galloway, Es-
chenburg, Newman and others [13] would apply if we add the condition
of existence of a timelike ray in the future of a maximal hypersurface,
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cf. [12, Theorem C]. This would then easily imply the Lorentzian case
of Theorem 4.2. Therefore it is important that our assumptions do not
include the existence of a timelike ray.

Further, in view of the fact that R ≥ 0 implies the strong energy con-
dition, under the additional assumption of global hyperbolicity, Theo-
rem 4.2 would in the Lorentzian case follow easily from the singularity
theorems in Lorentzian geometry, cf. [18]. Therefore we also stress that
our conditions do not include global hyperbolicity.

Let us emphasize that the conditions of timelike geodesic complete-
ness and global hyperbolicity are not at all closely related. As an
illustration of this fact, let us mention that anti–de Sitter space is
timelike geodesically complete but not globally hyperbolic, while the
“strip” Sn1 (−1), cf. Definition 2.6, which is a subset of anti–de Sitter
space, is globally hyperbolic, but not timelike geodesically complete.
The assumption of timelike geodesic completeness is thus natural in
the context of anti–de Sitter space.

1.2. Overview of this paper. Section 2 contains the basic results
and formulas we will be using. Almost all of this is well known, but is
included to fix notation and as the details of writing the Riemannian
and Lorentzian space forms as warped products is quite important to
many of our rigidity results.

Section 3 contains the generalization of the basic comparison theory
to the general semi-Riemannian setting. Most of the results are stated
as results about systems of ordinary differential equations.

Section 4 gives the rigidity results for flat semi-Riemannian manifolds
in terms of one sided bounds on the curvature tensor.

Section 5 has rigidity results for the one sided bounds on the sec-
tional curvature when the model space has non-zero constant sectional
curvature. The results in this section only apply to Riemannian and
Lorentzian manifolds.

Section 6 contains various applications of the rigidity results to man-
ifolds that have an end of constant curvature. This involves a classifi-
cation of the ends of constant curvature and finite fundamental groups
and which is new in the case of indefinite metrics. There are also rigid-
ity results for semi-Riemannian metrics on quotients of space forms.

Acknowledgements: E. Calabi [6] supplied us with Theorem 2.12
which replaces a weaker ad hoc version. Much of the work on this paper
was done while the second author (RH) was on sabbatical leave from
the University of South Carolina at the Royal Institute of Technology
in Stockholm. He would like to express his thanks to both schools.
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2. Preliminaries

2.1. Basic Formulas and Results. The index of a symmetric bilin-
ear form g( , ) is the maximal dimension of a subspace on which it is
negative definite, or equivalently, the number of negative eigenvalues.
If M is a smooth manifold then a semi-Riemannian metric ḡ on M is
a smooth (0, 2) tensor which is everywhere non-degenerate. The in-
dex of ḡ is locally constant so if M is connected then the index k of
ḡ is well defined. Thus the semi-Riemannian manifolds of index 0 are
the Riemannian manifolds and the ones of index 1 are the Lorentzian
manifolds. Unlike the Riemannian case not every manifold need have
a semi-Riemannian metric of index k. A necessary and sufficient con-
dition for a smooth manifold M to have a semi-Riemannian metric of
index k is that the tangent bundle T (M) have a rank k subbundle E.
For M compact this is proven in [36, Theorem 40.11], but the exten-
sion to noncompact manifolds is easy. In particular, every noncompact
manifold has a Lorentzian metric.

Let M be an n dimensional semi-Riemannian manifold with semi-
Riemannian metric ḡ( , ) = 〈 , 〉 of index k. An immersed submanifold
M ofM of dimension m is called non-degenerate if the restriction of the
semi-Riemannian metric 〈 , 〉 to T (M) is non-degenerate at each point
of M . The normal bundle to M inM will be denoted by T⊥(M). This
is the bundle over M so that at each x ∈ M the fiber {Y ∈ T (M)x :
〈Y,X〉 = 0 for all X ∈ T (M)x}. There is a direct sum decomposition

T (M)x = T (M)x ⊕ T⊥(M)x

at a point x ∈M if and only if the restriction of 〈 , 〉 to T (M)x is non-
degenerate. This also equivalent to the restriction of 〈 , 〉 to the normal
bundle T⊥(M) being non-degenerate. For the rest of this section we
will assume that the induced metric on M is non-degenerate.

Let ∇ be the metric connection on Mn and let ∇ be the metric
connection on M . These are related by

∇XY = ∇XY + h(X, Y ),

where X, Y are smooth vector fields tangent to M , and h( , ) is the
vector valued second fundamental form of M in M . Thus h( , ) is a
symmetric bilinear map from T (M)×T (M)→ T⊥(M). If ξ is a smooth
section of T⊥(M) over M and X is a smooth vector field tangent to M
then

∇Xξ = ∇⊥Xξ − AξX,
where ∇⊥Xξ ∈ T⊥(M) and AξX ∈ T (M). Then ∇⊥ is the connection
in the normal bundle, and Aξ is the Weingarten map or shape operator
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in the normal direction ξ. This is related to the second fundamental
form by

〈AξX, Y 〉 = 〈h(X, Y ), ξ〉.
Thus the symmetry of h( , ) implies that for any ξ ∈ T⊥(M) the linear
map Aξ : T (M) → T (M) is self-adjoint with respect to the inner
product 〈 , 〉.

Let R be the curvature tensor of ∇ where our choice of sign on the
curvature tensor is

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

This is related to the curvature tensor of ∇ by the Gauss curvature
equation

〈R(X, Y )Z,W 〉 = 〈R(X, Y )Z,W 〉+ 〈h(X,W ), h(Y, Z)〉 − 〈h(X,Z), h(Y,W )〉.
(2.1)

When M is a hypersurface with unit normal field ξ this can be rewritten
in terms of the Weingarten map as

〈R(X, Y )Z,W 〉 = 〈R(X, Y )Z,W 〉+ 〈ξ, ξ〉 (〈AξX,W 〉〈AξY, Z〉 − 〈AξX,Z〉〈AξY,W 〉) .
(2.2)

The normal bundle has two unit sphere bundles S⊥+1(M) and S⊥−1(M).
Letting ε be either ε = +1 or ε = −1 they are defined by

S⊥ε (M) = {u ∈ T⊥(M) : 〈u, u〉 = ε}.
Each of these is a bundle π : S⊥ε (M)→M with fiber diffeomorphic to
the “sphere” {u ∈ T⊥(M)x : 〈u, u〉 = ε}.

Let π : T⊥(M) → M be the projection and for v ∈ T⊥(M) let
Vv := ker(π∗v) be the vertical vectors at v. There is a natural identifi-
cation of Vv with the subspace T⊥(M)πx of T (M)πv. In a vector space
the tangent spaces T (V )x are naturally identified with V . The fibers
π−1[x] = T⊥(M)x of π are vector spaces and Vv = T⊥(M)πx ⊂ T (M)πv.
Let Hv be the space of horizontal vectors at v. A curve γ : (a, b) →
T⊥(M) is horizontal iff it it is parallel along its projection c = π ◦ γ.
That is it satisfies ∇⊥c′(t)γ = 0. A vector X tangent to T⊥(M) is hor-
izontal iff it is tangent to a horizontal curve. The space Hv can be
identified with T (M)πV by the map π∗|Hv . These identifications com-
bine to give T (T⊥(M))v = Hv ⊕ Vv = T (M)πv ⊕ T⊥(M)v = T (M)πv.
Under this identification for u ∈ S⊥ε (M) the tangent space T (S⊥ε )u is
identified with u⊥ ⊂ T (M)πu.

Let exp be the exponential map defined w.r.t. ∇ and define a func-
tion fr : S⊥ε → M by M(r) := fr[S

⊥
ε ]. Then M(r) is the tube of

radius r (and sign ε) about M . Let u ∈ T (M)x and let γ(t) = exp(tu)
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be the geodesic that fits u. Identify all the tangent spaces T (M)γ(t)

along γ with T (M)x by parallel translation along γ. For each t let
Ru(t) : T (M)x → T (M)x be the linear map

Ru(t)X = Rγ(t)(X, u)u = Rγ(t)(X, γ
′(t))γ′(t),

where γ′(t) and u are identified as γ′ is parallel along γ. For each t
the linear map Ru(t) is self-adjoint (i.e. 〈Ru(t)X,Y 〉 = 〈X,Ru(t)Y 〉).
Also for each t, Ru(t)u = R(u, u)u = 0. Thus from elementary linear
algebra the subspace u⊥ is invariant under Ru(t).

Definition 2.1. For u ∈ S⊥ε (M) let P : u⊥ → T (M)πu and P⊥ : u⊥ →
T⊥(M)∩u⊥ be the orthogonal projections. Define a field of linear maps
Fu(t) along γ(t) = exp(tu) by the initial value problem:

F ′′u (t) + Ru(t)Fu(t) = 0, Fu(0) = P, F ′u(0) = −AuP + P⊥,

where “prime” denotes the covariant derivative by γ′(t) (i.e. ′ = ∇γ′)
and Au is the Weingarten map of M in the direction u.

Proposition 2.2. With the identification of T (S⊥ε (M)) with u⊥ given
above, the derivative of fr at u is

fr∗u = Fu(r).

Proof. Just as in the Riemannian case. Cf. [19].

If Fu(r) is non-singular then the tube M(r) is a smooth immersed
hypersurface at fr(u) = exp(ru). The outward normal at this point is

η(fr(u)) =
d

dt
exp(tu)

∣∣∣∣
t=r

.(2.3)

At these smooth points of M(r) the Weingarten map or of M(r) with
respect to this normal is the linear map Su(r) : T (M(r))fr(u) → T (M(r))fr(u)

given by
Su(r)X = −∇Xη.

Proposition 2.3. Identify T (M(r))fr(u) with the subspace u⊥ of T (M)πu
by parallel translation along t 7→ exp(tu). Then the Weingarten map
is given by

Su(r) = −F ′u(r)Fu(r)−1.(2.4)

At points where Fu(t) is non-singular this satisfies the Matrix Riccati
equation

S ′u(t) = Su(t)
2 + Ru(t)(2.5)

Proof. Follows from the last proposition by a calculation. Cf. [19].
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The mean curvature of M in the direction ξ is

Hξ =
1

n− 1
trace(Aξ).(2.6)

and we denote by Hu(r) the mean curvature of M(r) at fr(u). If A is
an (n− 1)× (n− 1) symmetric matrix, then by the Cauchy-Schwartz
inequality (trace(A))2 ≤ (n − 1) trace(A2) with equality if and only if
A = cI for some scalar c. This leads to:

Corollary 2.4. Assume thatM is Riemannian or Lorentzian, and that
M is a space like hypersurface in M (so that the induced metric on
M(r) is Riemannian). Let x ∈ M , η(x) the normal to M at x, S(t)
the Weingarten map of M(t) along γ(t) = exp(tη(x)) and H(t) = 1

n−1

the mean curvature.

H ′(t) ≥ (n− 1)H2(t) + trace(Ru(t))(2.7)

If equality holds at t0 > 0 then Aη(x) = S(0) = cI and R(t) = r(t)I for
0 ≤ t ≤ t0.

A fact that will be used repeatedly in the sequel is that along γ(t) =
exp(tu)

Ric(γ′(t), γ′(t)) = trace(Ru(t)).(2.8)

We close this section with a result about when local isometries be-
tween semi-Riemannian manifolds are surjective.

Proposition 2.5. Let M be a geodesically complete semi-Riemannian
manifold and f : M → N a local isometry where N is a connected semi-
Riemannian manifold of the same dimension as M . Then f is surjective
and N is also geodesically complete.

Proof. As f is a local diffeomorphism the image f [M ] is open. Thus
it is enough to show that f [M ] is closed. Let y be a point in the
closure of f [M ]. Then as the exponential map exp : TNy → N maps
a neighborhood of 0 ∈ TNy onto a neighborhood of y in N there is
a geodesic segment c : [0, δ] → N so that c(0) = y and c(δ) ∈ f [M ].
Using that f is a local isometry we see there is a geodesic γ : R→ M
so that (f ◦ γ)′(0) = c′(δ). But then f ◦ γ : R → N is a geodesic
and by the uniqueness of solutions to the geodesic equation we have
(f ◦ γ)(−δ) = c(0) = y. Thus y = f(γ(−δ)) ∈ f [M ]. Therefore f [M ]
contains all its limit points and thus it is closed. This completes the
proof that f is surjective.

Let c : (−δ, δ) → N be a small geodesic segment. Then as f is
surjective and M geodesically complete, there is a geodesic γ : R→M
so that f ◦γ extends c to all of R. Thus N is geodesically complete.
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2.2. Warped Products and Model Spaces. Let K0 ∈ R and let
k be an integer, 0 ≤ k ≤ n. We will denote by Rnk(K0) the simply
connected model space of sectional curvature K0 and index k and we
will use gRnk (K0) to denote its metric. In the Riemannian case (k = 0) the
model spaces are either Euclidean space, spheres or hyperbolic spaces.
In the Lorentzian case, the non-flat model spaces are de Sitter (K0 > 0)
and anti–de Sitter spaces (K0 < 0).

Let n ≥ 3. Then Rn1 (1) is the hypersurface of Rn+1
1 given by

−x2
1 +

n+1∑
i=2

x2
i = 1,(2.9)

with its induced metric. This is known as de Sitter space and is diffeo-
morphic to Sn−1 × R. Similarly, the hypersurface

−x2
1 − x2

2 +
n+1∑
i=3

x2
i = 1(2.10)

of Rn2 with its induced metric has sectional curvature −1 and index 1
and is diffeomorphic to S1×Rn−1. The universal cover of this space is
known as anti–de Sitter space and will be denoted by Rn1 (−1).

Some of the model spaces we will consider are best represented as
warped products of a hypersurface with the real line. For completeness
we include the basic formulas in the geometry of warped products.

Let Mn−1 be a semi-Riemannian manifold with metric g( , ), and
(a, b) be an open interval in R, and w a positive real valued function on
(a, b). Define a semi-Riemannian metric ḡw( , ) onMn = Mn−1 × (a, b)
by

ḡw = w(t)2g + ε(dt)2,(2.11)

where ε = +1 or ε = −1. A vector field X on Mn−1 can also be
viewed as a vector field on M in the natural way. Let ∇ be the semi-
Riemannian connection of g and ∇ the semi-Riemannian connection of
ḡw. If X, Y are vector fields on M then the connections ∇ and ∇ are
related by

∇XY = ∇XY −
εw′ḡw(X, Y )

w
∂t, ∇X∂t = ∇∂tX =

w′

w
X, ∇∂t∂t = 0.

The vector field η := ∂t is a unit normal vector to the hypersurfaces
Mn−1 × {c}. From the above formulas the second fundamental form h
and the Weingarten map S of these hypersurfaces are given by

h(X, Y ) = −εw
′

w
gw(X,Y )∂t, SX = −w

′

w
X.(2.12)
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The curvature R of M and the curvature R ofM are related by

R(X, ∂t)∂t = −w
′′

w
X,

so that

ḡw(R(X, ∂t)∂t, X) = −w
′′

w
ḡw(X,X) = −εw

′′

w
ḡw(X,X)ḡw(∂t, ∂t).

Therefore

Ric(∂t, ∂t) = −(n− 1)
w′′(t)

w(t)
.

Using the Gauss curvature equation (2.2) there is also the relation

ḡw(R(X, Y )Y,X) = ḡw(R(X, Y )Y,X) + ε

(
w′

w

)2

(ḡw(X,X)ḡw(Y, Y )− ḡw(X, Y )2).

(2.13)

If (M, g) has constant sectional curvature K0 then

g(R(X,Y )Y,X) = K0(g(X,X)g(Y, Y )− g(X, Y )2),

so that ḡw(R(X,Y )Y,X) = (K0/w
2)(ḡw(X,X)ḡw(Y, Y ) − ḡw(X, Y )2).

