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1. Introduction

In 1948 E. Hopf [3] proved that any Riemannian metric on the two di-
mensional torus that is without conjugate points is a flat metric. The proof
proceeds by showing that any metric on a compact surface without conju-
gate has non-positive Gaussian curvature and then using the Gauss-Bonnet
theorem to conclude that when the surface is a torus that the Gaussian
curvature is identically zero. In 1958 L. Green generalized Hopf’s argument
to show that any metric on a compact Riemannian manifold of any dimen-
sion that is without conjugate points has non-positive scalar curvature. The
note here is based on Green’s paper gives an elementary exposition of the
Hopf-Green result, however the proof is just a reworking of Green’s proof
with no changes of substance.

2. Systems of Ordinary Differential Equations without

Conjugate Points

In this section t 7→ R(t) will be a smooth map form the real numbers
R into the vector space of m ×m symmetric matrices. For any a ∈ R let
S(t; a) be defined by the initial value problem

S′′(t; a) +R(t)S(t; a) = 0, S(a; a) = 0, S′(a, a) = I(2.1)

where I is the m×m identity matrix. We say that R(t) is free of conjugate
points iff of all a ∈ R and t 6= a we have detS(t; a) 6= 0. If R(t) is free of
conjugate points, then for t 6= a define

A(t; a) = −S′(t, a)S(t, a)−1.

If we view (2.1) as the Jacobi equations along a geodesic γ(t) in a Riemannian
manifold then the condition that R(t) is free of conjugate points is exactly
that the geodesic is free of conjugate points in the usual sense. If t < a
then A(t; a) is the second fundamental form (viewed as a (1, 1) tenser) of
the geodesic sphere centered at γ(t) and passing through γ(t) with respect
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to the normal d/dt. The horosphere determined by this geodesic is objected
obtained by taking the geometric limit of these geodesic spheres as a→∞.
The following result more or less says that these second fundamental form
of these horospheres exits and that it satisfies the correct matrix Riccati
equation.

Theorem 2.1 (E. Hopf [3] (m = 1) and L. Green [2] (m ≥ 2)). If R(t) is
free of conjugate points then

U(t) := lim
a→∞

A(t; a)

exists for all t, the function t 7→ U(t) is smooth and satisfies the Riccati
equation

U ′(t) = U(t)2 +R(t).

If A and B are symmetric m×m matrices then A ≤ B means that B−A
is positive semi-definite. Likewise A < B will mean that B − A is positive
definite.

Lemma 2.2. Under the hypothesis of the theorem, if t < a < b, then
A(t; a) > A(t; b).

Proof. We first note that if A(t, a) and A(t; b) are the second fundamental
forms of the geodesic spheres centered at γ(a) and γ(b) and through γ(t)
then the triangle inequality implies the geodesic sphere centered at γ(b).

This can be translated into the desired inequality.

-����&%
'$

γrγ(t)(If two hypersurfaces are tangent at a point and one
lies on one side of the other, then there is an inequality
between the second fundamental forms.) To give an
analytic proof we first note that a direct calculation
shows that A(t; a) satisfies a Riccati equation A′(t; a) = A(t; a)2+R(t). Also
from the initial value problem defining S(t, a) near t = a

S(t; a) = (t− a)I +O(t− a)3,

S(t; a)−1 =
1

(t− a)
I +O(t− a)3,

S′(t; a) = I +O(t− a)2.

Thus

A(t; a) = −S′(t; a)S(t; a)−1 =
−1

(t− a)
I +O(t− a).(2.2)

For t just a little smaller than a we thus see that A(t; a) is of approximately of
the form CI for C large and positive. As a < b this implies A(t, a) > A(t, b)
for t just a little smaller than a. But then the comparison theory for the
Riccati equation [1, Sec. 3] implies A(t, a) > A(t, b) for all t < a.

Lemma 2.3. With the hypothesis of the theorem, if a, b > 0 then A(t; a) >
A(t; b) for −b < t < a.
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Proof. Geometrically if γ(t) is a line, that is if it minimizes the distance
between any two of its points, and A(t, a) and A(t; b) are the second funda-
mental forms of the geodesic spheres centered at γ(a) and γ(b) and through
γ(t) then the triangle inequality implies the geodesic sphere centered at γ(a)
is outside the geodesic sphere centered at γ(b). As in the last lemma this
implies an inequality between the second fundamental forms.

