
GENERIC CUT LOCI ARE DENSE

RALPH HOWARD

Abstract. Let K be the complete metric space of compact subsets of
Rn with the Hausdorff distance. For K ∈ K let Cut(K) be the cut locus
of K in Rn. We show that D := {K ∈ K : Cut(K) is dense in Rn

r K}
is a dense Gδ in K.

The following are notes from a lecture give in the geometry/anaylsis sem-
inar on Friday, 13 April 2001.
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1. Introduction

Let A ⊂ Rn be a compact set and let

ρA(x) := min{‖x− a‖ : a ∈ A}
be the distance from A. We are interested in studying the regularity proper-
ties (such as where is is differentiable) in terms of geometric properties of A.
Much of the regularity of ρA can be understood in terms of two geometric
concepts: generators and cut points. For an interval I a unit speed curve
c : I → Rn is A-minimizing iff ρA(c(t)) = t for all t ∈ I. An A-minimizing
segment with maximal domain is called an A-generator . When A is clear
from context we will just refer to generators. We will show that every A-
minimizing segment is contained in an A-generator and that the domain of
an A-generator is either of the form [0, L] (when the generator has finite
length) or [0,∞) (when the generator has infinite length). If c : [0, L] → Rn

is a finite length A-generator, then its endpoint c(L) is the cut point of c.
The set

Cut(A) = {c(L) : c : [0, L] → Rn is a finite length A-genator.}
1
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is the cut locus of A. The elements of Cut(A) are called cut point of
A. The relation of these concepts to regularity properties of ρA is that for
x ∈ Rn

r A the derivative dρA(x) exists at x if and only if x is on exactly
one generator of A (Theorem 6.8) and the set of non-differentiable points of
ρA is dense in Cut(A) (Proposition 6.12).

If A is an embedded C2 submanifold of Rn then it is well known that
Cut(A) is a closed subset of Rn. However for more general sets it is known
that Cut(A) need not be closed and that it can be dense in an open set (cf. [7,
5]). We will show that this later behavior is generic. To make this precise,
let K be the collection of nonempty compact subsets of Rn and dH(A,B) be
the Hausdorff distance between A and B (see Definition 2.1 for the precise
definition). Then (K, dH) is a complete metric space (Proposition 2.2).

Let
D := {A ∈ K : Cut(A) is a dense subset of Rn

rA}.
Our main result is that almost all, is the sense of Baire category, elements
of K are in D. Recall that a set in a metric space is a Gδ iff it is a countable
intersection of open sets.

Theorem 1. The set D is a dense Gδ in K.

It will be shown (Theorem 6.13) that D is also the set of A so that ρA is
not differentiable on any open subset of Rn

r A. Theorems 1 and 6.13 are
closely related to [5, Thm. 3 p. 5141] where they prove a related result with
K replaced by the compact convex sets. These results show that for generic
A ∈ K the function ρA is nowhere C1. The proof here is an adaption of Ba-
nach’s [3] well known proof that almost every, in the sense of Baire category,
function in C[0, 1] is nowhere differentiable. (For a very nice presentation
of Banach’s proof and other ideas related to the Baire category theorem see
the readable and informative little book [11] of Oxtoby.)

While the results here are stated and proven for compact subsets of Eu-
clidean space Rn, it is not hard to see that they hold with only slightly
rewritten proofs for compact subsets of a complete Riemannian manifold
(and with some extra work and appropriate definitions in incomplete Rie-
mannian manifolds or even smooth Finsler manifolds).

2. The Hausdorff distance

We start by making the collection of compact subsets of a complete metric
space into another metric space.

2.1. Definition (Hausdorff 1914 [10]). Let (X, d) be a complete metric
space and K the collection of all nonempty compact subsets of X. Define a
distance dH on K by

dH(A,B) :=max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}

= inf
{
r : Every point of A is within r of a point of B and

every point of B is within r of a point of A.

}
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Then dH is the Hausdorff distance on K. �

2.2. Proposition (Hausdorff 1914 [10]). If (X, d) is a compete metric space,
then (K, dH) is also a complete metric space.

Proof. To start:

Exercise 1. The function dH satisfies the triangle inequality on K and if
dH(A,B) = 0, then A = B. �

This shows that (X, dH) is a metric space. To show completeness let
{A`}∞`=1 is a Cauchy sequence in (K, dH) and let A be the set of all points
a that are limits of convergent sequences {a`}∞`=1 with a` ∈ A`. From its
definition A is easily seen to be closed and bounded. If (X, d) is a space
where closed bounded sets are compact (such as Rn) then we have that A
is compact without any more work.