Using this in equation (2.13) leads to

ḡw(R(X,Y )Y,X) =
K0 − ε(w′)2

w2
(ḡw(X,X)ḡw(Y, Y )− ḡw(X, Y )2)

for vector fields X, Y tangent to M .
The special cases we need are summarized in the following table.

The first column gives the isometry class of the factor M , the next two
columns give the warping function w where the parameter α is defined
by the equation in the second column. The metric ḡw is then given by
equation (2.11) with ε as in the fourth column. The isometry class of
the warped productM is then given in the fifth column. The last two
columns give the isometry class of the hypersurface Mt := M×{t} and
the Weingarten map St of Mt with respect to the normal η := ∂t.

Two entries in this table require some explanation. The first is
the second row which is the warped product of the Euclidean space
R
n−1 with its standard metric g = |dx|2 and w(t) = e−t so that

ḡw = e−2t|dx|2 − dt2. If we do the change of variable y = e−t, then
the metric becomes

ḡw =
|dx|2 − dy2

y2

defined on the upper half space {(x, y) ∈ Rn−1 × R : y > 0} (where
|dx|2 := dx2

1 + · · · + dx2
n−1 is the standard metric on Rn−1). This is

diffeomorphic to Rn and thus can not be all of the de Sitter space
R
n
1 (+1) as de Sitter space is diffeomorphic to Sn−1 ×R. Therefore the
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Table 1.

M α w ε M Mt St

R
n−1
0 (0) — e−t +1 R

n
0 (−1) R

n
0 (0) I

R
n−1
0 (0) — et −1

Part of

R
n
1 (+1) R

n−1
0 (0) −I

R
n−1
0 (K0),

K0 ≥ 1

cos(α)

=
1√
K0

cos(t+ α)
cos(α)

+1 R
n
0 (+1) R

n−1
0

(
+1

cos2(t+ α)

)
tan(t+ α)I

R
n−1
0 (K0),

−1 ≤ K0 < 0

cosh(α)

=
1√
|K0|

cosh(t+ α)
cosh(α)

+1 R
n
0 (−1) R

n−1
0

(
−1

cosh2(t+ α)

)
− tanh(t+ α)I

R
n−1
0 (K0),

0 < K0 ≤ 1

cosh(α)

=
1√
K0

cosh(t+ α)
cosh(α)

−1 R
n
1 (+1) R

n−1
0

(
1

cosh2(t+ α)

)
− tanh(t+ α)I

R
n−1
0 (K0),

K0 ≤ −1

cos(α)

=
1√
|K0|

cos(t+ α)
cos(α)

−1

Part of

R
n
1 (−1) R

n−1
0

(
−1

cos2(t+ α)

)
tan(t+ α)I

metric ḡw is not geodesically complete. (When n = 2 this can be seen
more concretely by noting that c(t) = (sinh(t), cosh(t)) is a geodesic
in the upper half plane with the metric ḡw, but that the length of c is∫∞
−∞

dt
cosh(t)

= π <∞.) We also note that if a ∈ Rn−1 and c > 0 then the

metric ḡw is invariant under the transformations (x, y) 7→ (x+a, y) and
(x, y) 7→ (cx, cy) and thus the upper half plane has a transitive group
of isometries. Thus unlike the Riemannian case a semi-Riemannian
homogeneous space need not be geodesically complete. It is convenient
to give this half space part of the de Sitter space a name.

Definition 2.6. Denote by (Hn
1 (+1), gH) the space Hn

1 (+1) = Rn−1×
R with the metric gH := e2tgn−1

0 − dt2.

The other entry that requires some comment is the last row. To sim-
plify things let α = 0 and K0 = −1 so that ḡw = cos2(t)g−dt2 where g
is the standard metric on the Riemannian manifold Rn−1

0 (−1) of con-
stant sectional curvature −1. This metric has coordinate singularities
at t = ±π/2 but it is isometric to an open strip in the geodesically
complete anti–de Sitter space Rn1 (−1). It is also convenient to give this
space a name:
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Definition 2.7. Denote by (Sn1 (−1), gS) the space Sn1 (−1) := Rn−1
0 (−1)×

(−π/2, π/2) with the metric gS := cos2(t)g−dt2 where g is the standard
metric on Rn−1

0 (−1).

Let γ : R → R
n
1 (−1) be a unit speed timelike geodesic in the anti–

de Sitter space. For each t ∈ R let Mt be the totally geodesic hy-
persurface of Rn1 (−1) through γ(t) and orthogonal to γ′(t). The set
{Mt : t ∈ R} forms a smooth foliation of Rn1 (−1). This lets us define
the time function of the geodesic γ by

Definition 2.8. Let γ : R → R
n
1 (−1) be a unit speed timelike geo-

desic. Then the time function defined by γ is the function τ : Rn1 (−1)
given by

τ(x) = t if x ∈Mt.

2.3. Two Dimensional Rigidity Results. The results in this sec-
tion are lemmas that are needed to prove our higher dimensional rigid-
ity results.

Let (M2, g) be a semi-Riemannian surface. Let ∇ denote the Rie-
mannian connection on M2. Then the curvature of (M2, g) is defined
to be K = 〈R(X, Y )Y,X〉 where X, Y are orthonormal. Now assume
that M is oriented and let e1, e2 denote an oriented orthonormal frame
defined locally on M . Let σ1, σ2 denote the dual one-forms defined
in the domain of definition of the moving frame, i.e. if I is the iden-
tity map on tangent spaces then I = e1σ

1 + e2σ
2. Let ωji denote the

connection forms so that ∇ei = e1ω
1
i +e2ω

2
i . By a standard calculation

KdA = Kσ1 ∧ σ2 = ε1dω
1
2 ,

where ε1 := 〈e1, e1〉 = ±1.

Theorem 2.9 (Two Dimensional Rigidity). Let g0 denote the stan-
dard flat metric on R2

k and let g be any other metric so that g = g0

outside of some compact set C ⊂ R2 and the curvature K of g does
not change sign, i.e. K ≥ 0 everywhere or K ≤ 0 everywhere. Then
Kg ≡ 0 and (R2, g) is isometric to (R2

k, g0).

Proof. Let e0
1, e

0
2 be the standard basis of R2, i.e. e0

1 =
[

1
0

]
, e0

2 =
[

0
1

]
.

We claim there is a smooth orthonormal frame e1, e2 for g so that
ei = e0

i on the complement of C. If g is positive definite (i.e. k = 0),
then e1, e2 can be constructed by applying the Gram-Schmidt orthog-
onalization process to e0

1, e0
2 with respect to g. The same argument

works if g is negative definite (k = 2). This leaves the case where
k = 1, whence g0(e0

1, e
0
1) = −1 and g0(e0

2, e
0
2) = +1.
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Let Og(R
2) be the bundle of oriented g orthonormal frames tangent

to R2. That is the fiber at P ∈ R2 is the set of ordered pairs (v1, v2)
where g(v1, v1) = −1 = −g(v2, v2), g(v1, v2) = 0, and the orientation of
v1, v2 agrees with the orientation of e0

1, e
0
2. This fiber is diffeomorphic

to two disjoint copies of R. As R2 is contractible the bundle Og(R
2)

is trivial (cf. [22]), that is equivalent to a product bundle. A smooth
R valued function defined on a neighborhood of the closure of R2 \ C
extends to R2. Therefore, the section e0

1, e
0
2 of Og(R

2) can be extended
from R

2 \ C to a section e1, e2 defined on all of R2.
Now let D be a bounded domain with smooth boundary so that

C ⊆ D. Then ∫
D

KdA = ε1

∫
D

dω1
2 = ε1

∫
∂D

ω1
2.

But ∇ei = ∇e0
i = 0 on R2\C so ω1

2 = 0 on R2\C. Thus the last
equation implies

∫
D
KdA = 0. As K does not change sign this implies

K ≡ 0. It is a standard result that (R2, g) is isometric to (R2
k, g0)

(cf. [40]). We note that it is also possible to use the form of the Gauss-
Bonnet theorem for two dimensional space times in [5] to complete the
proof in the case k = 1.

The following variant of this will be used in the proof of Theorem 4.2.

Corollary 2.10. Let g0 denote the standard flat metric on R2
k and let

D ⊂ R2
k be a connected domain with smooth boundary and compact

closure in R2
k. Let g be any other metric on D so that g = g0 in some

neighborhood of ∂D and the curvature K of g does not change sign.
Then Kg ≡ 0.

We now turn to rigidity on the sphere.

Theorem 2.11 (Toponogov, [37]). Let (S2, g) be the two dimensional
sphere with a metric so that the Gaussian curvature satisfies 1 ≤ K.
Then any simple closed geodesic γ has length at most 2π, and if the
length of γ is 2π then (S2, g) is isometric to the standard sphere (S2, g0)
and γ is a great circle.

We owe both the statement and proof of the following result to E.
Calabi [6].

Theorem 2.12. Let (S2, g) be the two dimensional sphere with a met-
ric of class C1,1 whose Gaussian curvature satisfies 0 ≤ K ≤ 1. Then
any simple closed geodesic γ on (S2, g) has length at least 2π. If the
length of γ is 2π, then either (S2, g) is isometric to the standard round
sphere (S2, g0) and γ is a great circle on (S2, g0) or (S2, g) is isometric
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to a circular cylinder of circumference 2π capped by two unit hemi-
spheres and γ is a belt around the cylinder. Thus if K is continuous
(for example when g is at least C2) or if K > 0 then (S2, g) is isometric
to the standard round sphere.

The lower bound on the length of a simple closed closed geodesic is
well known (cf. Remark 2.14), it is the rigidity result that is of interest
here.

Lemma 2.13. Let k(t) be an L∞ function on [0,∞) so that 0 ≤ k(t) ≤
1 and let y(t) be defined by the initial value problem

y′′(t) + k(t)y(t) = 0, y(0) = 1, y′(0) = 0.

Denote the smallest positive zero of y by β (it may be that β = ∞).
Then 0 ≤ −y′(t) ≤ 1 for 0 ≤ t ≤ β. If y′(t0) = −1 for some t0 ∈ [0, β],
then t0 = β <∞, β ≥ π/2 and

y(t) =

{
1, 0 ≤ t < β − π/2

cos(t− (β − π/2)), β − π/2 < t ≤ β
, k(t) =

{
0, 0 ≤ t < β − π/2
1, β − π/2 < t ≤ β.

If k is continuous, for example if y is C2, and y′(t0) = −1 with t0 ≤ β,
then t0 = β = π/2, k ≡ 1 and y(t) = cos(t) on [0, π/2].

Proof. Note on the interval [0, β) that (y′)′ = y′′ = −ky ≤ 0 as y > 0
and k ≥ 0 on [0, β). Thus y′ is monotone decreasing on [0, β]. As
y′(0) = 0 this implies y′ ≤ 0 on [0, β]. Thus(

y2 + (y′)2
)′

= 2yy′ + 2y′y′′ = 2yy′ − 2y′ky = 2yy′(1− k) ≤ 0(2.14)

on [0, β) as k ≤ 1 and y′ ≤ 0. Using the initial conditions for y and
continuity the last inequality implies

y2 + (y′)2 ≤ 1 on [0, β].(2.15)

These inequalities imply 0 ≤ −y′ ≤ 1 on [0, β].
If t0 ∈ [0, β] and y′(t0) = −1, then the inequality (2.15) implies

y(t0) = 0. But from the definition of β as the smallest positive zero
of y this implies t0 = β. Then y(β)2 + y′(β)2 = 1 and equation (2.14)
yields y′(1 − k) ≡ 0 on [0, β). As y′ is monotone decreasing on [0, β),
there is a point t1 ∈ [0, β) so that y′ ≡ 0 on [0, t1] and 0 > y′ > −1 on
(t1, β). Then on [0, t1] we have y ≡ 1 and k ≡ 0 (as ky = −y′′ = 0).
Also y′(1 − k) ≡ 0 and y′ 6= 0 on (t1, β) implies k ≡ 1 on (t1, β). But
y(t1) = 1 and y′(t1) = 0 so y(t) = cos(t − t1) on (t1, β). As y(β) = 0
this implies t1 = β − π/2 on (t1, β). This completes the proof.

Proof of the theorem. Let c : [0, L] → S2 be a unit speed parameteri-
zation of the closed geodesic γ, and let n be a unit normal along c. For
each s ∈ [0, L] let β(s) be the cut distance from the curve γ along the
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geodesic t 7→ expc(s)(tn(s)). Define map F (s, t) on the set of ordered
pairs (s, t) with s ∈ [0, L] and 0 ≤ t ≤ β(s) by

F (s, t) = expc(s)(tn(s)), 0 ≤ s ≤ L, 0 ≤ t ≤ β(s).

Then s, t are Fermi coordinates on the disk M bounded by γ and with
inner normal n. In these coordinates the metric g, Gaussian curvature
K and the area form dA are given by

g = E2 ds2 + dt2, K =
−Ett
E

, dA = E ds dt.

And because c is a geodesic E(s, 0) ≡ 1 and Et(s, 0) ≡ 0. Thus for
fixed s the function y(t) := E(s, t) satisfies y′′+Ky = 0, y(0) = 1, and
y′(0) = 0 as in the lemma.

Now apply the Gauss-Bonnet theorem to the disk M . As the bound-
ary is a geodesic, the boundary term of the formula drops out:

2π =

∫
M

K dA =

∫ L

0

∫ β(s)

0

−Ett dtds

=

∫ L

0

(−Et(s, β(s))) ds (as Et(s, 0) = 0)

≤
∫ L

0

1 ds (by the lemma)

= L.

which proves the required lower bound on the length of γ. If L = 2π,
then Et(s, β(s)) = −1 for all s ∈ [0, L]. Again by the lemma in the
coordinates s, t on M

K(s, t) =

{
0, 0 ≤ t < β(s)− π/2,
1, β(s)− π/2 < t ≤ β(s).

Let M+1 denote the interior of the set {x ∈ M : K(x) = +1} so that
M+1 = {expc(s)(tn(s)) : s ∈ [0, 2π], β(s) − π/2 < t ≤ β(s)}. Let s0 ∈
[0, 2π] be a point where β(s) is maximal. Then the open disk B(x0, π/2)
of radius π/2 about x0 := expc(s0) β(s0)n(s0) is contained in M+1, for
if not it would meet ∂M+1 at some point expc(s)((β(s)−π/2)n(s)) and
this point is a distance of β(s) − π/2 from γ. Thus the distance of
x0 = expc(s0)(β(s0)n(s0)) to γ is less than π/2 + (β(s) − π/2) = β(s),
which contradicts the maximality of β(s0). Thus B(x0, π/2) ⊆ M+1.
But using the Gauss-Bonnet theorem and K ≡ +1 on M+1

2π ≥
∫
M+1

K dA = Area(M+1) ≥ Area(B(x0, π/2)) = 2π.
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So M+1 = B(x0, π/2). From this it follows s 7→ β(s) is constant and
thus the disk M bounded by γ and with inner normal n is a cylinder
of circumference 2π capped at one end with a hemisphere. The same
argument applied to the disk bounded by γ and having −n as inward
normal shows (S2, g) is two of these capped cylinders glued together
along γ, which is equivalent to the statement of the theorem.

Remark 2.14. If one is only interested in the length of closed geodesics,
there are higher dimensional versions of Theorem 2.12. If (M, g) is a
compact orientable Riemannian manifold of even dimension with sec-
tional curvatures satisfying, 0 < KM ≤ 1, then Klingenberg has shown
every closed geodesic has length ≥ 2π. This is equivalent to his well
known lower bound on the injectivity radius of compact oriented even
dimensional manifolds. For a proof see the book [7, Chapter 5]. For
odd dimensional manifolds another theorem of Klingenberg’s implies
if (M, g) is a compact simply connected manifold of whose sectional
curvature satisfies 1/4 < KM ≤ 1, then any closed geodesic of (M, g)
has length at least 2π. Again a proof can be found in [7, Chapter
5]. (The original proofs of Klingenberg are in [25, 26].) We also note
that in dimension 3 for any ε > 0 there are examples of metrics g
on M = S3 (due to Berger) so that the sectional curvatures satisfy
1/9 − ε ≤ KM ≤ 1, but (S3, g) = (M, g) has a geodesic of length less
than 2π. Cf. [7, Example 3.35, page 70]. To the best of our knowledge
there is no known rigidity result in these theorems.