Analytically we again use equation (2.2). If a is
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γr γ(t)replaced by −b in (2.2) then for t just a little larger
than −b we see that A(t,−a) is approximately −CI
for C a large positive constant. Thus for t just a
little larger than −a we have A(t;−a) < A(t; b) and
thus the comparison theory implies A(t;−a) < A(t; b) for −a < t < b.

Proof of Theorem 2.1. Fix c > 0 and let a > c. Lemma 2.3 implies that
on the interval [−c, c] we have A(t, a) > A(t,−2c). Thus for some constant
(only depending on R(t) and c) there holds −CI ≤ A(t, a) for all t ∈ [−c, c]
and a > c. By Lemma 2.2 there for fixed t ∈ [−c, c] A(t, a) is a decreasing
function of a. As there is a lower bound, we see that U(t) = lima→∞A(t; a)
exists for all t ∈ [−c, c]. For t ∈ [−c, c], a > 2c we see that A′(t; a) =
A(t; a)2 + R(t) stays bounded, so A(t; a) is uniformly Lipschitz and thus
by Ascoli’s theorem the convergence in the limit is uniform. This in turn
implies that as a → ∞ that A′(t; a) = A(t; a)2 + R(t) converges uniformly
to something, and it is easy to see that this something must be U ′(t). Thus
U ′(t) = U(t)2 +R(t). As U(t) satisfies a an ordinary differential equation it
is a smooth function.

3. Riemannian Manifolds without Conjugate Points

Let (M, g) be a compact n dimensional Riemannian manifold without
conjugate without conjugate points. Let S(M) be the unit sphere bundle of
M and let ζt be the geodesic flow on S(M). Then, as usual, the geodesic
flow preserves the natural volume measure on S(M). For each u ∈ S(M)
let γu(t) be the geodesic fitting u (that is γ′u(0) = u). Then as γ is without
conjugate points we can construct a field linear maps U(t) along γ so that for
each t U(t) is a selfadjoint linear map γ′u(t)⊥ that satisfies U ′(t) = U(t)2 +
R(t) where R(t) is defined by R(t)X := R(X, γ′u(t))γ′u(t) and R(X,Y )Z =
∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z is the curvature tensor of (M, g). Define a
function U on S(M) by Uu := U(0). Thus if M is simply connected Uu is
the second fundamental form of the horosphere determined by γu through
the base point of u. For u ∈ S(M) the function t 7→ Uζtu is smooth, but I
do not know if the dependence of Uu on u is continuous, but I assume that
it is not. However the map u 7→ Uu is measurable (in [2] Green refers us to
Hopf’s paper [3] which I have yet to look at. But as far as I am concerned
all functions that come up in geometry problems are measurable.)
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We now take traces of the differential equation U ′ = U2 +R and use the
invariance of the Liouville measure under the geodesic flow.

0 =
∫
S(M)

tr(Uζ1u − Uu) du invariance of du

=
∫
S(M)

∫ 1

0
tr(U ′ζtu) dt du

=
∫
S(M)

∫ 1

0
tr(U2

ζtu +Rζtu) dt du

=
∫
S(M)

tr(U2
u) + tr(Ru) du invariance of du

=
∫
S(M)

tr(U2
u) + Ric(u, u) du definition of Ric

=
∫
S(M)

tr(U2
u) du+

VolSn−1

n

∫
M

Scal dx

where at the last step we have used that
∫
Sn−1 Ric(u, u) du = VolSn−1

n Scal
where Scal is the scalar curvature of (M, g). This gives the formula∫

M
Scal dx = − n

VolSn−1

∫
S(M)

tr(U2
u) du.

This implies at once that if (M, g) is compact without conjugate points and
then the integral of Scal is non-positive and if

∫
M Scal dx = 0 then Uu = 0

almost everywhere. This implies Ru = U ′u−U2
u = 0 for almost all u ∈ S(M).

Therefore M must be flat. When n = 2 this is due to E. Hopf [3] and for
n ≥ 3 it is due to L. Green [2]. Note that if n = 2 and M is a torus
then by the Gauss-Bonnet theorem

∫
M Scal dx = 0. Thus a metric without

conjugate points on a torus is flat.
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