Number Theory Homework.

1. Congurences, modular arthmetic, and solving linear
 CONGRUENCES.

1.1. Definition and some basic results and examples. The following definition was fist given by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae which was published in 1801 . It is has proven to simplify many computations and proofs in number theory and elsewhere.
Definition 1. Let n be a positive integer. Then for $a, b \in \mathbb{Z}$ we write

$$
a \equiv b \quad \bmod n
$$

to mean

$$
n \mid(b-a)
$$

In we say that a is congruent to b modulo n, or just a congruent to b $\bmod n$.

Proposition 2. The following hold for all $a, b, c \in \mathbb{Z}$ and any positive integer n.
(a) $a \equiv a \bmod n$
(b) $a \equiv b \bmod n$ implies $b \equiv a \bmod n$
(c) $a \equiv b \bmod n$ and $b \equiv c \bmod n$ implies $a \equiv c \bmod d$
(Using terminology you many have seen in other classes, this is saying that $\equiv \bmod n$ is an equivalence relation.)

Problem 1. Prove this. Hint: These all follow form basic properties of divisibility. For example if $a \equiv b \bmod n$ and $b \equiv c \bmod n$, then $n \mid(b-a)$ and $n \mid(c-a)$. But if n divides two numbers it divides their sum. Thus $n \mid(c-a)=(c-b)+(b-a)$.

We now show that congruence mod n plays well with the basic arithmetic operations.

Proposition 3. If

$$
a \equiv b \quad \bmod n \quad \text { and } \quad c \equiv d \quad \bmod n
$$

Then

$$
a+c \equiv b+d \quad \bmod n, \quad a-c \equiv b-d \quad \bmod n, \quad a c \equiv b d \quad \bmod n .
$$

Problem 2. Prove this. Hint: The assumption of the hypothesis can be stated as saying that there are q_{1} and q_{2} such that $(b-a)=q_{1} n$ and $(d-c)=q_{2} n$. Then $(b+d)-(a+c)=(b-a)+(d-c)=\left(q_{1}+q_{2}\right) n$. Slightly trickier is the result for products, where we have to use the trick of adding and subtracting a term:

$$
b d-a c=b d-a d+a d-a c=(b-a) d+a(d-c)
$$

and now show that an n can be factored out of this.

This can be extended to more than sums and products of just two terms.
Proposition 4. If

$$
a_{j} \equiv b_{j} \quad \bmod n \quad \text { for } \quad j=1,2, \ldots, k
$$

then

$$
\left(a_{1}+a_{2}+\cdots+a_{k}\right) \equiv\left(b_{1}+b_{2}+\cdots+b_{k}\right) \quad \bmod n
$$

and

$$
a_{1} a_{2} \cdots a_{k} \equiv b_{1} b_{2} \cdots b_{k} \quad \bmod n
$$

In particular for any nonnegative integer k

$$
a \equiv b \quad \bmod n \quad \Longrightarrow \quad a^{k} \equiv b^{k} \quad \bmod n .
$$

Proof. This is just an easy induction on k.
Proposition 5. If $f(x)=c_{k} x^{k}+c_{k-1} x^{k-1}+\cdots c_{1} x+c_{0}$ is a polynomial with integer coefficients, then

$$
a \equiv b \quad \bmod n \quad \Longrightarrow \quad f(a) \equiv f(b) \bmod n .
$$

Problem 3. Prove this. Hint: One way, and maybe the most natural, to do this is just by repeated use of the last couple of propositions. But it is not hard to give an nice proof based on induction on $k=\operatorname{deg} f(x)$. Write

$$
f(x)=x\left(c_{k} x^{k-1}+c_{k-2} x^{k-1}+\cdots+c_{2} x+c_{1}\right)+c_{0}=x g(x)+c_{0} .
$$

Then $g(x)=c_{k} x^{k-1}+c_{k-2} x^{k-1}+\cdots+c_{2} x+c_{1}$ is a polynomial with $\operatorname{deg} g(x)=$ $k-1=\operatorname{deg} f(x)-1$. Thus if you have the correct induction hypothesis you will have that $g(a) \equiv g(b) \bmod n$.