3. Basic Comparison Results

Most of the results in this section will be stated as results about sys-
tems of ordinary differential equations (usually in the form of solutions
to matrix valued differential equations). These results then apply to
the second fundamental forms (or Weingarten maps) of parallel families
of hypersurfaces in a Semi-Riemannian manifold.

3.1. Comparisons for Parallel Hypersurfaces. In this section we
will prove a comparison theorem for solutions of the matrix Riccati
equation.

Let E be an n dimensional real inner product space with an inner
product of index k. The inner product will be denoted by 〈 , 〉. A linear
map A : E → E is self-adjoint iff 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ E.
Unlike the case of positive definite spaces a self-adjoint linear map
need not have real eigenvalues. (An easy example of this is E = R

2,

〈 , 〉 = dx2 − dy2 and A =
[

0 1
−1 0

]
. Then the eigenvalues of A are

±
√
−1.)
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A self-adjoint linear map A is positive definite if and only if 〈Ax, x〉 >
0 for all x 6= 0. The eigenvalues of a positive definite linear map are real.
(This can be seen by using the principal axis theorem to diagonalize the
inner product 〈 , 〉 with respect to the positive definite inner product
〈A , 〉.) However the eigenvalues of a positive definite map need not be
positive. In fact if the index of the inner product is k then a positive
definite map will have exactly k negative eigenvalues, however having
k negative eigenvalues is not enough to insure A is positive definite.
Unlike the positive definite case the identity map is not positive definite.
A linear map is positive semi-definite iff 〈Ax, x〉 ≥ 0 for all x ∈ E. If
A and B are self-adjoint, then we write A ≤ B iff B − A is positive
semi-definite, and A < B iff B − A is positive definite. The set of
positive definite maps forms a cone.

Lemma 3.1. If A ≥ 0 and 〈Ax0, x0〉 = 0, then Ax0 = 0.

Proof. Because A is positive semi-definite and 〈Ax0, x0〉 = 0 we have
for all h ∈ E that 0 ≤ 〈A(x0 + h), (x0 + h)〉 = 2〈Ax0, h〉 + 〈Ah, h〉.
This can only be non-negative for all h if 〈Ax0, h〉 = 0 for all h. This
implies Ax0 = 0.

For i = 1, 2 let t 7→ Ri(t) be smooth maps from the real numbers
R to the space of self-adjoint linear maps on E. Also let A1 and A2

be self-adjoint linear maps on E and denote by I the identity operator
on E. Define two maps t 7→ Fi(t) from the reals to the space of linear
maps on E by the initial value problems,

F ′′i (t) +Ri(t)Fi(t) = 0, Fi(0) = I, F ′i (0) = −Ai ; i = 1, 2.
(3.1)

At the points t where Fi(t) is invertible set

Si(t) = −F ′i (t)Fi(t)−1 ; i = 1, 2.

Let Fi(t)
∗ be the transpose of Fi(t) with respect to the inner product

〈 , 〉 (defined by 〈Fi(t)∗x, y〉 = 〈x, Fi(t)y〉). Then using the equation
(3.1) it follows

d

dt
(Fi(t)

∗F ′i (t)− F ′i (t)∗F (t)) = 0 ; i = 1, 2.

which implies the linear maps Si(t) are self-adjoint at all points where
they are defined. It also follows directly from (3.1) that in some neigh-
borhood of 0, the Si(t) satisfy the initial value problem

S ′i(t) = Si(t)
2 +Ri(t), Si(0) = Ai ; i = 1, 2.
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Theorem 3.2. With the notation above, if both S1(t) and S2(t) are
defined on all of the interval [0, b] and if

A1 ≤ A2, R1(t) ≤ R2(t) for all t ∈ [0, b],

then S1(t) ≤ S2(t) on [0, b]. If S1(b) = S2(b), then A1 = A2 and
R1(t) ≡ R2(t) on [0, b].

Proof. We first prove this under the assumption A1 < A2 and R1(t) <
R2(t) for all t ∈ [0, b] and show in this case S1(t) < S2(t) for t ∈
[0, b]. Assume, toward a contradiction, this is false. Then there is a
smallest t0 so that S2(t0)−S1(t0) is not positive definite. By continuity
S2(t0) − S1(t0) is positive semi-definite. As it is not positive definite
there is a nonzero vector x0 ∈ E so that 〈(S2(t0) − S1(t0))x0, x0〉 = 0.
By Lemma 3.1 this yields S1(t0)x0 = S2(t0)x0.

Let f(t) := 〈(S2(t)− S1(t))x0, x0〉. Then, using S1(t0)x0 = S2(t0)x0,

f ′(t0) = 〈(S ′2(t0)− S ′1(t0))x0, x0〉
= 〈S2(t0)x0, S2(t0)x0〉 − 〈S1(t0)x0, S1(t0)x0〉+ 〈(R2(t0)−R1(t0))x0, x0〉
= 〈(R2(t0)−R1(t0))x0, x0〉
> 0.

But f is positive on [0, t0) and f(t0) = 0 thus f ′(t0) ≤ 0. This con-
tradicts the last equation and completes the proof in the case A2 −A1

and R2(t)−R1(t) are positive definite.
For the general case let B be any positive definite matrix. Then for

small δ > 0 define Sδ by the initial value problem

S ′δ(t) = Sδ(t)
2 +R2(t) + δB, Sδ(0) = A2 + δB.

By what has already been done we have S1(t) < Sδ(t) on [0, b]. Using
that Sδ depends continuously on δ,

S2(t) = lim
δ↓0

Sδ(t) ≥ S1(t).

This proves the inequality in the general case.
Assume S1(b) = S2(b) and let t0 ∈ [0, b). Then define S on [t0, b] by

S ′(t) = S(t)2 +R1(t), S(t0) = S2(t0)

so S satisfies the same differential equation as S1 and agrees with S2 at
t0. By what has already been shown this implies S1(t) ≤ S(t) ≤ S2(t)
on [t0, b]. As S1(b) = S2(b) this yields S(b) = S1(b). But S1 and S
satisfy the same first order equation and agree at the point b, so S ≡ S1

on [t0, b]. In particular S1(t0) = S(t0) = S2(t0). As t0 was arbitrary
S1 ≡ S2. By uniqueness this implies A1 = A2 and R1 ≡ R2.
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A standard part of the comparison theory in the positive definite
case is, with the notation above, if S2(t) is defined on all of [0, b] then
so is S1(t). This does not hold on in the general indefinite metric case.
We give two examples on R2 with the inner product 〈 , 〉 = dx2 − dy2.

First let A1 = A2 = 0, R1(t) ≡ 0 and R2(t) ≡
[

1 0
0 0

]
. Then R1 ≤

R2, S1 = 0 is defined on all of [0,∞) but S2(t) =
[

tan t 0
0 0

]
is only

defined on [0, π/2). In the second example again let A1 = A2 = 0, but

let R1(t) ≡
[

0 0
0 1

]
and R2(t) ≡ 0. Again R1(t) ≤ R2(t). S1(t) =[

0 0
0 tan t

]
is only defined on [0, π/2) but S2(t) = 0 is defined on all of

[0,∞).
However if there is a two sided curvature bound, then there is a an

estimate of the size of the domain of definition.

Proposition 3.3. Let R1(t), R2(t), R3(t) be continuous functions of
t ∈ R with values in the symmetric linear maps on (E, 〈 , 〉) so that
R1 ≤ R2 ≤ R3 on [0, b]. For i = 1, 2, 3, define Si(t) by the initial value
problems S ′i = S2

i + Ri and assume S1(0) ≤ S2(0) ≤ S3(0). If S1 and
S3 are defined on all of [0, b), then so is S2.

Proof. Let [0, t0) be the maximal interval of definition of S2. If t0 ≥ b we
are done, so assume, toward a contradiction, t0 < b. By the comparison
theorem S1(t) ≤ S2(t) ≤ S3(t) on [0, t0). As S1 and S3 are continuous
on [0, t0] their ranges are bounded. Thus there are self-adjoint A and B
so that A ≤ S1(t) ≤ S3(t) ≤ B. But the set C = {C : A ≤ C ≤ B} is a
compact subset of the space of self-adjoint linear maps and S2(t) ∈ C for
t ∈ [0, t0). Therefore there is a sequence tk ↗ t0 so that limk→∞ S2(tk)
exists, say limk→∞ S2(tk) = G. Choose any norm ‖ · ‖ on the space of
self-adjoint linear maps on E. Then, as S2(t) stays in a compact set,
there is a constant c0 so that ‖S2(t)2 + R2(t)‖ ≤ c0 for all t ∈ [0, t0).
Thus the differential equation for S2 implies ‖S2(t)−S2(s)‖ ≤ c0|s− t|
for all t, s ∈ [0, t0). Then limt↗t0 = limk→∞ S2(tk) = G. Define S(t)
by S ′ = S2 + R2 and S(t0) = G. Then by uniqueness of solutions
to initial value problems we find that S2 = S in a neighborhood of
t0, contradicting that [0, t0) was the maximal interval of definition of
S2

3.1.1. Comparisons for Curvature Tensors. For the later applications
we need not just the above comparison theorems for the Weingarten
map, but also comparison theorems for the intrinsic curvature tensor.
The idea is to use the Gauss curvature equation to relate the estimates
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on Weingarten map to the sectional curvature. We start by giving some
linear algebraic results.

Recall the inner product 〈 , 〉 induces an inner product (also denoted
by 〈 , 〉) on

∧2 E. On decomposable elements it is given by,

〈x1 ∧ x2, y1 ∧ y2〉 = 〈x1, y1〉〈x2, y2〉 − 〈x1, y2〉〈x2, y1〉.
Also a linear map A : E → E induces a linear map

∧2(A) :
∧2 E →∧2 E given on decomposable elements by

∧2(A)x ∧ y = Ax ∧ Ay.

Definition 3.4. If A, B are self-adjoint linear maps on E then define∧2(A) �
∧2(B) to mean that 〈

∧2(A)x∧y, x∧y〉 ≤ 〈
∧2(B)x∧y, x∧y〉

for all decomposable x ∧ y. This is equivalent to

〈Ax, x〉〈Ay, y〉 − 〈Ax, y〉2 ≤ 〈Bx, x〉〈By, y〉 − 〈Bx, y〉2

holding for all x, y ∈ E.

Lemma 3.5. If A is self-adjoint and 〈
∧2(A)x ∧ y, x ∧ y〉 = 0 for all

decomposable vectors x∧ y, then A has rank one and so
∧2(A) = 0. If

A is self-adjoint and 0 ≤ A (or A ≤ 0) then
∧2(A) � 0.

Proof. If 〈
∧2(A)x ∧ y, x ∧ y〉 = 0 then

〈Ax, x〉〈Ay, y〉 − 〈Ax, y〉2 = 0.

Let h ∈ E. Then replace x by x + th in the last equation and take
d
dt
|t=0 to get

2〈Ax, h〉〈Ay, y〉 − 2〈Ax, y〉〈h,Ay〉 = 0

for all x, y, h ∈ E. If A = 0 there in nothing to prove. Thus assume
A 6= 0. Then, as A is self-adjoint, there is a y ∈ E so that 〈Ay, y〉 6= 0.
From the last equation we see if 〈h,Ay〉 = 0, then also 〈Ax, h〉 = 0.
This implies Ax is a scalar multiple of Ay. As x was arbitrary, this
shows Ay spans the range of A, so A has rank one.

If A ≥ 0 (or A ≤ 0), then the Cauchy-Schwartz inequality applied
to the inner product 〈A·, ·〉 implies 〈Ax, x〉〈Ay, y〉 − 〈Ax, y〉2 ≥ 0, i.e.∧2(A) � 0.

Lemma 3.6. If A, B are self-adjoint and 0 ≤ A ≤ B (or B ≤ A ≤ 0),
then

∧2(A) �
∧2(B). If also either A or B is positive definite and

〈
∧2(A)x∧ y, x∧ y〉 = 〈

∧2(B)x∧ y, x∧ y〉 for all x, y ∈ E then A = B.

Proof. We first assume B is positive definite. Let x, y ∈ E be linearly
independent and let V = Span(x, y). Let α and β be the inner products
defined on V by α(u, v) = 〈Au, v〉, β(u, v) = 〈Bu, v〉. As B is positive
definite so is β. Thus by the principal axis theorem the forms α and
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β can be simultaneously diagonalized. Therefore there is a basis x1, y1

of V with x1 ∧ y1 = x ∧ y and 〈Ax1, y1〉 = 〈Bx1, y1〉 = 0. But for all
u ∈ E, 0 ≤ 〈Au, u〉 ≤ 〈Bu, u〉 so

〈
∧2

(A)x ∧ y, x ∧ y〉 = 〈Ax1, x1〉〈Ay1, y1〉

≤ 〈Bx1, x1〉〈By1, y1〉 = 〈
∧2

(B)x ∧ y, x ∧ y〉.

If equality holds then 〈Ax1, x1〉 = 〈Bx1, x1〉 and 〈Ay1, y1〉 = 〈By1, y1〉.
As x1, y1 diagonalizes both α and β this implies 〈Au, u〉 = 〈Bu, u〉 for
all u ∈ V . So if 〈

∧2(A)x ∧ y, x ∧ y〉 = 〈
∧2(B)x ∧ y, x ∧ y〉 for all

x, y ∈ E, then 〈Au, u〉 = 〈Bu, u〉 for all u ∈ E, which implies A = B.
A similar argument works if A is positive definite. Finally if B

is only positive semi-definite then let C be positive definite and let
B` = B + 1

`
C. Then B` is positive definite and lim`→∞B` = B. But

0 ≤ A ≤ B` implies
∧2(A) ≤

∧2(B`) as B` is positive definite, so a
limit argument shows this also holds when B = lim`→∞B` is positive
semi-definite.

Lemma 3.7. A rank one self-adjoint linear map S : E → E is of one
of the two forms Sx = 〈x, e〉e or Sx = −〈x, e〉e, for some e ∈ E.

Proof. A rank one linear map is of the form Sx = 〈x, u〉v with both u,
v non-zero. The map S is self-adjoint iff 〈Sx, y〉 = 〈x, Sy〉, which in our
case this reduces to 〈x, u〉〈y, v〉 = 〈x, v〉〈y, u〉. This implies u and v are
linearly dependent. As they are both non-zero v = λu for some non-
zero real number λ. If λ > 0 let e =

√
λu. Then Sx = 〈x, u〉v = 〈x, e〉e.

If λ < 0 set e = −
√
|λ|u. Then Sx = 〈x, u〉v = −〈x, e〉e.

Theorem 3.8. Let t 7→ S(t) be a smooth map from [0, b] to the self-
adjoint maps on E. Assume S satisfies

S ′(t) = S(t)2 +R(t), S(0) = 0,

where R(t) ≥ 0 on [0, b] (or R(t) ≤ 0 on [0, b]). Then
∧2(S(t)) � 0 on

[0, b]. If 〈
∧2(S(b))x∧y, x∧y〉 = 0 for all x, y then there is a self-adjoint

rank one map P and smooth functions u, r : [0, r]→ R so that

S(t) = u(t)P, R(t) = r(t)P, and u′(t) = u2(t) + r(t).

