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I learned of the following very pretty result and its proof from Calabi [2].

Theorem 1. Let (S2, g) be the two dimensional sphere with a metric of
class C1,1 whose Gaussian curvature satisfies 0 ≤ K ≤ 1. Then any simple
closed geodesic γ on (S2, g) has length at least 2π. If the length of γ is
2π, then (S2, g) is isometric to the standard round sphere (S2, g0) and γ
is a great circle on (S2, g0) or (S2, g) is isometric to a circular cylinder of
circumference 2π capped by two unit hemispheres and γ is a belt around the
cylinder (see Figure 1). Thus if K is continuous (for example when g is at
least C2) or if K > 0 then (S2, g) is isometric to the standard round sphere.

Remark 1. The lower bound on the length of a simple closed closed geodesic
is well known (see Remark 3), it is the rigidity result that is of interest here.

It is interesting that requiring the
metric to have regularity class C2

gives a different class of extremal sur-
faces than the C1,1 case. Likewise if
K > 0 the only extremal surface is
the standard sphere.
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Figure 1

Lemma 1. Let k(t) be an L∞ function on [0,∞) so that 0 ≤ k(t) ≤ 1 and
let y(t) be defined by the initial value problem

y′′(t) + k(t)y(t) = 0, y(0) = 1, y′(0) = 0.

Denote the smallest positive zero of y by β (it may be that β = ∞). Then
0 ≤ −y′(t) ≤ 1 for 0 ≤ t ≤ β. If y′(t0) = −1 for some t0 ∈ [0, β], then
t0 = β <∞, β ≥ π/2 and

y(t) =

{
1, 0 ≤ t < β − π/2;
cos(t− (β − π/2)), β − π/2 < t ≤ β.

k(t) =

{
0, 0 ≤ t < β − π/2;
1, β − π/2 < t ≤ β.

If k is continuous, for example if y is C2, and y′(t0) = −1 with t0 ≤ β, then
t0 = β = π/2, k ≡ 1 and y(t) = cos(t) on [0, π/2].
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Proof. First note on the interval [0, β)

(y′)′ = y′′ = −ky ≤ 0

as y > 0 and k ≥ 0 on [0, β). Thus y′ is monotone decreasing on [0, β]. As
y′(0) = 0 this implies y′ ≤ 0 on [0, β]. Thus

(
y2 + (y′)2

)′ = 2yy′ + 2y′y′′ = 2yy′ − 2y′ky = 2yy′(1− k) ≤ 0(1)

on [0, β) as k ≤ 1 and y′ ≤ 0. Using the initial conditions for y and continuity
the last inequality implies

y2 + (y′)2 ≤ 1 on [0, β].(2)

These inequalities imply 0 ≤ −y′ ≤ 1 on [0, β].
If t0 ∈ [0, β] and y′(t0) = −1, then the inequality (2) implies y(t0) = 0.

But from the definition of β as the smallest positive zero of y this implies
t0 = β. Then y(β)2 + y′(β)2 = 1 and equation (1) yields y′(1 − k) ≡ 0 on
[0, β). As y′ is monotone decreasing on [0, β), there is a point t1 ∈ [0, β) so
that y′ ≡ 0 on [0, t1] and 0 > y′ > −1 on (t1, β). Then on [0, t1] we have
y ≡ 1 and k ≡ 0 (as ky = −y′′ = 0). Also y′(1− k) ≡ and y′ 6= 0 on (t1, β)
implies k ≡ 1 on (t1, β). But y(t1) = 1 and y′(t1) = 0 so y(t) = cos(t − t1)
on (t1, β). As y(β) = 0 this implies t1 = β − π/2 on (t1, β). This completes
the proof.

Proof of the theorem. Let c : [0, L] → S2 be a unit speed parameterization
of the closed geodesic γ, and let n be a unit normal along c. For each
s ∈ [0, L] let β(s) be the cut distance from the curve γ along the geodesic
t 7→ expc(s)(tn(s)). Define map F (s, t) on the set of ordered pairs (s, t) with
s ∈ [0, L] and 0 ≤ t ≤ β(s) by

F (s, t) = expc(s)(tn(s)), 0 ≤ s ≤ L, 0 ≤ t ≤ β.

Then s, t are Fermi coordinates on the disk M bounded by γ and with inner
normal n. In these coordinates the metric g, Gaussian curvature K and the
area form dA are given by

g = E2 ds2 + dt2, K =
Ett
E
, dA = E ds dt.

And because c is a geodesic E(s, 0) ≡ 1 and Et(s, 0) ≡ 0. Thus for fixed s
the function y(t) := E(s, t) satisfies y′′ + Ky = 0, y(0) = 1, and y′(0) = 0
as in the lemma.
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Now apply the Gauss-Bonnet theorem to the disk M . As the boundary
is a geodesic, the boundary term of the formula drops out:

2π =
∫
M
K dA

=
∫ L

0

∫ β(s)

0

Ett
E
E dtds

=
∫ L

0

∫ β(s)

0
Ett dtds

=
∫ L

0
(−Et(s, β(s))) ds (as Et(s, 0) = 0)

≤
∫ L

0
1 ds (by the lemma)

= L.

which proves the required lower bound on the length of γ. If L = 2π, then
Et(s, β(s)) = −1 for all s ∈ [0, L]. Again by the lemma in the coordinates
s, t on M

K(s, t) =

{
0, 0 ≤ t < β(s)− π/2;
1, β(s)− π/2 < t < β(s).