But if (X, d) has closed bounded sets that are not compact (Hilbert space
is such an example) more work is needed to show A is compact. This will
be based on:

Exercise 2. Let (Y, d) be a metric space. Show (Y, d) is compact if and only
if (Y, d) is complete and for every ε there is a finite number of open ε balls
{B(yi, ε)}N

i=1 that cover Y . (A metric space that can be covered by a finite
number of ε balls for any ε is called totally bounded. Therefore a metric
space is compact if and only if it is complete and totally bounded.) �

We next show that the Hausdorff distance between A and the terms in
{A`}∞`=1 goes to zero.

Exercise 3. Let ε > 0 and choose that ` so that if m,n ≥ `, then
dH(Am, An) < ε. Then show that if n ≥ ` then for any point a of An

there is a point b of A with d(a, b) ≤ ε and for every point b of A there is a
point a of An with d(a, b) ≤ ε. �

Returning to our set A ⊂ X, it is a closed subset of compete metric space
(X, d) and therefore A is complete as a metric space. So we only need show
that it is totally bounded to show that it is compact. Let ε > 0. Then
choose ` so that if m,n ≥ `, then dH(Am, An) < ε/3. As A` is compact
there is a finite subset {b1, . . . , bN} ⊂ A` so that every point of A` is at a
distance < ε/3 from one of the bi’s. By Exercise 3 for each bi there is an
ai ∈ A with d(ai, bi) ≤ ε/3. Now let a ∈ A. There there is a point b ∈ A`

with d(a, b) ≤ ε/3 and a bi with d(b, bi) < ε/3. Therefore

d(a, ai) ≤ d(a, b) + d(b, bi) + d(bi, ai) < ε/3 + ε/3 + ε/3 = ε.

Thus A ⊂ ⋃N
i=1B(ai, ε) and so A is totally bounded. Therefore A is compact

as claimed.
Finally dH(A,A`) → 0 follows from Exercise 3. So every Cauchy sequence

in (K, dH) converges and therefore it is complete. �
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For a nonempty subset A of the a metric space (X, d) let

(2.1) ρA(x) := inf{d(x, a) : a ∈ A}.
If A is compact then the infimum can be replaced by a minimum

ρA(x) := min{d(x, a) : a ∈ A} when A is compact.

The triangle inequality implies

(2.2) ρA(y) ≤ ρA(x) + d(x, y).

Interchanging the rôles of x and y gives ρA(x) ≤ ρA(y) + d(y, x) and so

|ρA(x) − ρA(y)| ≤ d(x, y).

If f : X → R is continuous then the sup norm of f is

‖f‖L∞ = sup
x∈X

|f(x)|.

2.3. Proposition. If (X, d) is a compete metric space the Hausdorff distance
on (K, dH) is given by

dH(A,B) = ‖ρA − ρB‖L∞

where ρA is defined by (2.1).

Proof. Let a ∈ A and let b ∈ B be so that d(a, b) = ρB(a). Then, using
ρA(a) = 0, we have

d(a, b) = ρB(a) − ρA(a) = |ρB(a) − ρA(a)| ≤ ‖ρA − ρB‖L∞ .

Thus we have shown that for any a ∈ A there is a b ∈ B with d(a, b) ≤
‖ρA − ρB‖L∞ . By symmetry there for each b ∈ A there is an a ∈ A with
d(a, b) ≤ ‖ρA − ρB‖L∞ . Therefore dH(A,B) ≤ ‖ρA − ρB‖L∞ .

To finish the proof it is enough to show ‖ρA − ρB‖L∞ ≤ dH(A,B). If
x ∈ X let a ∈ A be so that d(x, a) = ρA(x). Then there is a b ∈ B with
d(a, b) ≤ dH(A,B). Therefore

ρB(x) ≤ d(x, b) ≤ d(x, a) + d(a, b) = ρA(x) + d(a, b) ≤ ρA(x) + dH(A,B).

That is ρB(x)−ρA(x) ≤ dH(A,B). Interchanging the rôles of A and B gives
ρA(x)−ρB(x) ≤ dH(A,B). Therefore |ρB(x)−ρA(x)| ≤ dH(A,B). Whence

‖ρB − ρA‖ = sup
x∈X

|ρB(x) − ρA(x)| ≤ dH(A,B),

which completes the proof. �

2.4. Corollary. If A`, A ∈ K and d(A,A`) → 0, then ρA`
→ 0 uniformly.

If also c`, c : [a, b] → X are continuous maps and c` → c uniformly then
ρA`

(c`(t)) → ρA(c(t)) uniformly.