Proof. We deal with the case R(t) ≥ 0 on [0, b], the case with R(t) ≤ 0
being similar. By the comparison Theorem 3.2 S(t) ≥ 0 on [0, b]. By
Lemma 3.5 this implies

∧2(S(t)) � 0. Now assume 〈
∧2(S(b))x∧y, x∧

y〉 = 0 for all x, y. Then again by Lemma 3.5, S(b) has rank one or
less. If S(b) = 0 then Theorem 3.2 implies S(t) ≡ 0 and R(t) ≡ 0.
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Now assume S(b) has rank one. Again by Theorem 3.2 there is
a t0 ∈ [0, b) so that S(t) = 0 on [0, t0] and S(t) has rank one on
(t0, b]. By Lemma 3.7 each t ∈ (t0, b] there is e(t) ∈ E so that
S(t) = ±〈 · , e(t)〉e(t). Then S ′(t) = ±(〈 · , e′(t)〉e(t) + 〈 · , e(t)〉e′(t)),
and S(t)2 = 〈 · , e(t)〉〈e(t), e(t)〉e(t). From the differential equation for
S,

R(t) = S ′(t)−S(t)2 = ±(〈 · , e′(t)〉e(t)+〈 · , e(t)〉e′(t))−〈 · , e(t)〉〈e(t), e(t)〉e(t).
Using R(t) ≥ 0,

〈R(t)x, x〉 = ±2〈x, e(t)〉〈x, e′(t)〉 − 〈x, e(t)〉2〈e(t), e(t)〉 ≥ 0

for all x.
Claim: For any t ∈ (t0, b] the vectors e(t) and e′(t) are linearly de-
pendent.

To see this assume for some t that e(t) and e′(t) are linearly in-
dependent. Then there are vectors x0, h ∈ E so that 〈x0, e(t)〉 = 1,
〈x0, e

′(t)〉 = 0, 〈h, e(t)〉 = 0, and 〈h, e′(t)〉 = 1. Let λ be any real
number and let x = x0 + λh. Using this x in the expression above for
〈R(t)x, x〉 implies that for all λ

〈R(t)x, x〉 = ±2λ− 〈e(t), e(t)〉 ≥ 0.

which is impossible. This proves the claim.
As e(t) and e′(t) are linearly dependent for all t the span of e(t) stays

constant. Thus there is a constant vector e0 so that Span e(t) = Span e0

for all t. Let P be a non-zero rank one self-adjoint map with the range
of P being the span of e0. (Say P = 〈 · , e0〉e0.) Then S(t) = u(t)P for
some smooth function u. From the equation for S(t) we have R(t) =
S ′(t)−S(t)2 = (u′(t)−u(t)2)P so setting r(t) = u′(t)−u(t)2 completes
the proof.

Theorem 3.9. Let r(t) be a smooth function on [0, b] and a a real
number. Assume there is a function u on [0, b] so that

u′(t) = u2(t) + r(t), u(0) = a.

Let A be a positive definite self-adjoint map on E, and t 7→ S(t) a map
from [0, b] to the self-adjoint maps on E so that

S ′(t) = S(t)2 +R(t), S(0) = aA

and R satisfies one of the following conditions:

1. R(t) ≥ r(t)A on [0, b] and u(b) > 0, or
2. R(t) ≤ r(t)A on [0, b] and u(b) < 0.

Then
∧2(S(b)) � u(b)2

∧2(A). If 〈
∧2(S(b))x∧y, x∧y〉 = u(b)2〈

∧2(A)x∧
y, x ∧ y〉 for all x, y ∈ E then S(t) ≡ u(t)A and R(t) ≡ r(t)A.
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Proof. We prove this under the first assumption, the proof in the second
case being almost identical. By Theorem 3.2 we have 0 ≤ u(b)A ≤
S(b). By Lemma 3.6 this implies

∧2(S(b)) � u(b)2
∧2(A). Also by

Lemma 3.6 if 〈
∧2(S(b))x ∧ y, x ∧ y〉 = u(b)2〈

∧2(A)x ∧ y, x ∧ y〉 for all
x, y ∈ E then S(t) ≡ u(t)A and R(t) ≡ r(t)A. Then the uniqueness
part of Theorem 3.2 implies S(t) = u(t)A and R(t) = r(t)A.

Theorem 3.10. Let r(t) be a smooth function on [0, b] and a > 0 a
real number. Assume there is a function u on [0, b] so that

u′(t) = u2(t) + r(t), u(0) = a.

Let A be a positive definite self-adjoint map on E, and t 7→ S(t) a map
from [0, b] to the self-adjoint maps on E so that

S ′(t) = S(t)2 +R(t), S(0) = aA

and assume
R(t) ≤ r(t)A, and S(t) > 0 on [0, b].

Then
∧2(S(b)) ≤ u(b)2

∧2(A). If 〈
∧2(S(b))x∧y, x∧y〉 = u(b)2〈

∧2(A)x∧
y, x ∧ y〉 for all x, y ∈ E then S(t) ≡ u(t)A and R(t) ≡ r(t)A.

Proof. A variant on the proof of the last theorem.

Remark 3.11. In the Riemannian case there are volume comparison
theorems for the volume of geodesic balls and tubes. In the Lorentzian
case there are volume comparison for hypersurfaces parallel to a space-
like hypersurface. In the notation of this section these reduce to giving
inequalities between det(F1(t)) and det(F2(t)). We now give examples
to show there are no such inequalities in the general indefinite metric
case. We will work on R2 with the metric 〈 , 〉 = dx2 − dy2. First

let A1 = A2 = 0, R1(t) ≡ 0, and R2(t) ≡
[

1 0
0 0

]
. Then R1 ≤ R2.

Define Fi by F ′′i + RiFi = 0, Fi(0) = I, F ′i (0) = Ai = 0. Then

F1(t) =
[

1 0
0 1

]
and F2(t) =

[
cos t 0

0 1

]
. So in this case det(F1(t)) =

1 > cos t = det(F2(t)) for 0 < t < 2π. For the second example again

use A1 = A2 = 0, but this time let R1(t) ≡
[

0 0
0 1

]
and R2(t) ≡ 0.

Then R1(t) ≤ R2(t), F1 =
[

1 0
0 cos t

]
, and F2(t) =

[
1 0
0 1

]
. So this

time det(F1(t)) = cos t < 1 = det(F2(t)) and the inequality goes in the
other direction.

If 〈 , 〉 is positive definite and A, B are self-adjoint with A ≤ B, then
trace(A) ≤ trace(B). However if 〈 , 〉 is indefinite then A ≤ B does not
imply any inequality between trace(A) and trace(B). This is exactly
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where the proof of the volume comparison theorem breaks down in the
indefinite metric case.

3.2. Comparisons for Tubes. Theorem 3.2 implies a comparison
theorem for the second fundamental form of a hypersurface parallel
to a given hypersurface. In the Riemannain case there are compari-
son results for tubes about submanifolds of higher codimension which
have interesting applications (cf. [19]). In the semi-Riemannain case
there is also a comparison result for the second fundamential forms of
tubes about non-degenerate submanifolds of (M, ḡ), but there do not
seem to be applications of this result that have the same interest as
the Riemannian theorem. Thus for the sake of completeness we include
the statement of the result, but omit the proof. As with the results
above we state this as a theorem about systems of ordinary differential
equations.

Let T be a subspace of E and assume that the restriction of the
inner product 〈 , 〉 to T is nondegenerate. Let T⊥ be the orthogonal
complement of T in E. Then E = T ⊕ T⊥. Let P : E → T and
P⊥ : E → T⊥ be the orthogonal projections. This includes the case
when T = {0}, so P⊥ = I.

Theorem 3.12. For i = 1, 2, let Ai : T → T be a self-adjoint linear
maps and Ri(t) as in Theorem 3.2. Then define Fi(t) by

F ′′i (t)+Ri(t)Fi(t) = 0, Fi(0) = P, F ′i (0) = −AiP+P⊥ ; i = 1, 2.

At the points where Fi(t) is non-singular define Si(t) = −F ′i (t)Fi(t)−1.
As before the maps Si(t) are self-adjoint at the points where it is de-
fined. If S1(t) and S2(t) are defined on (0, b] and

A1 ≤ A2, R1(t) ≤ R2(t) for all t ∈ (0, b],

then S1(t) ≤ S2(t). If S1(b) = S2(b) then A1 = A2 and S1 ≡ S2,
R1 ≡ R2 on (0, b].

Remark 3.13. There is one case where this is of interest, and that is
when M is a point p in a Lorentzian manifold. Let S−(p) := {u ∈
T (M)p : ḡ(u, u) = −1}. Then S−(p) is a Riemannian manifold isomet-
ric to two disjoint copies of the hyperbolic space Rn−1

0 (−1). Define a
map fr : S−(p)→M by fr(u) = expp(ru). If (M, ḡ) is timelike geodesi-

cally complete and the curvature satisfies 〈R(X, Y )Y,X〉 ≤ 0 for all
pairs of vectors X, Y spanning a timelike two plane, then for any X
tangent to S−(p) at u

〈fr∗uX, fr∗uX〉 ≥
1

r2
〈X,X〉.
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This result is due to Flaherty [11] where he used it to prove a version
of the Cartan-Hadamard theorem for Lorentzian manifolds. We note
that this also follows from the result above as the derivative of fr is
given by

〈fr∗uX, fr∗uY 〉 = 〈Fu(r)X,Fu(r)Y 〉
and

d

dt
〈Fu(t)X,Fu(t)Y 〉 = 2〈F ′u(t)X,Fu(t)X〉

= 2〈F ′u(t)Fu(t)Fu(t)−1X,Fu(t)X〉
= −2〈Su(t)Fu(t)X,Fu(t)X〉.

Also for small t it is not hard to see F (t) = (1/t)I + O(1). Therefore
the comparison result for tubes can be used to prove the inequality.

4. Rigidity in Flat Spaces

Let Rnk = Rnk(0) be the flat simply connected space form of index k.

This is Rn with the semi-Riemannian metric 〈 , 〉 = −
∑k

i=1 dxi
2 +∑n

i=k+1 dxi
2. Let η be a unit vector in Rnk , that is 〈η, η〉 = +1 or

〈η, η〉 = −1. Let ε = 〈η, η〉, and let Λη(·) = ε〈·, η〉. Then Λη is the
linear functional on Rnk that has the orthogonal compliment of η as
kernel, and so that Λη(η) = 1.

Definition 4.1. A subset B ⊂ Rnk has the compact intersection prop-
erty with respect to Λη if and only if for each compact interval [a, b] ⊂ R
the set B ∩ {x : Λη(x) ∈ [a, b]} has compact closure.

Theorem 4.2. Let (M, ḡ) be a semi-Riemannian manifold of dimen-
sion n ≥ 3 so that:

1. The curvature tensor of ḡ satisfies εR ≥ 0 on M in the sense of
Definition 1.1.

2. Every geodesic of sign ε is complete. (That is if γ : (a, b)→M is
a geodesic with ḡ(γ′, γ′) = ε, then γ extends to a geodesic defined
on all of R.)

Let η0 be a unit vector in Rnk of sign ε, and B ⊂ Rnk be a closed subset
so that Rnk \B is connected and

3. B ⊂ {x : Λη0(x) > 0}
4. B has the compact intersection property with respect to Λη0 .

Then any local isometry ϕ : Rnk \ B →M extents to a surjective local
isometry ϕ̂ : Rnk →M defined on all of Rnk .
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Remark 4.3. For Riemannian manifolds this does not lead to any re-
sults in the case of sectional curvatures ≤ 0. However we note that a
proof by Schroeder and Ziller [35, Theorem 1] of a result of Gromov [1,
§5] leads to

Theorem Let (M, ḡ) be a complete simply connected Riemannian
manifold of dimension at least n ≥ 2 and non-positive sectional curva-
ture. Let m ≥ n and B ⊂ Rm have the compact intersection property
with respect to Λη and assume Rm\B is connected. Then any isometric
imbedding ϕ : Rn \ B →M as a totally geodesic submanifold extends
uniquely to a isometric imbedding ϕ̂ : Rm →M and a totally geodesic
submanifold.

This is interesting in that it is not assumed B ⊂ {x : Λη(x) > 0} or
that the model space Rm and the space M have the same dimension.
On the other hand it is important in their proof (which is based on
Toponogov’s triangle comparison theorem) that the map ϕ be injective.

When (M, ḡ) is Riemannian, the sectional curvatures of (M, ḡ) are
≥ 0, the set B ⊂ Rn is assumed compact and the map ϕ : Rn\B →M is
injective, the result can be deduced from a result of Greene and Wu [16,
Theorem 1] (see also [1, Remark on p. 75]). When ϕ is injective it is
easy to see that the growth rate of the volume of geodesic balls is the
same as that of balls in Euclidean space and so the Bishop-Gromov
volume comparison theorem can be used to prove the result under
the weaker assumption that the Ricci tensor of (M, ḡ) is non-negative,
cf. [23]. If (M, ḡ) is a spin manifold andM \ϕ[Rn \C] is compact then
by rigidity results related to the positive mass conjecture it is enough
to assume that the scalar curvature of (M, ḡ) is non-negative (cf. [2]). If
the dimension ofM is ≤ 6 then the proofs of Schoen and Yau [32, 34] of
the positive mass conjecture imply the result without the assumption
that (M, ḡ) is spin. For other related rigidity results in the Riemannian
case cf. [24] and [15].

The next corollary is not much more than a special case of Theorem
4.2, but in doing the inductive step of the proof of the theorem and as a
lemma for use in later sections, it is helpful to have it stated separately.

Corollary 4.4. Let D ⊂ R
n
k be a connected domain with compact

closure and smooth boundary and ḡ be a semi-Riemannian metric on
D so that ḡ agrees with the standard metric g0 in a neighborhood of
∂D. If the curvature tensor satisfies either R ≥ 0 on all of D, or R ≤ 0
on all of D. Then R ≡ 0.

Proof. Define a new semi-Riemannian metric ḡ1 on Rn by letting ḡ1 = ḡ
in D and ḡ1 = g0 in Rn \ D. As ḡ and g0 agree in a neighborhood of
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∂D this metric is smooth. We first consider the case ḡ, and thus ḡ1,
is positive definite. The hypotheses imply the sectional curvature of
ḡ1 is either non-negative or non-positive. In these cases theorems of
Greene and Wu [16, Theorem 1] (for the case R ≥ 0) and Kasue and
Sugahara [24, Theorem 2] (for the case R ≤ 0) imply that R ≡ 0. The
case that ḡ is negative definite reduces to the positive definite case by
replacing ḡ by −ḡ. In all other cases it will be possible to choose a
unit vector η so that 〈η, η〉R ≥ 0. Then since D is compact it will have
the compact intersection property with respect to Λη. So this result
follows from Theorem 4.2.

Proof of Theorem 4.2. The proof is by induction on the dimension n
ofM . The base of the induction is Theorem 2.9. Now some notation is
needed. Let N(η0) = {x ∈ Rnk : Λη0(x) = 0} be the hyperplane through
the origin, orthogonal to η0, and set M(η0) := ϕ[N(η0)]. Let η0 be the
unit normal field to M(η0) so that η0(ϕ(0)) = ϕ∗0η0. For r ∈ R define
fη0,r : N(η0)→M by

fη0,r(x) = expϕ(x)(rη0(ϕ(x))),

where exp is the exponential map of the metric ḡ. Thus M(η0)[r] :=
fη0,r[M(η0)] is the parallel hypersurface to M(η0) at a distance r.

Our next goal is to show the curvature tensor R of (M, ḡ) is zero
at any point of the form fη0,r(x). If x ∈ N(η0) and the segment t 7→
x + tη0 /∈ B (0 ≤ t ≤ r) then, as ϕ is a local isometry on Rnk \ B, we
have Rfη0,r(x) = 0, and also the image of fη0,r near fη0,r(x) is given by
ϕ{y ∈ Rnk : Λη0(y) = r}. Therefore near fη0,r(x) the image of fη0,r is
totally geodesic and fη,r : N(η0) → M(η0)[r] is a local isometry near
x. Set

r0 = sup{r : Rfη0,s(x) = 0 for all x ∈ N(η0) and s ≤ r}.