The following shows that two numbers are congruent modulo n if any only if they have the same remainder with divided by n.

Theorem 6. Let n be a positive integer and a_{1} and a_{2} any integers. Divide n into a_{1} and a_{2} to get quotients and remainders

$$
a_{1}=q_{1} n+r_{1}, \quad a_{2}=q_{2} n+r_{2} \quad \text { with } \quad 0 \leq r_{1}<n, \quad 0 \leq r_{2}<n .
$$

Then

$$
a_{1} \equiv a_{2} \quad \bmod n \quad \Longleftrightarrow \quad r_{1}=r_{2}
$$

Problem 4. Prove this. Hint: One way to start is $a_{2}-a_{1}=\left(q_{2}-q_{1}\right) n+$ $\left(r_{2}-r_{1}\right)$. Show $0 \leq\left|r_{2}-r_{1}\right|<n$ and therefore $n \mid\left(r_{2}-r_{1}\right)$ if and only if $r_{1}=r_{2}$.

We can now do "arithmetic modulo n " by adding and multiplying integers and then "reducing mod n ", that is replacing the result by the remainder when divided by n. For example working modulo 6 we have

$$
2+3=5, \quad 2+4=6 \equiv 0 \quad \bmod 6, \quad 5 \cdot 4=20 \equiv 2 \bmod 6 .
$$

The full addition and multiplication tables modulo 6 and 7 are

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\cdot	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

The addition and multiplication tables modulo 6 .

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

\cdot	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

The addition and multiplication tables modulo 7 .

Problem 5. If you have never constructed addition and multiplication tables as these make the tables for the integers modulo 4 and the integers modulo 5 .

To give an immediate application of the usefulness of these ideas to give an easy explanation of the method of "casting out nines". What this says is that for any positive decimal integer, for example $n=986,529$, the sum of its digits, in our case $S=9+8+6+5+2+9=39$, have the same remainder when divided by 9 . In our example

$$
986,529=109,614 \cdot 9+3 \quad \text { and } \quad 39=4 \cdot 9+3
$$

so in both cases the remainder is 3 . The reason this works is that

$$
10 \equiv 1 \quad \bmod 9
$$

Taking powers

$$
10^{k} \equiv 1 \quad \bmod 9
$$

Therefore

$$
\begin{array}{rlr}
986,529 & =9 \cdot 10^{5}+8 \cdot 10^{4}+6 \cdot 10^{3}+5 \cdot 10^{2}+2 \cdot 10+9 \\
& \equiv 9 \cdot 1+8 \cdot 1+6 \cdot 1+5 \cdot 1+2 \cdot 1+9 & \bmod 9 \\
& =9+8+6+5+2+9 \\
& =39
\end{array}
$$

This shows

$$
986,529 \equiv 9+8+6+5+2+9 \quad \bmod 9
$$

and thus these numbers have the same remainder when divided by 9 .

Problem 6. (a) Based on this example give a precise statement to the fact that a positive integer and the sum of its digits have the same remainder when divided by 9 and prove it. Show this implies that an integer is divisible by 9 if and only of the sum of its digits is divisible by 9 .
(b) We also have that $10 \equiv 1 \bmod 3$. Use this to state and prove a rule for "casting out threes" and in particular show an integer is divisible by 3 if and only it the sum of its digits is divisible by 3 .

Until recently, when calculators made having to do such checks pointless, casting out nines was used as a check on doing arithmetic calculations. For example in the addition problem:

	Digit sum		Sum mod 9
8643	$8+6+4+3=21$		3
9634	$9+6+3+4=22$		4
$+\quad 5326$	$5+3+2+6=16$		7
23603			

Casting the nines out of 23603 (that is take the digit sum and reduce modulo $9)$ gives $2+3+6+0+3=14 \equiv 5 \bmod 9$. That we got 5 both times gives a check that the calculation is correct. This method does not guarantee the answer is right, but does give a check that let people catch enough errors that it was worth doing. The method also works to give checks on substation, multiplication, and division problems.