Proof. This follows at once from the last proposition and general results
about uniform convergence. �
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3. Minimizing segments and generators

We first show that minimizing segments really are parts of line segments.

3.1. Proposition. Let A ∈ K and let c : [a, b] → Rn be an A-minimizing
segment. Then c is a unit speed parameterization of the line segment between
c(a) and c(b). Explicitly:

c(t) =
1

‖c(b) − c(a)‖
(
(b− t)c(a) + (t− a)c(b)

)
Proof. The triangle inequality implies that |ρA(x) − ρA(y)| ≤ ‖x − y‖ for
all x, y ∈ Rn. As an A-minimizing segment c : [a, b] → Rn is unit speed we
then have the length of c is b−a is ≥ the distance ‖c(b)− c(a)‖ between the
endpoints of c. Therefore

‖c(b) − c(a)‖ ≤ Length(c) = (b− a) = ρA(c(b)) − ρA(c(a)) ≤ ‖c(b) − c(a)‖.
Thus c minimizes the distance between its endpoints and whence is a pa-
rameterization of a line segment. �
3.2. Proposition. Let A ∈ K. Then every x ∈ Rn

rA is on a A-generator.
The domain of an A-generator c is either [0, L] for some L > 0 or of the
from [0,∞) and in either case c(0) ∈ A.

Proof. If x /∈ A, then, as A is compact, there is a point z ∈ A so that
‖x− z‖ = ρA(x). Then c(t) = ‖x− z‖−1((1− t)z + tx) with t ∈ [0, ρA(x)] is
an A-minimizing segment. Thus every point is on at least one such segment.
For the segment c : [0, ρA(x)] → Rn just defined let c : [0,∞) → Rn be the
natural extension of c to [0,∞) (that is c(t) = ‖x− z‖−1((1 − t)z + tx) for
all t ≥ 0). Let

L := sup{b : c
∣∣
[0,b]

is an A-minimizing segment.}
If L < ∞ then c

∣∣
[0,L]

: [0, L] → Rn is an A-generator. If L = ∞ then
c : [0,∞) → Rn is an A-generator. From the construction of c as an exten-
sion of c we have that L ≥ ρA(x) and therefore x is on the generator just
constructed.

If c : [a, b] → Rn is an A-minimizing segment with a > 0, then let z ∈ A be
a point with ‖c(a)−z‖ = a (note a = ρA(c(a)) by definition of A-minimizing)
and define c0 : [0, b] → Rn by

c0(t) :=

{
a−1((1 − t)z + tx), t ∈ [0, a];
c(t), t ∈ [a, b].

This is an A-minimizing segment. Thus every A-minimizing segment defined
on an interval [a, b] can be extended to an A-minimizing segment on an
interval [0, b]. It then follows that A-minimizing segments with maximal
domain are either of the for c : [0, L] → Rn, or of the form c : [0,∞) → Rn.
Finally if c(0) will have distance zero from A and therefore c(0) ∈ A as A is
closed. �
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3.3. Proposition. If A ∈ K and z ∈ Rn
r A is on two A-generators, then

z is a cut point of both generators.

Proof. Let z be on both c1 and c2, which we assume are distinct. Let
a = ρA(z). Then z = c1(a) = c2(a). If z is not a cut point of one of the two
segments, say c2, then we have for some b > a that c2

∣∣
[0,b]

is an A-minimizing
segment. Let c : [0, b] → Rn be defined by

c(t) =

{
c1(t), t ∈ [0, a];
c2(t), t ∈ [a, b].

Then c will be A-minimizing and therefore by Proposition 3.1 a line segment.
But this implies that c1 = c2 contrary to the assumption that c1 and c2 are
distinct. �

3.4. Proposition. Let U ⊂ Rn be a non-empty open set. Then

KU := {A ∈ K : U ∩ (A ∪ Cut(A)) = ∅}
is a closed nowhere dense subset of K.

Proof. Let A` ∈ KU with lim`→∞A` = A in K. Then to show that KU is
closed we need that A ∈ KU . As A` ∩ U = ∅ for all ` we have A ∩ U = ∅.
Let z ∈ U and 2r = dist(z, ∂U). For each ` let a` = ρA`

(z). Then there
is an A`-generator c` with c`(a`) = z and, as c` has no endpoint in U , the
domain of c` is at least [0, a` +2r]. Let a = ρA(z). Then lim`→∞ a` = a and
by going to a subsequence we can assume that {c`}∞`=1 converges uniformly
to some segment c on [0, a+ r]. But then for t ∈ [0, a+ r] we have

ρA(c(t)) = lim
`→∞

ρA`
(c`(t)) = lim

`→∞
t = t

and therefore c : [0, a + r] → Rn is an A-minimizing segment. By Propo-
sition 3.3 z = c(a) can not be on any other A-minimizing segment (other-
wise it would be a cut point of c, contradicting that c(a) is in the interior
of c : [0, a + r] → R). Therefore z = c(a) is not a cut point of any A-
minimizing segment and so z /∈ Cut(A). As z was any point of U this shows
that U ∩ (A ∪ Cut(A)) = ∅ and completes the proof that KU is closed.