If r0 = ∞, then Rfη0,r(x) = 0 for all x ∈ N(η0) and r ∈ R as
claimed. Thus assume, toward a contradiction, r0 < ∞. From the
hypothesis of the theorem r0 > 0. If r ≤ r0 the above discussion
shows fη0,r : N(η0) → M(η0)[r] is a local isometry and so it is an
immersion. By continuity if r > r0 is only slightly larger than r0 then
fη0,r : N(r0) →M will also be an immersion. For such an r consider
the hypersurface M(η0)[r] = fη0,r[N(η0)]. By the compact intersection
property there is a connected domain with smooth boundary D0 ⊂
N(η0) with compact closure and so that if x ∈ N(η0) \ D0 and s ≤ r
then x+ sη0 /∈ B. Therefore the pulled back metric f ∗η0,r

ḡ is the usual
flat metric on N(η0) \D0.
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We now use the comparison theorem. Using the Riccati equation
satisfied by the Weingarten map of a family of parallel hypersurfaces
(Proposition 2.3) and one of the comparison results for Riccati equa-
tions (Theorem 3.8), if Sfη0,r(x) is the Weingarten map of M(η)[r] at

fη0,r(x) then
∧2(Sfη0,r(x)) ≥ 0. Let Rη0,r be the curvature tensor of

M(η0)[r]. Then by the Gauss curvature equation (2.2) multiplied by ε
and the assumptions on R, we have

ε〈Rη0,r(X, Y )Y,X〉 = ε〈R(X, Y )Y,X〉+〈
∧2

(Sfη0,r(x))X∧Y,X∧Y 〉 ≥ 0

for any X, Y tangent to M(η)[r]. Therefore the metric fη0,r
∗ḡ agrees

with the usual metric on N(η0) outside of D0 and the curvature satisfies
ε〈Rη0,r(X, Y )Y,X〉 ≥ 0. Thus by the induction hypothesis this implies
Rη0,r ≡ 0. For this to hold we must have 〈

∧2(Sfη0,r(x))X ∧ Y,X ∧
Y 〉 = 0 for all X, Y tangent to M(η)[r]. Putting this in the last
equation implies 〈R(X, Y )Y,X〉 = 0 for all X, Y tangent to M(η0)[r].
Unfortunately this is not enough to conclude directly that full curvature
tensor R vanishes along M(η0)[r].

Let y1 = fη0,r1(x1) be so that Ry1 6= 0. Assume r1 is taken to only
be slightly larger than r0 so that fη0,r1 is an immersion. Let η ∈ Rnk
be a unit vector. Then define N(η) = {x ∈ Rnk : 〈x, η〉 = 0}, etc.
just as was done in the case of N(η0). Note however that in general
N(η) ∩ B 6= ∅ and so M(η) = ϕ[N(η) \ B] and the maps fη,r are only
defined on N(η) \ B. Let D1 ⊂ N(η0) be a connected domain with
smooth boundary so that for all r ≤ r1, B ∩ (N(η0) + rη0) is a subset
of the interiors of D1 + rη1. Then the pulled back metric f ∗η0,r1

ḡ agrees
with the standard flat metric of N(η0) on ∂D1. Now let η be a unit
vector of Rnk which is very close to η0. Then for some r very close to
r1 there holds y1 = fη,r(x) for some x ∈ N(η). Note here that r, x are
functions of η.

If η is close enough to η0 there is a domain D ⊂ N(η), which can be
taken to be close to the domain D1 ⊂ N(η0), so that the pulled back
metric f ∗η,rḡ agrees with the standard flat metric of N(η) on a neighbor-
hood of ∂D. The comparison argument of the last paragraph still holds
and so the curvature tensorRη,r of f ∗η,rḡ satisfies ε〈Rη,r(X, Y )Y,X〉 ≥ 0.
Thus by the induction hypothesis and Corollary 4.4, Rη,r ≡ 0 on D.
Again this implies 〈R(X, Y )Y,X〉 = 0 for all vectors X, Y tangent to
fη,r[D].

Let ξ(η) be the normal to fη,r(η)[D] at y1. Then the map η 7→ ξ(η) ∈
T (M)y1 is smooth in a neighborhood of η0, and if we choose r1 close
enough to r0 we also have that the derivative ξ∗ is non-singular at η0. By
the implicit function theorem this implies there is a neighborhood U of
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ξ(η0) in the tangent space T (M)y1 so that if u is a unit vector in U , then
there is a unit vector η near η0 with ξ(η) = u. This in turn implies that
if X0, Y0 are linearly independent vectors in T (fη0,r1 [N(η0)])y1 = ξ(η0)⊥

then there are neighborhoods V of X0 and W of Y0 in T (M)fy1 so that
if X ∈ V and Y ∈ W then there is a η near η0 so that both X and
Y are orthogonal to ξ(η). Thus X, Y ∈ ξ(η)⊥ = T (fη,r[D]). Therefore
by the discussion of the last paragraph 〈R(X, Y )Y,X〉=0. The map
(X, Y ) 7→ 〈R(X, Y )Y,X〉 is a polynomial map on T (M)y1 × T (M)y1 ,
and this map vanishes on the open set V ×W . Thus Ry1 = 0. However
the point y1 was chosen so that Ry1 6= 0. This contradiction completes
the proof of the earlier claim that R = 0 at any point of the form
y = fη0,r.

Note that points of Rnk have a unique expression of the form x+ rη0

where x ∈ N(η0) = η⊥0 and r ∈ R. Define ϕ̂ : Rnk →M by

ϕ̂(x+ rη0) = expϕ(x)(rη0(ϕ(x))) = fη0,r(x).

Using that R = 0 at all points of the form fη0,r(x) it is not hard to
show ϕ̂ is a local isometry. This gives the required extension of ϕ to
R
n
k . That ϕ̂ is surjective follows from Proposition 2.5.

5. Rigidity in Simply Connected Space Forms

The results in this section are for Riemannian and Lorentzian man-
ifolds. The central ideas are an inductive argument using parallel hy-
persurfaces and rigidity results for warped products that follow directly
from the comparison theory.

5.1. Rigidity Lemmas in Warped Products. Let (M, g) be a Rie-
mannian manifold and let w : [0, L]→ (0,∞) be a positive C2 function
with w(0) = 1. Set r = −w′′/w and a = w′(0). Then

w′′(t) + r(t)w(t) = 0, w(0) = 1, w′(0) = a.

Let ε = +1 or ε = −1 and let ḡw be the warped product metric

ḡw := w(t)2g + εdt2

on M := M × [0, L]. Then for each x ∈ M the curve cx(t) := (x, t) is
a unit speed geodesic in (M × [0, L], ḡw). Then ∂t is a normal to the
hypersurface M × {t} and with respect to this normal the Weingarten
map is S(t) = −w′(t)/w(t)I. In particular the Weingarten map of
M × {0} is −w′(0)I = aI.

Definition 5.1. A semi-Riemannian metric ḡ on M× [0, L] is adapted
to the product structure iff for each x ∈ M the curve cx(t) is a unit
speed geodesic with respect to the metric ḡ.
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If x1, . . . , xn−1 are local coordinates on M , then x1, . . . , xn−1, t are
local coordinates on M×[0, L] and the metric ḡ on M×[0, L] is adapted
to the product structure if and only if the metric is of the form ḡ =∑n−1

i,j=1 gij(x
1, . . . , xn−1, t)dxidxj + εdt2.

Remark 5.2. Let f : (M, g) → (M, ḡ) be an isometric immersion of
(M, g) into (M, ḡ) as a hypersurface there is a globally defined unit
normal η along f . Define a map F : M × [0, L] → M by F (x, t) =
exp(tη(x)). If this is a local diffeomorphism then the Gauss lemma
implies the metric F ∗ḡ is adapted to the product structure of M ×
[0, L].

If ḡ is adapted to the product structure of M × [0, L] then ∂t is a
unit normal to the hypersurfaces M × {t}. Denote by S(t) := ∇X∂t
the Weingarten map of M × {t} in the metric ḡ. Along each of the
geodesics cx(t) = (t) there and let R(t) = R(·, ∂t)∂t.

Theorem 5.3. With the notation above (so that the restriction of the
metric ḡ to M × {0} is positive definite), assume that one of the two
conditions

1. S(0) ≥ aI on M × {0} and R(t) ≥ r(t)I on M × [0, L] or,
2. S(0) ≤ aI on M × {0} and R(t) ≤ r(t)I on M × [0, L].

holds. If

S(L) = −w
′(L)

w(L)
I on all of M × {L}(5.1)

then ḡ ≡ ḡw.

Proof. Assume the first condition holds. The equality (5.1) implies

that equality holds between S1(t) := −w′(t)
w(t)

I and S2(t) := S(t) at

t = L in the comparison Theorem 3.2. This implies that S1 ≡ S2 and
r(t)I ≡ R(t). The rest follows by a direct calculation.

Remark 5.4. For Theorem 3.2 to apply we need that the identity map
on tangent spaces to (M, g) is positive definite. This will only be the
case when g is positive definite, so that (M, ḡ) will be Riemannian
or Lorentzian. This is the reason why the results of this section are
restricted to these cases.

Theorem 5.5. With the notation above assume that one of the con-
ditions

1. S(0) = aI on M × {0} and R(t) ≥ r(t)I on M × [0, L],and

−w′(r0)
w(r0)

> 0,
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2. S(0) = aI on M × {0} and R(t) ≤ r(t)I on M × [0, L], and

−w′(r0)
w(L)

< 0,

3. S(0) = aI on M = M × {0}, R(t) ≤ r(t)I and S(t) > 0 on
M × [0, L], or

4. S(0) = aI on M × {0}, R(t) ≥ r(t)I and S(t) < 0 on M × [0, L]

holds. Then∧
2(S(L)) =

(
w′(L)

w(L)

)2∧
2(I) on all of M × {L}

implies ḡ ≡ ḡw.

Proof. This follows from the comparison Theorems 3.9 and 3.10 in the
same way that the last theorem follows from Theorem 3.2.

Remark 5.6. If the curvature tensor of (M, ḡ) satisfies

ḡ(R(X,Y )Y,X) ≥ ±εr(t)(ḡ(X,X)ḡ(Y, Y )− ḡ(X, Y )2)

on all of the image of G : M×[0, r0]→M then R(t) ≥ ±r(t)I. Likewise

ḡ(R(X,Y )Y,X) ≤ ±εr(t)(ḡ(X,X)ḡ(Y, Y )− ḡ(X, Y )2)

on the image of G : M × [0, r0]→M implies R(t) ≤ ±r(t)I.

5.2. The Rigidity Results.

Definition 5.7. Let N be a manifold and τ : N → R be a function.
Then B ⊂ N has the compact intersection property with respect to τ
if for every compact interval [a, b] ⊂ R the set {x ∈ B : τ(x) ∈ [a, b]}
has compact closure in N .

The rigidity results of this section are of the following type: Let
k = 0 or k = 1 and let (Rnk(K0), gRnk (K0)) be a model space (by which we

mean one of the spaces listed in Table 2) and (M, ḡ) a semi-Riemannian
manifold of the same dimension and index as Rnk(K0). Let B ⊂ Rnk(K0)
be a closed set and f : (Rnk(K0)\B)→M a local isometry. Then we are
looking for conditions on B and the curvature tensor of (M, ḡ) so that
f will extend to a local isometry defined on all of Rnk(K0). The basic
conditions are that B not be too large (which will usually mean that it
have the compact intersection property with respect to some function
τ), that Rnk(K0)\B be connected (which is easily seen to be necessary)
and that (M, ḡ) is geodesically complete with respect to geodesics of
some sign. Table 2 summarizes the conditions on the model space, the
curvature bounds, the sign of the complete geodesics (column headed
by Geo.), the exceptional set, and the function.
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Table 2.

Model Curv. Geo. Exceptional Set Function

Sn = Rn0 (+1)
R ≥ +1

R ≤ +1
+ B ⊂ Sn \ Sn−1 —

R
n
0 (−1)

R ≥ −1

R ≤ −1
+ B ⊂ {τ > 0} τ = w = e−t

R
n
1 (+1)

R ≥ +1

R ≤ +1
− B ⊂ {τ > 0} ⊂ Hn

1 (+1) τ = w = et

R
n
1 (+1)

R ≥ +1

R ≤ +1
− B ⊂ Rn1 (+1) \ Sn−1 —

R
n
1 (−1)

R ≥ −1
R ≤ −1

− B ⊂ {τ > 0}
τ = time
function of
a geodesic

R
n
1 (−1)

R ≥ −1

R ≤ −1
− B ⊂ {τ > 0} ⊂ Sn1 (−1) τ = w = cosh(t)

In the first two rows of the table Sn−1 is imbedded in Sn = R
n
0 (+1)

as an equator (that is as a totally geodesic submanifold). In the next
two rows Rn0 (−1) is viewed as a warped product as in row 1 of Table 1
of Section 2.2 and the function τ is the warping function w. Likewise
in the next two rows B is a subset of the “half space” Hn

1 (+1) in the
de Sitter space Rn1 (+1) which is represented as a warped product in
row 2 of Table 1 and in this case the function τ is again the warping
function (see also Definition 2.6). The de Sitter space Rn1 (+1) has a
another representation as a warped product −dt2 + cosh2(t)ḡRn−1

0 (+1)

and thus Sn−1 = Rn−1
0 (+1) is being viewed as the submanifold Sn−1 ×

{0} of Rn1 (−1). In the first two rows for the anti-de Sitter space Rn1 (−1),
the function τ is the time function of a timelike unit speed geodesic as
in Definition 2.8. Finally in the last two rows of the table B is a subset
of “strip” Sn1 (−1) in the anti–de Sitter space as in Definition 2.7 and
the function τ is the warping function.

Theorem 5.8. Let (Rnk(K0), gRnk (K0)) be one of the model spaces in
Table 2 of dimension at least three and let B ⊂ Rnk(K0) be a closed set
so that Rnk(K0)\B is connected. Then for any of the twelve rows in the
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table if B is a subset of the indicated set and if a function τ is given in
the last column assume that B has the compact intersection property
with respect to τ . Let (M, ḡ) be a semi-Riemannian manifold of the
same dimension and index as (Rnk(K0), gRnk (K0)) so that the curvature

tensor R of (M, ḡ) satisfies the indicated inequality and that every
geodesic of (M, ḡ) of the indicated sign is complete. Then any local
isometry ϕ : Rnk(K0) \ B →M extends to a surjective local isometry
ϕ̂ : Rnk(K0)→M . Thus (M, ḡ) has constant curvature.

Remark 5.9. (1) In the case of Rn0 (−1) (the Riemannian hyperbolic
space), when B is compact, ϕ : Rn1 (−1) \ B →M is injective, and M
is simply connected (and when R ≥ 0 also assume that (M, ḡ) has a
pole, that is a point where expx0

: T (M)x0 →M is a diffeomorphism)
the result can be deduced from a result of Kasue and Sugahara [24,
page 697]. If R ≤ −1,M is simply connected andM \ϕ[Rn0 (−1) \B] is
compact this is also a special case of a result of Schroeder and Ziller [35,
Theorem 7]. We note that our result allows the setB to be non-compact
and does not require ϕ to be injective.

For the space Rn0 (+1) = Sn when R ≥ +1 if the spaceM \ϕ[Sn \B]
is simply connected, compact and strictly convex then the result is
covered by the result of Schroeder and Ziller [35, Theorem 7]. In the
case of Rn0 (+1) = Sn and R ≤ +1 to the best of our knowledge the
result is new.

(2) Because of the failure of Theorems 5.3 and 5.5 when (M, ḡ) is
not Riemannian or Lorentzian, the method of proof here fails as a
method for proving rigidity theorems for semi-Riemannian manifolds
of arbitrary index.

The proofs all follow the same pattern: An induction on dimension
using hypersurfaces parallel to a standard hypersurface and the warped
product rigidity results of Section 5.1. We will do one case in detail
and leave the others to the reader. To avoid inessential but annoying
problems involving signs, the case we consider is the Riemannian case
where all the geometric complications involved occur.

Theorem 5.10. Let (M, ḡ) be a complete Riemannian manifold of di-
mension n ≥ 3 with sectional curvatures ≤ 1. Let B ⊂ Sn \ B be a
closed set with Sn \ B connected and let ϕ : Sn \ B →M be a local
isometry. Then ϕ extends to a surjective local isometry ϕ̂ : Sn →M .