Let M+1 = {x ∈ M : K(x) = +1} = {expc(s)(tn(s)) : s ∈ [0, 2π], β(s) −
π/2 < t ≤ β(s)}. Let s0 ∈ [0, 2π] be a point where β(s) is maximal. Then
the open diskB(x0, π/2) of radius π/2 about x0 := expc(s0) β(s0)n(s0) is con-
tained in M+1, for if not it would meet ∂M+1 at some point expc(s)((β(s)−
π/2)n(s)) and this point is a distance of β(s) − π/2 from γ. Thus the dis-
tance of x0 = expc(s0)(β(s0)n(s0)) to γ is less than π/2+(β(s)−π/2) = β(s),
which contradicts the maximality of β(s0). Thus B(x0, π/2) ⊆ M+1. But
using the Gauss-Bonnet theorem and K ≡ +1 on M+1

2π ≥
∫
M+1

K dA = Area(M+1) ≥ Area(B(x0, π/2)) = 2π.

So M+1 = B(x0, π/2). From this it is not hard
to show s 7→ β(s) is constant and thus the disk
M bounded by γ and with inner normal n is a
cylinder of circumference 2π capped at one end
with a hemisphere (see Figure 2).
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Figure 2

The same argument applied to the disk bounded by γ and having −n as
inward normal shows (S2, g) is two of these capped cylinders glued together
along γ, which is equivalent to the statement of the theorem.

Corollary 1. Let (RP2, g) be the real projective space with metric g so
the Gauss curvature K of g satisfies 0 ≤ K ≤ 1. Then any curve α in RP2

that is not homotopic to 0 has length at least π. If α has length π then it
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is a simple closed geodesic and (RP2, g) is isometric to the standard metric
on RP2, or (RP2, g) is isometric to the capped cylinder on Figure 2 with
antipodal points on the boundary curve identified. In this case α is the
image of the boundary curve.

Proof. By standard methods form the calculus of variations the non-trivial
free homotopy class of (RP2, g) has a representative α of minimal length
and α is a simple closed geodesic. Let p : S2 → RP2 be the covering map
and let γ = p−1[α]. If S2 is given the pull back metric p∗g, then the theorem
applies to γ. Thus the length of γ is at least 2π. But γ double covers α so
the length of α is at least π. If the length of α is π then the length of γ is
2π. Thus the equality case of the theorem holds. It is not hard to translate
the rigidity statement of Theorem 1 into the one here.

We note Theorem 1 is “dual” to a result of Toponogov [6].

Theorem 2 (Toponogov, 1959). Let (S2, g) be the two dimensional sphere
with a metric so that the Gaussian curvature satisfies 1 ≤ K. Then any
simple closed geodesic γ has length at most 2π, and if the length of γ is
2π then (S2, g) is isometric to the standard sphere (S2, g0) and γ is a great
circle.

Corollary 2. Let (RP2, g) be the real projective plane with a metric that
satisfies K ≥ 0. Let α be the shortest curve not homotopic to 0. Then α is
a simple closed geodesic and the length of α is at most π. If the length of α
is π then (RP2, g) is isometric to the standard metric on RP2.

Remark 2. Let (S2, g) have Gaussian curvature satisfying 0 < a ≤ K ≤ b.
Then Theorems 1 and 2 show any simple closed geodesic γ satisfies

2π√
b
≤ Length(γ) ≤ 2π√

a
.

Remark 3. If one is only interested in the length of closed geodesics, there
are higher dimensional versions of Theorem 1. If (M, g) is a compact ori-
entable Riemannian manifold of even dimension with sectional curvatures
satisfying, 0 < KM ≤ 1, then Klingenberg has shown every closed geodesic
has length ≥ 2π. This is equivalent to his well known lower bound on the in-
jectivity radius of compact oriented even dimensional manifolds. For a proof
see the book [3, Chapter 5]. For odd dimensional manifolds anther theorem
of Klingenberg’s implies if (M, g) is a compact simply connected manifold of
whose sectional curvature satisfies 1/4 < KM ≤ 1, then any closed geodesic
of (M, g) has length at least 2π. Again a proof can be found in [3, Chapter
5]. (The original proofs of Klingenberg are in [4, 5].) We also note that in
dimension 3 for any ε > 0 there are examples of metrics g on M = S3 (due
to Berger) so that the sectional curvatures satisfy 1/9 − ε ≤ KM ≤ 1, but
(S3, g) = (M, g) has a geodesic of length less than 2π. See [3, Example 3.35,
page70]. To the best of my knowledge there is no known rigidity result in
the above theorems.
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There is a higher dimensional version of the rigidity part of Theorem 1.
In [1] it is shown:

Theorem 3 (Andersson and Howard). Let (M, g) be a complete Riemann-
ian manifold of dimension at least three and so the sectional curvatures of
(M, g) satisfy KM ≤ 1. Let U be any open connected neighborhood of
the equator Sn−1 in the standard sphere (Sn, g0). Then any local isome-

try φ : (U, g0) → (M, g) extends to a local isometry φ̂ : (Sn, g0) → (M, g).
Thus if such a local isometry φ : (U, g0)→ (M, g) exists, then the sectional
curvature of (M, g) is identically one.

Here the curvature assumption is weakened (K ≤ 1 instead of 0 ≤ K ≤ 1)
but the existence of a simple closed geodesic of length 2π is replaced by the
much stronger condition of the existence of a local isometry φ : (U, g0) →
(M, g) for some neighborhood U of an equator Sn−1 ⊂ Sn. It is likely this
condition can be weakened. The proof of theorem 3 is an induction on the
dimension and the base case was a weak version of Theorem 1.
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