To show that KU is nowhere dense let ε > 0 and A ∈ KU . Let z ∈ U .
Then by definition of KU , z is not a cut point of A. Let a = ρA(z) and let
c : [0, b] → Rn be a minimizing segment from A to z. Then c(a) = z. The
closed ball B(z, a) meets A in just the one point c(0) ∈ A, for otherwise
there would be two minimizing segments from z to A, which would imply z
is a cut point of A (by Proposition 3.3). Therefore we can choose a point
x on the sphere S(z, a) := ∂B(z, a) with x 6= c(0) and ‖x − c(0)‖ < ε. Let
A1 = A ∪ {x}. Then

dH(A,A1) = dist(x,A) ≤ ‖x− c(0)‖ < ε.

Also dist(a,A1) = a and B(z, a) ∩ A = {c(0), z} so that there will be two
minimizing segments from A1 to z. Therefore z is a cut point of A. This
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shows that for all ε > 0 and any A ∈ KU there is an A1 /∈ KU with d(A,A1) <
ε. Thus KU is nowhere dense. �

4. The Baire Category Theorem

The statement of Baire’s theorem which is easiest to prove is:

4.1. Theorem (Baire Category Theorem, Baire 1899 [2]). Let (X, d) be a
complete metric space. Then the intersection of a countable collection of
dense open sets is dense.

Exercise 4. Prove this. Hint: Let the collection of dense open sets be
{U`}∞`=1. By replacing U` with the intersection U1 ∩ U2 ∩ · · · ∩ U` we can
assume that U`+1 ⊆ U` for all `. Let B(a, r) be the open ball of radius r
about a. Then to show that

⋂∞
`=1 U` is dense, it is enough to show that it

meets each B(a, r). As U1 is open and dense the set B(a, r) ∩ U1 is open
and non-empty. So there is closed ball B(a1, r1) ⊂ U1 ∩ B(a, r) and we
can arrange that r1 ≤ 1. Likewise U2 ∩ B(a1, r1) is non-empty and open
so there is a closed ball B(a2, r2) ⊂ U2 ∩ B(a1, r1) and we can choose this
so that r2 ≤ 1/2. Continuing in this manner we get a sequence {B(a`, r`)}
with B(a`, r`) ⊂ U` ∩B(a`−1, r`−1) and r` ≤ 1/`. Now show that {a`}∞`=1 is
Cauchy and use completeness to show B(a, r)∩⋂∞

`=1 U` ⊇
⋂∞

`=1B(a`, r`) 6=
∅. �

As the compliment of dense open set is a closed nowhere dense set and the
compliment of an intersection is a union we can dualize the form of Baire’s
theorem above.

4.2. Theorem (Baire Category Theorem Second Form). Let (X, d) be a
complete metric space. Then the union of a countable collection of nowhere
dense subsets of X has dense compliment in X. In particular X is not the
a countable union of nowhere dense subsets.

Proof. Let {F`}∞`=1 be a countable collection of nowhere dense subsets of
X. Then U` := X r F ` is open and dense. Therefore X r

⋃∞
`=1 F` ⊇

X r
⋃∞

`=1 F ` =
⋂∞

`=1 U` is dense. �
4.3. Definition. Let (X, d) be a metric space and A ⊆ X. Then A is
meager iff A is contained in a countable union of closed nowhere dense sets.
A set is comeager iff it is the compliment of a meager set. (Equivalently A
is comeager iff it contains a countable intersection of dense open sets.) �

These definitions imply

4.4. Proposition. A countable union of meager sets is meager. A countable
intersection of comeager sets is comeager. �

Note that if (X, d) is a complete metric space, no set can be both meager
and comeager. For if A was such a set, then X r A would also be meager
and therefore X = A ∪ (X r A) would be meager. But this contradicts
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Theorem 4.2 which implies that X is not a countable union of nowhere
dense sets.

The next proposition is not important in applications of the Baire Theo-
rem, but it does formalize, at least a bit, the idea that meager subsets of X
are “small” and the comeager sets are “large”.