In doing the induction step it is useful to have the following special
case. The notation is as follows: (Sn−1 × (−r0, r0), gS) is the tube of
radius r0 about the equator Sn−1.
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Corollary 5.11. Let (M, ḡ) be a connected complete Riemannian man-
ifold of dimension at least three and so that the sectional curvature of
(M, ḡ) satisfies KM ≤ 1. Let 0 < r0 < π/2. If (M, ḡ) contains a subset
isometric to (Sn−1 × (−r0, r0), gS), then (M, ḡ) is isometric to (Sn, gS).

Proof. By assumption there is an isometry ϕ : (Sn−1× (−r0, r0), gS)→
(M, ḡ). By the theorem this extends to a local isometry ϕ̂ : (Sn, gS)→
(M, ḡ). As ϕ̂ is a local isometry the image ϕ̂[Sn] is open inM . But as
Sn is compact the image is also closed. AsM is connected this implies
ϕ̂ is surjective. To show ϕ̂ is an isometry it only remains to show it is
injective.

Note ϕ̂ : Sn →M is a covering map. Let G be the group of deck
transformations of ϕ̂ : Sn →M , that isG is the set of maps a : Sn → Sn

so that ϕ̂ ◦ a = ϕ̂. If a ∈ G, then a : Sn → Sn is an isometry of gS. It
follows a[Sn−1] ∩ Sn−1 6= ∅. Let x ∈ Sn−1 so that a(x) ∈ Sn−1. Then
ϕ̂(ax) = ϕ̂(x). But on Sn−1 we have ϕ̂ = ϕ so ϕ(ax) = ϕ(x). But
ϕ is an isometry and therefore injective. Thus a(x) = x. But a deck
transformation with a fixed point is the identity so a = Identity. As a
was an arbitrary element of G this implies G is trivial. As Sn is simply
connected this implies ϕ̂ is injective and completes the proof (M, ḡ) is
isometric to (Sn, gS).

Proof of Theorem 5.10. It is enough to show (M, ḡ) has constant sec-
tional curvature 1. For then the universal covering space of (M, ḡ) is the
standard sphere (Sn, gS). Let π : Sn →M be the covering map. As any
local isometry between connected open sets in Sn extends to a global
isometry there is an isometry ψ : Sn → Sn so that π ◦ ψ|Sn\B = ϕ.
Then ϕ̂ := π ◦ψ is the required extension. That ϕ̂ is surjective follows
from Proposition 2.5.

The rest of the proof is devoted to showing that (M, ḡ) has constant
sectional curvature 1. Let B be the set of points x of M where some
sectional curvature at x is less than +1. Toward a contradiction assume
B 6= ∅. We may assume r0 is maximal with respect to the property that
there is a local isometry ϕ : (Sn−1× [−r0, r0], gS)→ (M, ḡ). For U ⊂M
let Cl(U) be the closure of U in M . Then as r0 is maximal there is a
point y0 ∈ ϕ[Sn−1 × [−r0, r0]] ∩ Cl(B). By acting with an isometry on
Sn−1×{0} we may choose the foliation defined by Sn−1×{r} so that in
fact y0 = ϕ[Sn−1× [−r0, r0]]∩Cl(B). Let x0 ∈ Sn−1× [−r0, r0] so that
ϕ(x0) = y0. We may assume x0 ∈ Sn−1 × {r0}. If x0 ∈ Sn−1 × {−r0}
then do the change of variable (x, t) 7→ (x,−t) on Sn−1 × [−r0, r0].

Let K0 = 1/ cos2(r0) so that K0 is the sectional curvature of Sn−1×
{r0} with the metric induced by gS. Let 0 < r1 < r0 and let K1 =
1/ cos2(r1).



36 LARS ANDERSSON AND RALPH HOWARD

Let Sn−1(K1) be the totally umbilic submanifold of (Sn−1× [−r0, r1])
which is tangent to Sn−1 × {r0} at the point x0. Then Sn−1(K1) ∩
Sn−1 × {r0} = {x0} and the Weingarten map of Sn−1(K1) is S ≡
(sin(r1)/ cos(r1))I (cf. Table 1). If r1 is chosen close enough to r0 then
Sn−1(K1) ⊂ Sn−1 × [0, r0].

Let η be the unit normal along Sn−1(K1) so that η(x0) = ∂tx0 . Let
r3 be a small positive number to be chosen later and define a map
G : Sn−1(K1)× [0, r3]→M by

G(x, t) = expϕ(x)(ϕ∗η(x)).

As ϕ is a local isometry on Sn−1×[−r0, r0] the submanifold ϕ[Sn−1(K1)]
is also totally umbilic in M with Weingarten map (sin(r1)/ cos(r1))I.
For t > 0 let St be the Weingarten map of Sn−1(K1)×{t} in Sn−1(K1)×
[0, r3] with respect to the pullback metric G∗M . If u(t) := tan(r1 +
t) then u′ = u2 + 1. By the assumption on the curvature and the
comparison Theorem 3.10,∧

2(St) ≤ u(t)2
∧

2(I) on [0, r3]

This, the assumption that the sectional curvature of ḡ (and thus also
the pulled back metric G∗ḡ) has sectional curvature ≤ 1 implies the
sectional curvature of the hypersurface Sn−1(K1)×{r3} with the metric
induced by G∗ḡ satisfies

KSn−1(K1)×{r3} ≤
1

cos2(r1 + r3)
.(5.2)

Let K3 := 1/ cos2(r1 + r3). We now claim if r3 > 0 is small enough,
then equality holds in inequality (5.2). This follows from the theorem
we are proving by induction. The base case is n = 3 so that Sn−1(K1)×
{r3} is two dimensional. Let

ρ(r3) := 1/ cos(r1 + r3).

By making r3 small enough, the Gauss curvature K of the rescaled
metric (S2(K1) × {r3}, ρ(r3)G∗ḡ) satisfies K ≤ 1 and can be made
arbitrarily close to 1.

Also by making r3 small we can make the set where K = 1 as
large as we please, in the sense that there is a subset of (S2(K1) ×
{r3}, ρ(r3)2G∗ḡ) which is isometric to a standard sphere of constant
Gauss curvature +1 with a very small ball deleted. Thus the two dimen-
sional rigidity result Theorem 2.12 implies (S2(K1)×{r3}, ρ(r3)G∗ḡ) is
isometric to a unit sphere. Thus the curvature of (S2(K1)×{r3}, G∗ḡ)
is identically K3. The case of n ≥ 4 is easier. Once r3 is small enough
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that (Sn−1(K1) × {r3}, G∗ḡ) contains an open set which in turn con-
tains a closed set isometric to a hemisphere in the standard sphere
of constant sectional curvature K3, induction and Corollary 5.11 im-
plies (Sn−1(K1)×{r3}, G∗ḡ) has constant sectional curvature K3. Thus
equality holds in (5.2) as claimed.

But if equality holds in (5.2), then it follows, using that the sectional
curvature of (M, ḡ) is ≤ 1 and the Gauss curvature equation, that∧2(Sr3) ≡ u(R3)2

∧2(I). Then Theorem 5.5 implies

G : (
⋃
{Sn−1(K1)× {s} : 0 ≤ s ≤ r3}, gS)→ (M, ḡ)

is a local isometry. As the point y0 = ϕ(x0) is in the interior of the set

G[
⋃
{Sn−1(K1)× {s} : 0 ≤ s ≤ r3}] ∪ ϕ[Sn−1 × [−r0, r0]]

and both ϕ and G are local isometries this implies the sectional cur-
vature of (M, ḡ) is identically +1 in a neighborhood of y0. But this
contradicts the choice of y0 ∈ Cl(B) and completes the proof the sec-
tional curvature of (M, ḡ) is identically +1. This in turn completes the
proof of the theorem.

5.3. Examples. We give some examples to show that at least with
regard to the size of the sets B in the results of Sections 5.2 and 4
the results are close to optimal. However in light of the many results
[4, 8, 9, 14, 17, 27, 29] to the effect that a manifold with indefinite
metric, satisfying a one sided bound on the sectional curvature (=
〈R(X, Y )Y,X〉/(〈X,X〉〈Y, Y 〉−〈X, Y 〉2), must have constant sectional
curvature, it is worth first giving examples to show that there are large
numbers of semi-Riemannian manifolds that have one sided curvature
bounds in our sense.

Let (M1, g1) and (M2, g2) be complete Riemannian manifolds and set
M = M1×M2, g = g1−g2. Then (M, g) is a geodesically complete semi-
Riemannian manifold of index k = dimM2. If the sectional curvatures
of (M1, g1) are ≥ 0 and the sectional curvatures of (M2, g2) are ≤ 0
then the curvature of (M, g) satisfies R ≥ 0. (The curvature of −g will
satisfy R ≤ 0.)

For a related example let (M1, g1) be a Riemannian manifold and
let (Hk, gH) be the hyperbolic space of constant sectional curvature
−1. Let ρ : Hk → [0,∞) be the Riemannian distance from some point
x0 ∈ Hk. Let M = M1 ×Hk and let g be the warped product metric
g = cosh2(ρ)g1 − gH. If (M1, g1) is compact with sectional curvatures
≥ +1 then (M, g) is geodesically complete and has curvature R ≥ 1.
(The metric −g has curvature ≤ −1.)
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To get some more interesting examples we first consider the two
dimensional case. Recall (cf. Section 2.3) that if (M, g) is two dimen-
sional the Gaussian curvature K is defined by K = g(R(X, Y )Y,X)
where X, Y is an orthonormal basis of T (M). The proof of the follow-
ing is straightforward.

Proposition 5.12. Let ε1, ε2 be ±1 and let g0 = ε1dx
2 + ε2dy

2 be
the standard flat metric on R2. Then there are geodesically complete
metrics g+ and g− on R2, with Gaussian curvatures K+ and K− re-
spectively, so that g± = g0 on the set {y ≤ 1}, K+ ≥ 0, K− ≤ 0 and
neither of K+ or K− is identically 0.

By considering product metrics (Rn−2
j × R2, g

R
n−2
j

+ g±) we see that

for each l there are geodesically complete metrics g = g
R
n−2
j

+g± on Rn

that agree with the standard metric gnk = −
∑k

i=1 dx
2
i +
∑n

i=k+1 dx
2
i , on

the set {xl ≤ 1}, whose curvature satisfies R ≥ 0 (or R ≤ 0) but which
are not globally flat. In this case the exceptional set B = {xl ≥ 1}
does not satisfy the compact intersection property with respect to any
Λη which shows this condition is necessary in Theorem 4.2.

We note that in the Lorentzian case, the metrics constructed above
do not satisfy the dominant energy condition. This is a consequence of
the following result. Let TΛ = Ric−1

2
Scal g+Λg. Then the Lorentzian

manifold (M, g) satisfies the dominant energy condition [18, §4.3] if
TΛ(X,X) ≥ 0 and Y 7→ TΛ(X,Y ) defines a nonspacelike covector for
all nonspacelike X,Y .

Theorem 5.13. Let (M, ḡ) be a timelike geodesically complete glob-
ally hyperbolic Lorentzian manifold of dimension n, satisfying the dom-

inant energy condition with cosmological constant Λ = −(n−1)(n−2)
2

K0

for K0 ≥ 0. Then, if there is an isometric immersion of Rn−1
0 (K0) as a

totally geodesic hypersurface ofM , there is a surjective local isometry
ϕ : (Rn1 (K0))→M .

Proof. In case K0 ≥ 0, Rn1 (K0) is globally hyperbolic and timelike
geodesically complete. Hence the result follows from the conservation
theorem (cf. [18, p. 94]) and uniqueness theorems for Einstein’s equa-
tions (cf. [18, Ch. 7] or [38, Ch. 10]).

Remark 5.14. In case K0 > 0, the condition that (M, ḡ) is globally
hyperbolic is not necessary in Theorem 5.13. The examples constructed
above are globally hyperbolic. Therefore Theorem 5.13 implies there
is a geodesically complete Lorentzian metric g on Rn that agrees with
the flat metric −dx2

1 + dx2
2 + · · · + dx2

n on the set {x1 ≤ 1}, whose
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curvature satisfies R ≥ 0, but which is not flat. Then this metric will
also satisfy the strong energy condition Ric(T, T ) ≥ 0 for all timelike
vectors T . However by Theorem 5.13 the dominant energy condition
(with Λ = 0) cannot hold on all of (Rn, g).

Several of the other model spaces we consider are warped products.
To be concrete consider ḡ = e2tg0 + dt2 where g0 is the flat positive
definite metric on Rn−1. Then ḡ is the metric on the hyperbolic space
with constant sectional curvature −1. Choose a smooth function w(t)

on R so that w(t) = et for t ≤ 1 and −w′′(t)
w(t)

< −1, and −
(
w′(t)
w(t)

)
<

−1 for t > 1 (such functions are not hard to construct). Then the
curvature R1 of the metric ḡ1 := w(t)2g0 + dt2 will satisfy R1 ≤ −1
but ḡ1 is not isometric to the metric ḡ even though they agree on the
set {t ≤ 1}. In this case the exceptional set we are trying to extend
across is B = {t ≥ 1} and this does not have the compact intersection
property with respect to the warping function t. In this case it is also

possible to find functions so that w(t) = et for t ≤ 1 and −w′′(t)
w(t)

> −1,

and −
(
w′(t)
w(t)

)
> −1 for t > 1 which gives examples with R1 ≥ −1.

Other examples relevant to Theorem 5.8 can be constructed along the
same lines.

6. Applications

6.1. Ends of Constant Curvature and Rigidity. In this section
we find all the geodesically complete ends of constant sectional curva-
ture and with finite fundamental group. This can be combined with
our earlier rigidity results to prove rigidity results for semi-Riemannian
manifolds with an end of constant sectional curvature and finite fun-
damental group.

6.1.1. Structure of Ends of Constant Curvature. We first remark that
in the case of flat ends of complete Riemannian manifolds there is
a structure theory due to Eschenburg and Schroeder [10] that gives
a complete classification of the locally Euclidean ends. It would be
interesting to have a corresponding structure theory in the case of ends
with constant sectional curvature −1. There does not seem to be much
known in this case except when the fundamental group of the end is
finite and then Theorem 6.3 below applies.

Let (Rnk(K0), gRnk (K0)) be one of our model spaces and let G be a finite
group of isometries acting on (Rnk(K0), gRnk (K0)). Assume that there is
a compact set C ⊂ Rnk(K0) so that G is fixed point free on Rnk(K0)\C.
(That is if a ∈ G, a 6= 1 then a(x) 6= x for all x ∈ Rnk(K0) \ C. In this
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case we say that G is fixed point free on the complement of a compact
set . As the group G is finite by replacing C with

⋃
a∈G a[C] we can

assume that C is setwise invariant under the action of G. Then the
quotient space G\(Rnk(K0) \ C) is a semi-Riemannian manifold with
constant sectional curvature. We will show that all ends of constant
curvature and finite fundamental group are isometric to examples of
this type and give more information about what groups G can be real-
ized and how these groups act on (Rnk(K0), gRnk (K0)).

Let k be an integer, 0 ≤ k ≤ n and let Rnk = Rnk(0) be the geodesically
complete flat space form of index k. For k > 0, write the tangent space
to Rnk as T (Rnk)0 = R

k
k ⊕ Rn−k0 and let Sk−1 × Sn−k−1 be the subset of

T (Rnk)0 = R
k
k ⊕ Rn−k0 defined by {(x, y) : 〈x, x〉 = −1, 〈y, y〉 = 1}. We

view Sk−1 × Sn−k−1 as the Riemannian product of spheres.
Let O(k, n − k) denote the group of isometries of Rnk fixing the ori-

gin. This can be identified with the group of linear isometries of the
underlying indefinite inner product space. Note that any Riemannian
isometry a of Sk−1×Sn−k−1 which preserves the product structure (i.e.
a ∈ O(k)×O(n− k)) is induced by a unique g ∈ O(k, n− k), and the
action of the derivative g∗ on the tangent space Rnk ⊕ Rn−k0 preserves
the splitting and induces the mapping a on Sk−1 × Sn−k−1. Thus any
subgroup G of O(k)×O(n−k) extends to to a subgroup of O(k, n−k).