A related idea comes form the fact $10 \equiv-1 \bmod 11$. Thus

$$
(10)^{k} \equiv(-1)^{k} \quad \bmod 11
$$

This can be used as follows:

$$
\begin{aligned}
82,752 & =8(10)^{4}+2(10)^{3}+7(10)^{2}+5(10)+2 \\
& \equiv 8(-1)^{4}+2(-1)^{3}+7(-1)^{2}+5(-1)+2 \bmod 11 \\
& =8-2+7-5+2 \\
& =10
\end{aligned}
$$

and therefore $82,752 \equiv 8-2+7-5+2 \equiv 10 \bmod 11$ and so if 82,752 is divided by 11 the remainder is 10 .

Problem 7. Based on this example make precise the statement that a positive integer and the alternating sum of its digits have the same remainder when divided by 11 and prove the result. (Be careful, there is more than one way to define the alternate sum of the digits: i.e. when $n=1,435$ do we want $1-4+3-5$ or $-1+4-3+5 ?$) Thus an integer is divisible by 11 if and only if the alternating sum of its digits is divisible by 11.

Hopefully the last problems were straightforward. To get a feel for how much modular arithmetic simplifies arguments about divisibility and remainders, it is worth spending some time and finding your own proof that the method of casting out nines works but that does not use arithmetic mod
9. ${ }^{1}$ (Casting out nines was known long before Gauss, so modular arithmetic is not required to prove it.)

Before going on we pause for an aside to discuss how to compute a^{k} $\bmod n$ for a large value of k. Later we will find some better methods in the case $\operatorname{gcd}(a, n)=1$, and so may not be that important for the mathematical theory, but the trick is pretty and is definitely used by people doing computational number theory and to some extent by computer scientists. To start with an example let's find the remainder when 7^{83} is divided by 13. You definitely do not want to compute ${ }^{2} 7^{83}$, but this can be avoided by repeatedly squaring and reducing modulo 13 . The idea is that it is easy to compute powers of the form $7^{2^{k}} \bmod 13$ by repeated squaring:

$$
\begin{aligned}
7^{2} & =49 \equiv 10 \quad \bmod 13 \\
7^{4}=\left(7^{2}\right)^{2} & \equiv 10^{2} \equiv 9 \quad \bmod 13 \\
7^{8}=\left(7^{4}\right)^{2} & \equiv 9^{2} \equiv 3 \quad \bmod 13 \\
7^{16}=\left(7^{8}\right)^{2} & \equiv 3^{2} \equiv 9 \quad \bmod 13 \\
7^{32}=\left(7^{16}\right)^{2} & \equiv 9^{2} \equiv 3 \quad \bmod 13 \\
7^{64}=\left(7^{32}\right)^{2} & \equiv 3^{2} \equiv 9 \quad \bmod 13
\end{aligned}
$$

Back to 7^{83}, note

$$
83=64+16+2+1
$$

and therefore

$$
\begin{aligned}
7^{83} & =7^{64} \cdot 7^{16} \cdot 7^{2} \cdot 7 & & \\
& \equiv 9 \cdot 9 \cdot 10 \cdot 7 & & \bmod 13 \\
& =81 \cdot 70 & & \\
& \equiv 3 \cdot 5 & & \bmod 13 \\
& \equiv 2 & & \bmod 13
\end{aligned}
$$

Thus the remainder when 7^{83} is divided by 13 is 2 .
Problem 8. Use this method to compute (a) the remainder when 10^{45} is divided by 7, (b) the remainder when 37^{39} is divided by 17 (Hint: As a first step note $37 \equiv 3 \bmod 17$), (c) the remainder when 10^{70} is divided by 24.