4.5. Proposition. Let (X, d) be a complete metric space. Let C be the set of
all subsets of X that are either meager or comeager. Then C is a σ-algebra
and if µ : C → R is defined by

µ(A) =

{
0, if A is meager ;
1, if A is comeager.

then µ is a measure on C.

Exercise 5. Prove this. Hint: To show countably additivity of µ note that
any two comeager sets intersect non-trivially, so if {A`}∞`=1 is a pairwise
disjoint sequence from C then at most one of the A`’s is comeager. Therefore∑∞

`=1 µ(A`) is 0 if all the A`’s are meager, and is 1 if one of the A`’s is
comeager. �

Motivated by Proposition 4.5 if P (x) is a property of points of X so that
{x ∈ X : P (x)} is comeager, then is often said that “P (x) holds for almost
all x ∈ X in the sense of category”. A more common terminology is that
“the generic point x ∈ X has property P (x)”. In this setting “generic”
means “holds on a comeager set”. For example the generic real number is
irrational.

5. Proof of Theorem 1

We will prove the dual of theorem. Let KU be as in the statement of
Proposition 3.4. That is KU is the collection of A ∈ K so that U ∩ (A ∪
Cut(A)) = ∅. Set

R :=
⋃

{KU : U is a non-empty open subset of Rn}.
Then R is exactly the set of all A so that both A and Cut(A) are disjoint
from some nonempty open set. That is R = K r D. Therefore Theorem 1
can be restated as

5.1. Theorem. The set R is a countable union of closed nowhere dense
subsets of K. (Thus by Theorem 4.2 R is meager in K and therefore D is
comeager.)

Proof. Let B the collection of open balls B(a, r) in Rn where all the compo-
nents of a and the number r are rational. This is a countable set and every
open subset of Rn is a countable union of elements of B. By Proposition 3.4
the set KB is a closed nowhere dense subset of K and thus

⋃{KB : B ∈ B}
is a countable union of closed nowhere subsets of K.
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To finish it is enough to show
⋃{KB : B ∈ B} = R. Clearly

⋃{KB : B ∈
B} ⊆ R. If A ∈ R, then there is a nonempty open subset U of Rn so that
A ∈ KU . There will be a nonempty open ball B ∈ B with B ⊂ U . But then
A ∈ KB and thus A ∈ ⋃{KB : B ∈ B}. Therefore R ⊆ ⋃{KB : B ∈ B}. �

6. The cut locus and regularity properties of ρA

6.1. Definition. Let U be an open subset of Rn and f : U → Rn. Then f
is semi-concave iff every point of U has an open convex neighborhood V
so that f

∣∣
V

= h+ ϕ where h is concave and ϕ is C∞. �

6.2. Definition. Let U be an open subset of Rn and f : U → Rn. Then
a function ϕ defined in an neighborhood of x0 ∈ U is an upper support
function for f at x0 iff ϕ(x0) = f(x0) and f ≤ ϕ in a neighborhood of x0.
A lower support function for f at x0 is defined similarly. �

If ϕ is a C2 function with Hessian D2ϕ (which we view as a symmetric
bilinear form) then we say hat D2ϕ(x0) ≥ C iff D2ϕ(x0)(v, v) ≥ C‖v‖2

for all vectors v. Likewise D2ϕ(x0) ≤ C iff D2ϕ(x0)(v, v) ≤ C‖v‖2 for all
vectors v.

6.3. Proposition. Let U ⊆ Rn be open and convex and let f : U → R
be continuous and such that for each x0 ∈ U there is a C2 upper support
function ϕ to f at x0 with D2ϕ(x0) ≤ C. Then the function f(x)− 1

2C‖x‖2 is
concave on U . (A function f satisfying the the hypothesis of this proposition
is said to satisfy D2f ≤ C in the sense of support functions.