Call a subgroup G of O(k)×O(n− k) strongly fixed point free iff for
every a = (a1, a2) ∈ G if there is a point u1 ∈ Sk with a1u1 = u1, or a
point u2 ∈ Sn−k with a2u2 = u2 then both a1 and a2 are the identity.
That is G is strongly fixed point free iff both the induced actions on
Sk and Sn−k are fixed point free.

It is easy to check that if G is a subgroup of O(k) × O(n − k) then
the induced action of G on Rnk is fixed point free on Rnk \ {0} iff the
action is strongly fixed point free. If G is finite and strongly fixed
point free, then we can form the orbit space G\Rnk . This is a smooth
manifold except at the orbit corresponding to the origin which is a
conical singular point.

Definition 6.1. Let G ⊂ O(k)×O(n− k) be a finite group of isome-
tries of the space Sk−1×Sn−k−1 which is strongly fixed point free. Then
the standard end of Rnk determined by G is the end of the space G\Rnk
constructed above.

Let K0 > 0. To make notation easier normalize so that K0 = 1. Let
(Hk, gH) be the hyperbolic space with constant sectional curvature −1
and let (Sn−k, gS) be the standard sphere. Choose a point x0 ∈ Hk to
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use as an origin and let ρ : Hk → [0,∞) be the Riemannian distance
from x0.

For 1 ≤ k < n − 1, the space Rnk(+1) has a representation as the
warped product (Sn−k ×Hk, cosh2(ρ)gS − gH). Let Sk−1 be the unit
sphere of T (Hk)x0 . Any isometry a of Sk−1 is induced by a unique
isometry of Hk fixing the origin x0. Thus any isometry a = (a1, a2) ∈
O(n− k + 1)×O(k) of Sn−k × Sk−1 induces an isometry of Rnk(+1) =
(Sn−k ×Hk, cosh2(ρ)gS − gH) in the obvious way.

If G ⊂ O(n− k+ 1)×O(k) we say G is weakly fixed point free iff for
any non-identity (a1, a2) ∈ O(n−k+1)×O(k) if a2 fixes a point of Sk−1,
then a1 has no fixed points on Sn−k. Note that ifG ⊂ O(n−k+1)×O(k)
is a finite group, then the induced action on Rnk(+1) is fixed point free
on the complement of some compact set iff G is weakly fixed point free.
Thus the quotient space G\Rnk(+1) is smooth away form a compact set.

Finally consider the case of k = n − 1, and let x0 be a point of
R
n
n−1(K0) with K0 > 0. Let Z2 act on Rnn−1(K0) by the geodesic

symmetry through x0. In this case the only standard ends of Rnn−1 are
the end of Rnn−1 and the end of the orbit space Z2\Rnn−1(K0).

Definition 6.2. Let K0 > 0 and 1 ≤ k < n − 1 Let G ⊂ O(n − k +
1) × O(k) be a weakly fixed point free finite group. Then the end of
the quotient G\Rnk constructed above is a standard end. If k = n− 1,
then the standard end is as just described. If K0 < 0 then the space
R
n
k(K0) is anti–isometric to the space Rnn−k(−K0). Thus we use the

constructions just given to define a standard end in this case.

Let E be an end of the manifold M . Recall that the fundamental
group π1(E) is isomorphic to G iff for every compact set C1 ⊂ M
there is a compact set C2 ⊇ C1 so that π1(E \ C2 is isomorphic to
G and if i : (E \ C2) → (E \ C1) is inclusion, then the induced map
i∗ : π1(E \ C2)→ π1(E \ C1) is injective. In particular this means the
end E is simply connected iff of all compact C1 there is a C2 ⊇ C1 so
that E \ C2 is simply connected.

In some cases the model space Rnk(K0) will have two ends. In this
case the two ends are isometric and so the isomorphism class of an end
of Rnk(K0) is well defined.

A more troublesome case is when the end of the model space is not
simply connected. (This happens when Rnk(K0) is diffeomorphic to R2

or Sn−2 × R2 where n ≥ 4.) These facts and some other information
we will need is given in the following table. The column headed by
“Diff. Type” gives the diffeomorphism type of Rnk(K0), the column
headed by “Positive” (resp. “Negative”) gives the lengths of the positive
(resp. negative) geodesics (when this number is finite it means that all



42 LARS ANDERSSON AND RALPH HOWARD

geodesics are closed with the given length as smallest period). The
other two columns give the number of ends and the fundamental group
of an end.

Table 3.

K0 k Diff. Type Positive Negative # of ends π1(∞)

K0 = 0 1 ≤ k ≤ n− 1 R
n ∞ ∞ 1 〈0〉

K0 = 0 k = 0 R
n ∞ — 1 〈0〉

K0 = 0 k = n R
n — ∞ 1 〈0〉

K0 < 0 k = 0 R
n ∞ — 1 〈0〉

K0 < 0 k = 1 R
n ∞ ∞ 1 〈0〉

K0 < 0 2 ≤ k = n− 1 Sn−1 × R ∞ 2π/
√
K0 2 〈0〉

K0 < 0 2 ≤ k ≤ n− 3 Sk × Rn−k ∞ 2π/
√
K0 1 〈0〉

K0 < 0 2 ≤ k = n− 2 Sk × R2 ∞ 2π/
√
K0 1 Z

K0 < 0 k = n Sn — 2π/
√
K0 0 —

K0 > 0 k = 0 Sn 2π/
√
K0 — 0 —

K0 > 0 k = n R
n — ∞ 1 〈0〉

K0 > 0 k = n− 1 R
n ∞ ∞ 1 〈0〉

K0 > 0 k = 1, n ≥ 3 Sn−1 × R 2π/
√
K0 ∞ 2 〈0〉

K0 > 0 3 ≤ k ≤ n− 2 Sn−k × Rk 2π/
√
K0 ∞ 1 〈0〉

K0 > 0 2 = k ≤ n− 2 Sn−k × R2 2π/
√
K0 ∞ 1 Z

We will use the fact that when a geodesic has infinite length then
it will eventually leave every compact set. Null geodesics have this
property in all cases.

Theorem 6.3. Let (M, g) be a geodesically complete semi-Riemannian
manifold of dimension n and index k and let E be an end of M . Assume
that E has finite fundamental group and constant sectional curvature
K0. Then the model space Rnk(K0) is non-compact, its ends are simply
connected, and the end E is isometric to a standard end of constant
sectional curvature K0 and index k.

This implies that when the model space (Rnk(K0), gRnk (K0)) is diffeo-

morphic to R2 or Sn−2 × R2 for n ≥ 4 (the cases where the end of
R
n
k(K0) has infinite fundamental group) then no end with a finite fun-

damental group can be geodesically complete and be locally isometric
to an end of (Rnk(K0), gRnk (K0)).

The proof of Theorem 6.3 breaks up into two parts. The first is
understanding the simply connected ends of constant curvature and the
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second is in proving a fixed point theorem for finite groups of isometries
on the model space. The facts about simply connected ends are given
by

Proposition 6.4. Let (M, g) be a geodesically complete semi-Riemannian
manifold of dimension n and index k. Assume that M has non–empty
compact boundary ∂M and that (M, g) is geodesically complete in the
sense that every inextendible geodesic either has no endpoint or an
endpoint on ∂M .

Assume that (M, g) is simply connected and that it has constant
sectional curvature K0 and that the model space Rnk(K0) has simply
connected ends. Then k and K0 are such that Rnk(K0) is noncompact
and there are compact sets ∂M ⊂ C1 ⊂ M and C2 ⊂ Rnk(K0) so that
every unbounded component of M \C1 is isometric with an unbounded
component of Rnk(K0) \ C2.

Proof. As M is simply connected and locally isomorphic to Rnk(K0)
a standard monodromy argument shows there is a local isometry f :
M → R

n
k(K0). Let U be a connected component of Rnk(K0)\f [∂M ] and

set Û := f−1[U ]. If Û 6= ∅ then f |Û : Û → U is a covering map. To see
this let y ∈ U and let B ⊂ U be a geodesically convex neighborhood
of y whose closure is disjoint from f [∂M ] and let Ny ⊂ T (Rnk(K0))y be

the convex neighborhood of the origin so that exp[Ny] = By. Let x ∈ Û
so that f(x) = y. Let N̂x ⊂ T (M)x be the convex neighborhood of the

origin so that f∗x[N̂x] = Ny and let B̂x = exp[N̂x]. Then B̂x ⊂ Û , and

f |B̂x : B̂x → Bx is a diffeomorphism. As x was any point of Û with
f(x) = y this shows that the neighborhood Bx is evenly covered. Thus

if Û 6= ∅ the map f |Û is a covering map as claimed.

Claim: The set f [M ] is not contained in an compact subset of Rnk(K0).
Assuming the claim we prove the proposition. Let U be an un-

bounded component of Rnk(K0) \ f [∂M ] so that f [M ] ∩ U 6= ∅ and set

Û := f−1[U ]. Then f |Û : Û → U is a covering map. Then there is a
compact set C2 ⊃ f [∂M ] so that U2 := U \ C2 is simply connected.

Let Û2 be a connected component of f−1[U2]. As U2 is simply con-

nected the map f |Û2
: Û2 → U2 must be a diffeomorphism and thus an

isometry. As ∂U2 is compact the boundary of Û2 is also compact. The
proposition now follows.

We now prove the claim. This is complicated by the fact that in
many cases the model space Rnk(K0) contains closed geodesics. This
means it might be possible to have a geodesic ray γ : [0,∞)→M that
eventually leaves every compact set of M , but f ◦ γ : [0,∞)→ R

n
k(K0)
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is closed and thus is contained in a compact subset of Rnk(K0). To
avoid this note that by multiplying the metric of Rnk(K0) by ±1 we can
assume that no non-negative geodesic of Rnk(K0) is closed and that in
fact a non-negative geodesic eventually leaves every compact set.

Let D be a compact subdomain of M with smooth boundary and
so that ∂M is a subset of the interior of D. We also choose a com-
plete Riemannian metric h on M (which has no relation to the semi-
Riemannian metric g on M). Let S+(D) be the set of all non-negative
(i.e. g(u, u) ≥ 0) h-unit vectors tangent to M at a point of D. Then
all the fibers of S+(D) are compact and D is compact so the space
S+(D) is compact. Let V be an unbounded component of M \D and
let G be the compact set of ordered pairs (u, t) ∈ S+(D) × (0,∞)
so that exp(tu) ∈ V and 0 ≤ t ≤ 1. (Here exp is the exponen-
tial of the semi-Riemannian metric g.) Note that if x ∈ ∂D ∩ ∂V
then there is a positive h-unit vector u at x pointing into V and thus
exp(tu) ∈ V for small t and thus G is not empty. For each (u, t) ∈ G
let (α(u, t), β(u, t)) be the maximal interval containing t and contained
in the set {s : exp(su) ∈ V }. Thus 0 ≤ α(u, t) < t < β(u, t) ≤ ∞
and α(u, t) ≤ 1. If for some (u, t) ∈ G we have β(u, t) = ∞ then
γ(s) = f(exp(su)) with s > α(u, t) is a non-negative geodesic ray of
R
n
k(K0) and thus it eventually leaves every compact set. Thus f [M ]

is not contained in any compact subset of Rnk(K0) and thus the claim
holds in this case.

Next assume that there is a sequence {(ul, tl)}∞l=1 ⊂ G so that liml→∞ β(ul, tl) =
∞. Then as tl ∈ [0, 1] and S+(D) is compact, by going to a subse-
quence we can assume tl → t0 for some t0 ∈ [0, 1] and ul → u0 for some
u0 ∈ S+(D). Consider the geodesic γ(s) = exp(su0) = liml→∞ exp(sul)
for s > 1. This will be disjoint from D◦ (the interior of D) and thus
does not meet ∂M . It is also a non-negative geodesic. Thus the ge-
odesic f(γ(s)) in Rnk(K0) will eventually leave every compact set and
thus f [M ] is not contained in any compact subset of Rnk(K0).

This leaves the case where the function β(u, t) is bounded on G, say
β(u, t) ≤ C0. Then let

G = {exp(su) : α(u, t) < s < β(u, t) for some (u, t) ∈ G}.

Consider the sequence {exp(slul)}∞l=1 ⊂ G where (ul, tl) is a sequence
in G. By passing to a subsequence we can assume that tl → t0 and
ul → u0 for some u0 ∈ S+(D). As sl < β(ul, tl) ≤ C0 we can also
assume sl → s0 for some s0 ≤ C0. Then exp(slul) → exp(s0u0) which
shows that every sequence out of G has a convergent subsequence.
Therefore so the closure of G is compact in M . As the component V is
unbounded it can not be contained in any compact set and thus there
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is a point x in V that is not in G. Let γ be a positive geodesic of M
through the point x. Then γ can not meet D, for if it did the point x
would be of the form exp(su) for some (u, t) ∈ G contradicting that x
is not in G. Thus the geodesic f ◦ γ of Rnk(K0) leaves every compact
set and completes the proof of the claim f [M ] is not contained in
any compact subset of Rnk(K0). This also completes the proof of the
proposition.

To pass from the case of simply connected ends to the case of ends
with finite fundamental group we need information about finite group
actions on certain homogeneous spaces of totally geodesic submani-
folds of Rnk(K0). By a maximal compact totally geodesic submanifold in
R
n
k(K0) we mean a compact totally geodesic submanifold C of Rnk(K0)

which is not properly contained in any other compact totally geodesic
submanifold of Rnk(K0). In many cases the maximal compact totally
geodesic submanifolds may just be points. In the case the space Rnk(K0)
is compact, then the only maximal compact flat is Rnk(K0) itself. The
following gives the basic facts. The proof is left to the reader.

Proposition 6.5. If C1 and C2 are maximal compact totally geodesic
submanifolds in Rnk(K0), then there is an isometry g of Rnk(K0) with
gC1 = C2. Thus all the maximal compact totally geodesic submani-
folds in Rnk(K0) are isometric. The maximal compact totally geodesic
submanifolds are

Table 4.

K0 n, k Max. Cpt. Tot. Geo. Subman.

K0 = 0 0 ≤ k ≤ n Point
K0 > 0 k = n− 1, n Point
K0 > 0 0 ≤ k ≤ n− 2 Sn−k(1/

√
K0)

K0 < 0 k = 0, 1 Point
K0 < 0 2 ≤ k ≤ n Sk(1/

√
−K0)

For the rest of this section we will denote the space of maximal com-
pact totally geodesic submanifolds in Rnk(K0) by MCTGS(n, k,K0).
Note that if the elements of MCTGS(n, k,K0) are points, then MCTGS(n, k,K0) =
R
n
k(K0).

Proposition 6.6. K0 > 0 and k 6= n − 1 or K0 < 0 and k 6= 1
then MCTGS(n, k,K0) can be given the structure of a Riemannian
symmetric space of non-compact type in such a way that the group
of isometries of Rnk(K0) acts on MCTGS(n, k,K0) by isometries. In
particular the sectional curvature on MCTGS(n, k,K0) is non-positive.
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Proof. As the spaces Rnk(K0) and Rnn−k(−K0) are anti–isomorphic, it
is enough to prove the result in the case K0 > 0. When K0 > 0 the
full isometry group of Rnk(K0) is the orthogonal group O(n− k+ 1, k).
If C0 ∈ MCTGS then the subgroup of O(n − k + 1, k) fixing C0 is
O(n − k + 1) × O(k) and thus as a homogeneous space MCTGS =
O(n − k + 1, k)/(O(n − k + 1) × O(k)). This is well known to be a
Riemannian symmetric space ([20, p518] it is the non-compact dual to
the Grassmannian manifoldGk(R

n+1) = O(n)/(O(n−k+1)×O(k))). It
is a standard result that MCTGS = O(n−k+1, k)/(O(n−k+1)×O(k))
has non-positive curvature as it is a Riemannian symmetric space of
non-compact type. Cf. [20, Theorem 3.1 p. 241].

