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1. Introduction

These are notes to that show how to modify the proof given by Kuiper [2]
that a compact simply connected conformally flat manifold is conformally
diffeomorphic to a sphere under less restrictive smoothness conditions (Kuiper
works with metrics of class C3). The proof mostly follows the original proof
of Kuiper other than we use a covering space argument rather than his mon-
odromy argument and we restrict ourselves to Riemannian metrics while
Kuiper works with conformally flat semi-Riemannian manifolds. What al-
lows us to extend Kuiper’s proof is a theorem of Gehring [1] which shows
that the theorem of Louisville on conformal maps between Euclidean space
of dimension three or more holds for C1 maps.

2. Regularity of Conformal Maps.

By a C1 conformally flat manifold we mean a Riemannian manifold (M, g)
so that M is of class C1, the metric is of class C0 and every point has a C1

coordinate system x1, . . . , xn so that in this coordinate path the metric has
the form g = λ2((dx1)2 + · · ·+ (dxn)2). Or what is the same thing that M
has a cover by open sets {Uα} which are the domain of C1 diffeomorphisms
ϕα : Uα → ϕα[Uα] ⊂ Rn onto open sets so that the transition functions
Φα,β := ϕα ◦ϕ−1

β

∣∣
ϕβ [Uα∩Uβ ]

: ϕβ[Uα ∩Uβ ]→ ϕα[Uα ∩Uβ] are of class C1 and

if g0 is the flat metric on Rn then ϕ∗αg0 = λ2
αg for some positive continuous

function λα defined on Uα.
As the sphere Sn with its standard metric is locally conformally flat we

could just as well as taken the maps ϕα to have values in Sn rather than
Rn and in what follows we will often do this.

We now recall the definition of a Möbius transformation of the sphere
Sn. Let Rn+2

1 be Rn+2 with the Lorentzian inner product gn1 = (dx1)2 +
· · ·+ (dxn+1)2 − (dxn+2)2 and let O+(n+ 2, 1) be the group of linear maps
that preserve both the inner product and the direction of the “time axis”
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xn+2. Embed Sn in Rn+2
1 as Sn := {(x, 1) ∈ Rn+1 ×R : ‖x‖ = 1} where

‖x‖2 = (x1)2 + · · · + (xn+1)2 is the usual Euclidean norm on Rn+1. Then
the induced metric on Sn is the usual round metric. Each a ∈ O+(n+ 1, 1)
a map Ψa on Sn as follows. Let a(x, 1) = (a1x, a2(x)). Then as a preserves
the time orientation the real number a2(x) is positive. Set

Ψa(x, 1) =
(
a1(x)
a2(x)

, 1
)
.

Then ΨaΨb = Ψab and each of the maps Ψa is conformal on Sn. (To see this
note that x 7→ (a1(x), a2(x)) is an isometry of Sn with a[Sn] as a is an isom-
etry of the ambient space Rn+2

1 and (a1(x), a2(x)) 7→ a2(x)−1(a1(x), a2(x) =
Ψa(x, 1) is then a conformal map.) The maps Ψa with a ∈ O+(n+ 2, 1) are
Möbius transformations. The collection of all Möbius transformations is
then a group of conformal transformations acting on Sn called the Möbius
group. The proof of Kuiper’s theorem is based on

Theorem 2.1 (Louisville-Gehring). Assume n ≥ 3 and that U ⊂ Sn is
open connected set. Then any C1 conformal map ϕ : U → Sn is the restric-
tion of a Möbous transformation.

Proof. This is Theorem 16 on page 389 of Gehring’s paper [1]. Louisville
had proven the result under the assumption the map is of class C4. Gehring
reduces the more general result to this case by proving a regularity theorem
which implies that a C1 conformal map is real analytic. In fact the result
of Gehring is even more general than the C1 result as he has a definition
of what it means for a continuous map to be conformal and then proves his
regularity theorem for maps that conformal in this sense except on a set of
finite n− 1 dimensional measure. Also Gehring works in Rn instead of Sn,
but the Sn results follows easily by use of stereographic projection.