Proof. (Taken form [1].) We first give the proof in the one dimensional case.
Then U ⊆ R is an interval. Let ϕ be an upper support function to f at
x0 that satisfies D2ϕ = ϕ′′ ≤ C near x0 and let a = ϕ′(x0). We claim
f(x) ≤ f(x0) + a(x − x0) − (C/2)(x − x0)2. Let g(x) := f(x0) + a(x −
x0) − (C/2)(x− x0)2. As ϕ(x0) = g(x0), ϕ′(x0) = g′(x0) and ϕ′′(x) ≤ C =
g′′(x) we have an interval about x0 so that f(x) ≤ ϕ(x) ≤ g(x). Assume,
toward a contradiction, there is an x1 so that f(x1) − g(x1) > 0. Then the
function g1 := f − g will satisfy g′′1 ≤ 0 in the sense of support functions
and g1(x0) = 0, g1(x1) > 0 and the function g1(x) ≤ 0 for x near x0 so the
function g1 will have an minimum at a point x∗ between x0 and x1. Let g0
be the constant function g0(x) = v1(x∗). Then g1 ≥ g0, g1(x∗)− g0(x∗) = 0,
and v′′1 ≤ 0 (in the sense of support functions) and g′′0 = 0 (in the strong
sense) so the one variable case of of the linear maximum principle (which is
easy to verify) implies g0(x) = g1(x) for x between x0 and x1. As g1(x0) = 0
and g0 is constant this implies g1(x) = g(x) − f(x) for all x between x0

and x1. This in particular implies 0 = f(x1) = g(x1) which contradicts the
assumption f(x1)−g(x1) > 0. Therefore f −g ≥ 0 on all of U . This implies
f(x)−(C/2)‖x‖2 has a linear upper support function on U at x0. As x0 was
any point of U we have that f(x) − (C/2)‖x‖2 is concave. This completes
the proof in the one dimensional case.
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We return to the general case. Let ϕ be a upper support function for f at
x0 that satisfies D2ϕ ≤ C near x0 and let a := Dϕ(x0). For any unit vector
b ∈ Rn let fb(t) = f(x0 + tb) − t〈b, a〉. Then a lower support ψ function
to v at x0 + t0b that satisfies D2ψ ≤ C yields the lower support function
ψb(t) := ψ(x0 + tb) to vb at t0 that satisfies ψ′′

b (t) ≤ C near t0. Thus fb

satisfies the one variable version of the result and so fb(t) = f(x0 + tb) ≤
v(x0)− t〈b, a〉+(C/2)t2. But as Ω is convex every point of Ω can be written
as x = x0 + tb for some t and some unit vector and so the multidimensional
case reduces to the one dimensional case and completes the proof. �

If f : Rn → R and df exists at x, then let ∇f(x) be the vector so that

df(x)(V ) = 〈∇f(x), V 〉 for all vectors V .

That is ∇f is the usual gradient of f at x.
For the last proposition to be useful we need a good supply of support

functions. In geometric problems this can often be done by using distance
functions from points.

Exercise 6. Let a ∈ Rn and set

ρa(x) = ‖x− a‖.
Then the gradient and Hessian of ρa are given by

∇ρa(x) =
x− a

‖x− a‖ , D2ρa(x)(v, v) =
1

‖x− a‖
(
‖v‖2 − 〈x− a, v〉2

‖x− a‖2

)

and thus ρa satisfies the inequalities

(6.1) 0 ≤ D2ρa(x) ≤ 1
‖x− a‖ .

This shows that D2ρa is informally bounded above on any set that has
positive distance from a. �

6.4. Theorem. For any compact set A ⊂ Rn the function ρA is semi-
concave on U := Rn

rA.

Proof. Let B be an open ball with ρA

∣∣
B

bounded below. Then for any x0 ∈
B there is an a0 ∈ A with ‖x0 − a0‖ = ρA(x0). Let ϕ(x) := ρa0 = ‖x− a0‖.
Then ϕ(x0) = ϕA(x0) and for x ∈ B we have

ρA(x) = inf{‖x− a‖ : a ∈ A} ≤ ‖x− a0‖ = ϕ(x).

Therefore ϕ is an upper support function for ρA at x0. Also ϕ is C∞ on
B and as the distance of B from A is positive there are uniform bounds
on the Hessian D2ϕ(x) for x ∈ B (which only depend on the distance of
B form A by the inequalities (6.1)). By Proposition 6.3 this implies that
ρA(x) + 1

2C‖x‖2 is concave on B. As every point of Rn
r A is in a ball of

positive distance from A this shows that ρA is semi-concave. �
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Differentiability of concave functions can be understood in terms of the
super-differential at a point: The differentiable points are the points where
the super-differential is just one point. We start with the definition.

6.5. Definition. Let f : U → R be a semi-concave function. Then the
super-differential ∂f(x0) of f at x0 is

∂f(x0) := {dϕ(x0) : ϕ is a C2 upper support function to f at x0}
where dϕ(x0) is the linear functional dϕ(x0)v := d

dtϕ(x0 + tv)
∣∣
t=0

. �
Exercise 7. If f is concave the usual definition of ∂f(x0) form convex analysis
is

∂f(x0) = {Λ : Λ is a linear funcional and f − Λ has a maximum at x0}.
Show that for concave f this agrees with Definition 6.5. �

The following is a standard result from convex analysis.