Proposition 6.7. Let H be a compact group acting on Rnk(K0) by
isometries. Then H fixes some point of MCTGS(n, k,K0).

Proof. If K0 = 0 then H is a compact group acting on Rn = R
n
k(0) by

affine maps. Thus H must fix a point of Rnk(K0) which proves the result
in this case as the maximal compact totally geodesic submanifolds are
points.

If K0 > 0 and k 6= n−1 of K0 < 0 and k 6= 1 then by the last propo-
sition MCTGS(n, k,K0) is a simply connected Riemannian manifold
with non-positive sectional curvature and H acts on MCTGS(n, k,K0)
by isometries. So by the Cartan fixed point theorem [20, Theorem 13.5,
p. 75] H fixes a point of MCTGS(n, k,K0).

This leaves the equivalent cases of K0 > 0 and k = n−1 and K0 < 0
and k = 1. We will deal with the case where K0 < 0 and k = 1
and we normalize so that K0 = −1. Let Rn+1

2 be Rn+1 with the inner
product 〈x, y〉 = −x1y1 − x2y2 + x3y3 + · · · + xn+1yn+1. Let Sn1 (−1)
be the hypersurface in Rn+1

2 defined by 〈x, x〉 = −1. Then Sn1 (−1) has
constant sectional curvature −1 and is diffeomorphic to S1 × Rn−1.

Let p : Rn1 (−1) → Sn1 (−1) be the covering map and let Γ be the
group of deck transformations. Recall that Rn1 (−1) is time orientable.
Fix a time orientation on Rn1 (−1). Because each timelike geodesic of
Sn1 (−1) is closed of length 2π it is not hard to see that the group Γ of
deck transformations is cyclic and its generator is the unique isometry
a of Rn1 (−1) with the property that for every future pointing timelike
unit speed geodesic γ in Rn1 (−1) there holds aγ(t) = γ(t+ 2π).

Let g be any isometry of Rn1 (−1) that preserves the time orientation
of Rn1 (−1). Then for any future pointing time like unit speed geodesic
γ the curve gγ is also a future pointing time like unit speed geodesic
and so agγ(t) = gγ(t + 2π) = gaγ(t). As there is a future pointing
time like unit speed geodesic through any point of Rn1 (−1) this implies
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ag = ga. That is the generator a of Γ commutes with every isometry
of Rn1 (−1) that preserves the time orientation.

We now prove the proposition in the special case where every ele-
ment of the group H preserves the time orientation of Rn1 . Then every
element of H commutes with every element of the group of deck trans-
formations and therefore H also acts on Sn1 (−1) by gp(x) := p(gx). We
now claim that there is a time like geodesic of Sn1 (−1) that is fixed by
the action of H. Note that the group of isometries of Sn1 (−1) that stabi-
lize some fixed timelike geodesic is O(2)×O(n−1) and the full isometry
group of Sn1 (−1) is O(2, n−1). Therefore as a homogeneous space, the
space of timelike geodesics of Sn1 (−1) is O(2, n− 1)/(O(2)×O(n− 1))
which, just as above, is a Riemannian symmetric space with non-
positive sectional curvature. Thus the Cartan fixed point theorem lets
us conclude H fixes a timelike geodesic c of Sn1 (−1).

Let γ be the future pointing unit speed time like geodesic covering
of Sn1 (−1) covering c. Then γ is fixed set-wise by every element g ∈ H.
As the elements of H preserve the time orientation this implies that if
g ∈ H, then gγ(t) = γ(t + t0) for some t0 ∈ Rn. But then glγ(t) =
γ(t + lt0). But as the group H is compact the orbit {glγ(0) = γ(lt0) :
l = 0,±1,±2, . . . } must have compact closure in Rn1 (−1) which is only
the case if t0 = 0. Thus gγ(t) = γ(t) for all g ∈ H. So in the case
where all elements of H preserve the time orientation of Rn1 (−1) there
is always a time like geodesic that is fixed pointwise by H.

Finally we consider the case where the group contains elements that
reverse the time orientation of Rn1 (−1). In this case let H0 be the
subgroup of H of elements that preserve the the time orientation of
R
n
1 (−1). Then H0 is a subgroup of H of index 2. We consider two

cases. First assume every element of H0 fixes every element of Rn1 (−1).
Then H0 = 〈1〉 and so H is just a cyclic group of order two. Let b be
the generator of H. Then b reverses the time orientation of Rn1 (−1).
Choose a fixed future pointing time like unit speed geodesic γ0 for ref-
erence and let τ be the time function determined by γ0, cf. Definition
2.8. That is, on γ0 the function is given by τ(γ0(t)) = t and then τ
is extended to Rn1 (−1) to be constant on the totally geodesic hyper-
surfaces perpendicular to γ0. As the element b of H reverses the time
orientation of Rn1 (−1) the function τ ◦ b is a decreasing function when
restricted to γ0, limt→∞ τ(bγ(t)) = −∞, and limt→−∞ τ(bγ(t)) = +∞.
Thus there is a point x = γ(t1) so that τ(x) = τ(gx).

Let M be the set of all points of Rn1 (−1) where τ(x) = τ(bx). Then
M is not empty and as the level sets of both τ and τ ◦ b are totally
geodesic spacelike hypersurfaces and M is the intersection of two such
level sets, M will be a space like totally geodesic submanifold of either
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codimension 1 (in the case the level sets happen to be equal) or codi-
mension 2 (in all other cases). This implies M is a simply connected
Riemannian manifold of constant non-positive sectional curvature. As
the isometry b leaves M fixed set-wise, the Cartan fixed point theorem
can again be used to show b has a fixed point on M . This completes
the proof in the case H0 = 〈1〉.

This leaves the case where H0 6= 〈1〉. Then by what we have shown
above there is a timelike geodesic γ that is fixed pointwise by H0. Let
N be the subset of Rn1 (−1) of all points fixed by all elements of H0.
As N is the fixed point set of a group of isometries it is a totally
geodesic submanifold of Rn1 (−1). As N contains a timelike geodesic
the restriction of the metric to N is non-degenerate (in Lorentzian
manifolds the only degenerate subspaces have a positive semidefinite
metric). As H0 6= 〈1〉 the submanifold N has dimension less than
n. As the subgroup H0 of H has index two it is normal in H. This
implies that the set N is fixed set-wise by the group H. To see this
let a ∈ H0 and g ∈ H. Then g−1ag ∈ H0 and so for x ∈ N we have
agx = gg−1agx = gx. Thus gx is fixed by all elements of H0 and so
gx ∈ N as claimed. Thus H acts on the submanifold N and N is
isometric to Rm1 (−1) for some m < n. Thus we can now use induction
to conclude that H has a fixed point in N and therefore also in Rn1 (−1).
This completes the proof.

Proof of Theorem 6.3. Let E be an end of M with constant sectional
curvature and finite fundamental group π1(E). Then there is a compact
set C, which we can assume to have smooth boundary, so that E \ C
has fundamental group isomorphic to π1(E). Let π : N → E \C be the
universal cover of E \C and let G be the group of deck transformations
of this cover. Thus G acts on the semi-Riemannian manifold N by
isometries and G and the orbit space G\N is isometric to E \C. Thus
it is enough to show G\N is isometric to a standard end. By use of
Proposition 6.4 by replacing C by a larger compact set we can assume
N is isometric to an unbounded component of Rnk(K0) \ C2 for some
compact C2. Thus we simply assume N = R

n
k(K0)\C2. As the space

R
n
k(K0) is simply connected, the action of G on N extends to an action

on the whole space Rnk(K0). By Proposition 6.7 the group fixes some
element of MCTGS(n, k,K0). If the maximal compact totally geodesic
submanifolds of Rnk(K0) are spheres Sp with p ≥ 2, then by normalizing
the metric we can assume the space is (Sp × Hn−p, cosh2(ρ)gS − gH)
and that the fixed element of MCTGS(n, k,K0) is Sp×{ρ = 0}. Then
it follows that G must be fixed weakly fixed point free and that G\N
is a standard end.
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If the maximal compact totally geodesic submanifolds are points,
then let x0 be the point of Rnk(K0) fixed by G. Then there is a
k-dimensional subspace V of T (Rnk(K0))x0 that is fixed by G. (I.e.
a∗x0V = V for all a ∈ G.) This is because the set of all such sub-
spaces is just the homogeneous space O(k, n−k)/(O(k)×O(n−k) and
as we have done several times above, we can apply the Cartan fixed
point theorem to this case. But then by standard linear algebra the
orthogonal complement V ⊥ of V is also invariant under G. Letting
Sk−1 × Sn−k−1 be the product of the unit spheres in these spaces we
see that the group has an action on Sk−1×Sn−k−1 which must then be
strongly fixed point free and thus the space G\N is again isomorphic
to a standard end. This completes the proof.

6.1.2. Rigidity Results.

Theorem 6.8. Let (M, ḡ) be a geodesically complete semi-Riemannian
manifold of dimension n ≥ 3 and index k with curvature satisfying one
of the two inequalities R ≥ 0 or R ≤ 0 and assume (M, ḡ) has an end
E with R ≡ 0 on E and π1(E) finite. Then (M, ḡ) is isometric to the
flat model space (Rnk , g0).

Theorem 6.9. Let (M, ḡ) be a geodesically complete Lorentzian or
Riemannian manifold of dimension n ≥ 3 with curvature tensor sat-
isfying one of the two one sided inequalities R ≥ −1 or R ≤ −1.
Assume (M, ḡ) has an end E with π1(E) finite and so that R ≡ −1
on E. Then if (M, ḡ) is Lorentzian it is isometric to the anti-de Sitter
space (Rn1 (−1), gRn1 (−1)). If (M, ḡ) is Riemannian it is isometric to the
hyperbolic space (Rn0 (−1), gRn0 (−1))

Proofs. We first consider Theorem 6.8. By Theorem 6.3 there is a
compact set C ⊂ Rnk and an local isometry ϕ : Rnk \C →M so that for
each y ∈M the preimage ϕ−1[y] has at most #(π1(E)) elements. By
Theorem 4.2 this extends to a surjective local isometry ϕ̂ : Rnk →M .
This implies the map ϕ̂ is a covering map and that the group of deck
transformations is isomorphic to G := π1(E) and thus G is finite. By
Proposition 6.7 G has a fixed point on Rnk . But as G is the group of
deck transformations of ϕ̂ : Rnk → M the only way it can have a fixed
point is if it is the trivial group G = 〈1〉. This implies ϕ̂ is an isometry
and completes the proof of Theorem 6.8. The proof of Theorem 6.9 is
identical except that the rigidity results of Section 5.2 are used.

Remark 6.10. In all cases not covered by the last two theorems the
exact analog of the theorems is false. First consider the case where
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K0 < 0 and 3 ≤ k ≤ n−1. Normalize so that K0 = −1. Then as above
R
n
k(K0) is isometric to the warped product metric g0 = − cosh2(ρ)gS +

gH on Sk ×Hn−k. Thus if G is a finite group of isometries of (Sk, gS)
acting without fixed points, then it also has a fixed point free action
on Rnk(K0) ≈ Sk × Hn−k by letting it act on the first factor. Then
the manifold G\Rnk has a metric of constant sectional curvature −1,
and an end with a finite fundamental group without being isometric to
R
n
k(K0). There are similar examples when K0 > 0.
However it is still reasonable to conjecture that if (M, g) is a geodesi-

cally complete semi-Riemannian manifold of dimension n ≥ 3 and in-
dex k with 3 ≤ k ≤ n − 1, which satisfies an appropriate one sided
bound on sectional curvature and has an end G with finite funda-
mental group and constant sectional curvature K0 < 0 that (M, g) is
isometric to a quotient of Rnk(K0) by a finite fixed point free group of
isometries. Getting control of the geometry of the end is taken care of
by Theorem 6.3. What is needed to prove this is an extension of the
rigidity results of Section 5.2 to the case of space forms of index other
than k = 0, 1, n− 1, n.

6.2. Rigidity in Quotients.

Definition 6.11. Let M be a smooth manifold and let C ⊂ M be a
closed subset. Let g1 and g2 be two smooth semi-Riemannian metrics on
M and let ` be a non-negative integer. Then we say that g1 and g2 agree
to order ` on C if and only if for any point x ∈ C the partial derivatives
of g1 and g2 of order at most ` are equal in any local coordinate system
containing x.

Remark 6.12. If C is the closure of an open set and g1 = g2 on C, then
g1 and g2 agree to order ` on C for all `.

Theorem 6.13. Let (M, ḡ0) be a geodesically complete semi-Riemannian
manifold of dimension at least three with constant curvature 0. Let
U ⊂M be a connected open set with compact closure and assume that
π1(U) is finite. Further, let ḡ be a semi-Riemannian metric onM and
assume that ḡ = ḡ0 to order 2 onM \ U and that the curvature tensor
R ofM satisfies a one sided curvature bound

R ≥ 0 or R ≤ 0.(6.1)

Then (M, ḡ) is isometric to (M, ḡ0) and thus (M, ḡ) has constant sec-
tional curvature 0.

Theorem 6.14. Let (M, ḡ0) be a geodesically complete Riemannian
or Lorentzian manifold of dimension at least three which is locally
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isometric to (Rnk(−1), gRnk (−1)). (Thus k = 0 (Riemannian) or k = 1

(Lorentzian).) Let U ⊂ M be a connected open set with compact
closure and assume π1(U) is finite. Further let ḡ be a semi-Riemannian
metric on M that agrees with ḡ0 to order 2 on M \ U and so that the
curvature of ḡ satisfies a one sided curvature bound

R ≥ −1, or R ≤ −1.(6.2)

Then (M, ḡ) is isometric to (M, ḡ0).

Remark 6.15. If the manifoldM is compact, then it is possible that the
open set U of the theorems is dense inM . We look at an example of this
in the Riemannian case. Let (M, ḡ0) be a compact Riemannian manifold
of constant sectional curvature K0 ≤ 0. Then the fundamental group
π1(M) is infinite. Let x ∈M and let C(x) be the cut locus of x in M .
Then U := M \ C(x) is simply connected (as it is homeomorphic to
a ball in Rn). Thus the theorems say that any Riemannian metric ḡ
on M that agrees with ḡ0 to order 2 on C(x) and satisfies a one sided
curvature bound of the form (6.1) or (6.2), then ḡ also has constant
sectional curvature.

Proof of the Theorems. We prove Theorem 6.14, the proof of Theo-
rem 6.13 being similar. The universal covering space of M is Rnk(−1).
Let π : Rnk(−1)→M be the covering map. Then π : (Rnk(−1), gRnk (−1))→
(M, ḡ0) is a local isometry. Let Û0 be a connected component of π−1[U ].

As π1(U) is finite, the map π|Û0
: Û0 → U is a finite sheeted cover. But

then using that the closure of U in M is compact, it is not hard to

see that the closure of Û0 in Rnk(−1) is compact. Define a new semi-
Riemannian metric g on Rnk(−1) by

g =

{
π∗ḡ on Û0

π∗ḡ0 = gRnk (−1) on Rnk(−1) \ Û0.
(6.3)

As π : (Rnk(−1), gRnk (−1)) → (M, ḡ0) is a local isometry and ḡ and ḡ0

agree to order 2 on ∂U the semi-Riemannian metric g pieces together
to form a C2 metric on Rnk(−1). This semi-Riemannian metric agrees

with the standard metric gRnk (−1) outside of the compact set closure(Û0).
It is easily checked that the proof of the rigidity result Theorem 5.8

goes through under the assumption the metrics are C2. Therefore, we
are able to conclude that (Rnk(−1), g) is isometric to (Rnk(−1), gRnk (−1)).
Theorem 6.14 now follows.

The proof of Theorem 6.13 works along the same lines except that
Corollary 4.4 is used to finish the proof.
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