Here we give a different proof that, while not quite rigorous, uses the ma-
chinery of Riemannian geometry rather than that of quasiconformal maps.
We first recall some facts about the conformal Laplacian. Let g and g be
two conformal metrics on manifold M , say g = λ2g. Let S be the scalar
curvature and ∆ the Laplacian of g and S and ∆ the scalar curvature of g.
Then for any smooth function u on M(

∆− (n− 2)S
4n− 4

)
(λ

2−n
2 u) = λ−

n+2
2

(
∆− (n− 2)S

4n− 4

)
u.

As a special case let M be a connected open set in Rn and let ϕ : U → Rn

be conformal, so that for some positive function λ : U → R there holds
ϕ∗g = λ2g. For the time being we don’t worry about the smoothness of ϕ
and just assume that it has all the derivatives we need. Let g := ϕ∗g = λ2g.
Then g is the pullback of the flat metric and so it is also flat. Therefore both
g and g have zero scalar curvature. Therefore in our case the last equation
becomes

∆(λ
2−n

2 u) = λ−
n+2

2 ∆u.(2.1)
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Now let u := λ
n−2

2 so that λ
2−n

2 u ≡ 1. Then equation (2.1) and ∆1 = 0
yields ∆λ

n−2
2 = 0 so that by Weyl’s lemma λ

n−2
2 and therefore also λ is real

analytic. Write ϕ = (ϕ1, . . . , ϕn) so that ϕi = ϕ∗xi. Then as the coordinate
functions xi are harmonic with respect to the flat metric the functions ϕi

are harmonic with respect to the metric g. Therefore ∆ϕi = 0. So if we let
u = λ

n−2
2 ϕi in (2.1) we find ∆(λ

n−2
2 ϕi) = 0 so that ϕi is also real analytic.

Whence ϕ is real analytic.
To make this all rigorous in the case ϕ is only C1 it is enough to show

that all all the statements can be interpreted in the weak sense and that
they still hold in this sense when ϕ is only C1. While I have not done this
my deep faith in elliptic technology makes me believe it works.

Corollary 2.2. Any C1 conformally flat manifold (M, g) has a natural real
analytic structure and there is a C∞ metric in the conformal class of g.

Proof. Let {Uα} an open cover of M so that there are C1 conformal maps
ϕα : Uα → ϕα[Uα] ⊂ Sn as in the definition of a C1 conformal manifold
above and let Φα,β := ϕα ◦ ϕ−1

β

∣∣
ϕβ [Uα∩Uβ ]

: ϕβ [Uα ∩ Uβ] → ϕα[Uα ∩ Uβ] be
the corresponding transition functions. Then by the theorem of Louisville-
Gehring the restriction of Φα,β to any connected component of ϕβ [Uα∩Uβ] is
the restriction of a Möbius transformation and therefore Φα,β is real analytic.
This gives a real analytic atlas on M .

Let g0 be the standard metric on Sn. The metric gα := ϕ∗αg0 on Uα is
real analytic with respect to the real analytic structure we have defined on
M and is also conformal to the metric g on Uα on Uα. These metrics can
be pieced together by use of a partition of unity to give a smooth metric in
the conformal class of g.

3. Kuiper’s Theorem

Theorem 3.1 (Kuiper [2]). Let (Mn, g) be a simply connected conformally
flat manifold of class C1. Then there is a conformal immersion f : M → Sn.
If M is compact then this map is a conformal diffeomorphism of M with Sn.

Proof. Let U = {Uα} be an open cover of M by connected open sets so that
for each α there is a C1 injective conformal map ϕα : Uα → Sn. We now
claim that we can find anther open cover V and for each V ∈ V an injective
conformal map ψV : V → Sn so that V is countable, each V ∈ V and each
intersection V1∩V2 with V1, V2 ∈ V is connected. To see this we use that M
is paracompact so that we can express M = ∪∞i=1Ki as a countable union
of compact sets Ki and so that this union is locally finite. Now choose
a complete Riemannian metric h on M (which need not be related to the
conformal structure). For each i let δi,1 be the Lebesgue number of the
cover on Ki. That is if r ≤ δi,1 and x ∈ Ki then the open ball B(x, r) is
a subset of some member Uα of U . Let δi,2 be the convexity radius of Ki

in M , that is if x ∈ Ki and r ≤ δi,2 then the ball B(x, r) is convex in the
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sense that any two points of B(x, r) can be joined by a unique minimizing
segment and this segment is a subset of B(x, r). Let δi := min(δi,1, δi,2).
Then {B(x, δi) : x ∈ Ki} is an open cover of Ki and therefore it has a
finite sub-cover Vi. For each V ∈ Vi by construction there is a Uα ∈ U
so that V ⊆ Uα. Set ψV = ϕα

∣∣
V

. Finally set V := ∪∞i=1Vi. This is a
countable union of finite sets and thus countable and the connectivity of the
intersection V1 ∩ V2 follows from the convexity of V1 and V2.