6.6. Proposition. A semi-concave function f is differentiable at x0 if and
only if the super-differential ∂f(x0) is a singleton. If ∂f(x0) = {Λ}, then
the differential is df(x0) = Λ. �

The following is due to Joe Fu.

6.7. Proposition (Fu [9, Lemma 4.2 pp. 1037–1038]). Let A ⊂ Rn be
compact and let x0 ∈ Rn

rA and set

UA(x0) :=
{

1
‖x0 − a‖(x0 − a) : a ∈ A, ‖x0 − a‖ = ρA(x0)

}
.

(That is UA(x0) is the set of unit tangent vectors to A-generators from A to
x0.) Then

∂ρA(x0) = convex hull of {〈·, u〉 : u ∈ UA(x0)}. �
For x ∈ Rn

rA set

NA(x) = number of points in UA(x).

NA(x), which is a positive integer or ∞, is the multiplicity of A at x. It is
just the number of A-generators connecting A to x.

Our result now combine our results to give a Euclidean version of a
Lorentzian result of Beem and Królak.

6.8. Theorem (Beem and Królak [4]). The function ρA is differentiable at
x ∈ Rn

rA if and only if NA(x) = 1.

Proof. By Proposition 6.6, ϕA is differentiable at x if and only if ∂ρA(x) is
a single point. By Proposition 6.7 ∂ρA(x) is the convex hull of UA(x) and
therefore ∂ρA(x) is a singleton if and only if NA(x) = 1. �
6.9. Proposition (Beem and Królak [4]). Assume that ρA is differentiable
on the open set U which is disjoint form A. Then the map x 7→ ∇ρA(x) is
continuous.
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Proof. It is a general fact about concave, and thus also semi-concave, func-
tions that if they are differentiable on an open set, then they are C1 on the
set. However we can give a direct proof in this case. Let x, x` ∈ U with
lim`→∞ x` = x. As ρA is differentiable on U we have NA(x) = NA(x`) = 1
by Theorem 6.8. Therefore there are unique a, a` ∈ A with ‖x− a‖ = ρA(x)
and ‖x` − a`‖ = ρA(x`). As A is compact {a`}∞`=1 will have at least one
cluster point. If b ∈ A is a cluster point of {a`}∞`=1, then by going to a
subsequence we have may assume a` → b. But then

‖x− b‖ = lim
`→∞

‖x` − a`‖ = lim
`→∞

ρA(x`) = ρA(x).

As a ∈ A is the only point with ‖x− a‖ = ρA(x) this implies that b = a and
therefore a is the only cluster point of {a`}∞`=1. Thus lim`→∞ a` = a. Now
using Propositions 6.6 and 6.7 we have

lim
`→∞

∇ρA(x`) = lim
`→∞

1
‖x` − a`‖(x` − a`) =

1
‖x− a‖(x− a) = ∇ρA(x)

and therefore ∇ρA is continuous at x as claimed. �
6.10. Proposition. If ρA is differentiable on an open set U which is disjoint
from A, then Cut(A)∩U = ∅. That is every point of U is an interior point
of the unique generator that it is on.

Proof. Let x0 ∈ U and let t0 = ρA(x0). As the vector field x 7→ ∇ρA(x)
is continuous it follows form the Peano existence for ordinary differential
equations [8, Thm 1.3 p. 7 and Sec. 1.5 pp. 15–19] that

ċ(t) = ∇ρA(c(t)), c(t0) = x0

will have a solution on some interval (t0 − ε, t0 + ε). As we only know that
x 7→ ∇ρA(x) is continuous, we do not know, yet, that this solution is unique,
only that at least one solution exists. However when ∇ρA(x) exists it is given
by ∇ρA(x) = ‖x− a‖−1(x− a) for the unique a ∈ A with ‖x− a‖ = ρA(x)
and so it is a unit vector. Therefore c is unit speed curve.

However
d

dt
ρA(c(t)) = 〈∇ρA(c(t)), ċ(t)〉 = 〈∇ρA(c(t)),∇ρA(c(t))〉 = 1

as ∇ρA is a unit vector when it exists. This implies that on (t0 − ε, t0 + ε)

ρA(c(t)) = ρA(c(t0)) + (t− t0) = ρA(x0) + (t− t0) = t.

This implies that c is an A-minimizing segment. As x0 is in the interior of
this segment, when the segment is extended to an A-minimizing x0 is not
an end point of the generator. Therefore x0 is not a cut point of A. As x0

as any point of U this shows that Cut(A)∩U = ∅. That any x ∈ U is only
one one A-generator now follows from Proposition 3.3. �

The “irregularity” of a point of Cut(A) can be measured by the number
of generators it is on. Set

Cut[k](A) = {x ∈ Cut(A) : dim convex hull(UA(x)) ≥ k}.
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It will be seen that dim convex hull(UA(x)) is a better measure of the size if
the set of generators throw x than just NA(x).

6.11. Proposition. For k ≥ 1 we have

{x ∈ Cut(A) : NA(x) ≥ k} ⊆ Cut[k](A).

For small values of k this can be improved:

{x ∈ Cut(A) : NA(x) ≥ k} = Cut[k](A) for 1 ≤ k ≤ 3.

Exercise 8. Prove this. �
The set Cut[2](A) of points that are on two or more A-generators is often

called the strict cut locus. Note that the result of Beem-Królak Theo-
rem 6.8 implies that the Cut[2](A) is exactly the set of points x ∈ Rn

r A
where ρA is not differentiable.

6.12. Proposition. The strict cut locus Cut[2](A) of A is dense in the cut
locus Cut(A). Therefore for any open set U we have that Cut(A) ∩ U 6= ∅

if and only if U ∩ {x : dρA(x) does not exist} 6= ∅.

Proof. If Cut[2](A) is not dense in Cut(A) then there is an open set U ,
disjoint from A so that U ∩ Cut(A) 6= ∅, but U ∩ Cut[2](A) = ∅. But then
for all x ∈ U we have N(x) = 1 and therefore ρA is differentiable on U by
Theorem 6.8. But by Proposition 6.10 this implies U is disjoint from the
cut locus, contradicting U ∩ Cut(A) 6= ∅. �

This can be combined with Theorem 1 to give the following:

6.13. Theorem. Let

N :=
{
A ∈ K : {x : dρA(x) does not exist} is dense in Rn

rA
}
.

Then, with the notation of Theorem 1, N = D and therefore N is a dense
Gδ in K.

Exercise 9. Prove this as a corollary to Proposition 6.12. �

We can now refine Proposition 6.9 by increasing the regularity to C1,1
Loc.

6.14. Theorem. Let A ∈ K and let U be an open set disjoint from A so
that ρA is differentiable on U (which, by Proposition 6.12 is equivalent to
Cut(A) ∩ U = ∅). Then ρA is locally a C1,1 function in U . (That is locally
the gradient is a Lipschitz function).

Proof. Let a1 ∈ A and define ϕ1(x) = ‖x − a1‖. Then as in the proof of
Theorem 6.4 we have

ρA(x) ≤ ‖x− a1‖ = ρ1(x)

for all x ∈ Rn. Let x0 ∈ Rn and let ρ0(x) = ρA(x0) − ‖x − x0‖. The the
inequality (2.2) implies ρA(x0) ≤ ρA(x) + ‖x− x0‖ and therefore

ϕ0(x) = ρA(x0) − ‖x− x0‖ ≤ ρA(x).
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We now make special chooses of a1 and x0. Let c : [0, b] → Rn be an A-
minimizing segment. Let a1 = c(0) ∈ A and x0 = c(b). Then for t ∈ (0, b)
we have

ρA(c(t)) = t = ‖c(t) − c(0)‖ = ‖c(t) − a1‖ = ϕ1(c(t)),

and

ρa(c(t)) = t = b− (b− t) = ρA(c(b)) − ‖c(b) − c(t)‖
= ρA(x0) − ‖c(t) − x0‖ = ϕ0(c(t)).

Thus for this choice of a1 and x0 the function ϕ0 is a lower support function
and ϕ1 is an upper support function to ρA at c(t) whenever 0 < t < b. Let
B be an open ball in U with dist(B, ∂U) = r > 0. Then for any x ∈ B there
will be an A-minimizing segment c : [0, b] → Rn so that x = c(t) for some
t and 0 < t, b − t < r (for the A-generator through x has no end point in
U and therefore dist(B, ∂U) implies we can extend to at least a distance r
past any point x = c(t) ∈ B). Let a1 = c(0) and x0 = c(b) and let ϕ0 be
the support functions ρA at x = c(t) as above. By (6.1) there are bounds on
the Hessian D2ϕ0 and D2ϕ1 hold on all of B (and in fact only depend on
r). By [6, Prop 1.1 p. 7] this implies that ρA

∣∣
B

is C1,1. As U is the union
of open balls that have positive distance from the boundary this shows that
the restriction of ρA to U is C1,1. �
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