Let V1, V2 ∈ V and V1 ∩V2 6= ∅ then by the theorem of Louisville-Gehring
the transition function ΨV1,V2 := ψV2◦ψV1

∣∣
ψV1

[V1∩V2]
: ψV1 [V1∩V2]→ ψV2 [V1∩

V2] is the restriction of a Möbius transformation. This implies there is a
unique Möbius transformation a so that ψV1 and a ◦ ψV2 agree on the set
V1 ∩ V2. We then say that a ◦ ψV2 is the analytic continuation of ψV1

into V2. More generally given a chain of open V0, V1, . . . , Vk ∈ V (by a
chain we mean that Vi ∩ Vi+1 6= ∅ for i = 0, . . . , k − 1) we can repeat this
and get a unique analytic continuation of ψV0 to the set Vk along the given
chain. We now want to show that when M is simply connected this analytic
continuation is independent of the chain connecting V0 and Vk.

Toward this end we fix a V0 ∈ V to use as a starting point for our construc-
tion. For any V ∈ V let CV be the collection of all analytic continuations of
ψV0 to V any chain V0, . . . , Vk = V connecting V0 and V . Define a subman-
ifold G ⊂M × Sn by

G :=
⋃
V ∈V
{(x, ψ(x)) : x ∈ V, ψ ∈ CV },

where the manifold structure is defined so that the projection onto M is a
local diffeomorphism. If V0, . . . , Vk = V is a chain and ψV0 =: ϕ0, ϕ1, . . . , ϕk
are the maps obtained by analytically continuing ψV0 along the chain. Then
∪ki=0{(x, ϕi(x)) : x ∈ Vi} is a connected subset of G. But from the definition
G this means that every point of G is in the same connected component as
(x, ψ0(x)) for x ∈ V0 thus G is connected. Let π : G→M be the restriction
of projection onto the first factor. Then for each V ∈ V the set π−1[V ] is
the disjoint1 union of the sets {(x, ψ(x)) : x ∈ V } where ψ varies over CV
and the restriction of π to any of one of the sets {(x, ψ(x)) : x ∈ V } is a
diffeomorphism with V . Thus each of the sets V is evenly covered by the
map π : G → M . Thus π : G → M is a covering map. As we are assuming
that M is simply connected and we have shown G is connected this means
that π : G→M is a diffeomorphism. Therefore G is the graph of a function
f : M → Sn which is easily seen to be a conformal immersion.

Finally assume that M is compact. As the map f : M → Sn is a conformal
immersion the image of f is an open subset of Sn. But M compact implies
it is also closed. As Sn is connected the map f is surjective. For any point
x ∈ M there is a neighborhood U of x so that f is injective on U . By the

1Strictly speaking to insure that this union is disjoint we should not use the submanifold
topology on G, but rather the topology in inherits as subset set of the sheaf of germs of
smooth Sn valued functions.
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compactness of M we can then cover M by open sets U1, . . . , Uk so that
f is injective on each Ui. This implies any point y ∈ Sn has at most k
preimages. So let f−1[y] := {x1, . . . , xl}. Let Ni be a open neighborhood
of xi so that N1, . . . , Nl are pairwise disjoint and so that f is injective on
each Ni. Then U := ∩1

i=1f [Ni] is an open neighborhood of y and f−1[U ] :=
∪li=1(f−1[U ]∩Ni) and f

∣∣
f−1[U ]∩Ni

: f−1[U ]∩Ni → U is a diffeomorphism for
all i = 1, . . . , l. Therefore f is a covering map and as Sn is simply connected
this means it is a diffeomorphism.
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