Definition 7. Let n be a positive integer. Two integers a and b are in the same residue class modulo n iff $a \equiv b \bmod n$. A set of n integers $r_{1}, r_{2}, \ldots, r_{n}$ is a complete set of residues modulo n iff each integer a is in the residue class of exactly one of the numbers $r_{1}, r_{2}, \ldots, r_{n}$.

[^0]The following is direct consequence of Theorem 6.
Proposition 8. For any postive integer n the numbers $0,1, \ldots, n-1$ are a complete set of residues modulo n.

Problem 9. Prove this. Hint: It $a \in \mathbb{Z}$ use the division algorithm to divide a by n to get $a=q n+r$ with $0 \leq r<n$. That is r is one of the numbers $0,1, \ldots, n-1$ and also $a \equiv r \bmod n$.

Problem 10. (a) Is $1,2,3$ a complete set of residues modulo 3 ?
(b) Is $0,1,2$ a complete set of residues modulo 3 ?
(c) Is $-1,0,1$ a complete set of residues modulo 3 ?
(d) Is $-1,0,5$ a complete set of residues modulo 3 ?
(e) Is $0,3,3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}$ a complete set of residues modulo 7 ?
(f) Is $0,2,2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}$ a complete set of residues modulo 7 ?

Proposition 9. Let n be a positive integer and $r_{1}, r_{2}, \ldots, r_{n}$ integers such that

$$
i \neq j \quad \Longrightarrow \quad r_{i} \not \equiv r_{j} \quad \bmod n
$$

then $r_{1}, r_{2}, \ldots, r_{n}$ is a complete set of residues modulo n. (Note the hypothesis could also be stated as $r_{i} \equiv r_{j} \bmod n \Longrightarrow i=j$.)

Proof. Use the division algorithm to divide n into r_{j} to get

$$
r_{j}=q_{j} n+s_{j} \quad \text { and } \quad s_{j} \in\{0,1, \ldots, n-1\}
$$

This implies $r_{j} \equiv s_{j} \bmod n$. Therefore if $i \neq j$, then $s_{i} \neq s_{j}$ for if $s_{i}=s_{j}$, then

$$
\begin{aligned}
r_{i} & \equiv s_{i} \quad \bmod n \\
& =s_{j} \\
& \equiv r_{j} \quad \bmod n
\end{aligned}
$$

which contradicts our assumption that $r_{i} \not \equiv r_{j}$ for $i \neq j$. Therefore $s_{1}, s_{2}, \ldots, s_{n}$ are distinct elements of $\{0,1, \ldots, n-1\}$. As the set $\{0,1, \ldots, n-1\}$ has exactly n elements, it follows that $s_{1}, s_{2}, \ldots, s_{n}$ and just the numbers $0,1, \ldots, n-$ 1 listed in some order. Therefore if $a \in \mathbb{Z}$ we divide n into a to get

$$
a=q n+r
$$

where $0 \leq r<n$. Then $r=s_{i}$ for some i and thus

$$
\begin{aligned}
a & \equiv r \quad \bmod n \\
& \equiv s_{i} \quad \bmod n \\
& \equiv r_{i} \quad \bmod n
\end{aligned}
$$

Thus each $a \in \mathbb{Z}$ is in the residue class modulo n of at least one of the r_{i} 's. But as $r_{i} \not \equiv r_{j}$ for $i \neq j$ this implies that a is in the residue class of exactly one of the r_{i} 's.

The following uses the last result to give an example of a complete set of residues that will be useful to us later.

Proposition 10. If n is a positive integer and a is an integer with $\operatorname{gcd}(a, n)=$ 0 then the set $0, a, 2 a, 3 a, \ldots,(n-1) a$ (that is the list of numbers ka for $k=0,1, \ldots, n-1$) is a complete set of residues modulo n.

For example, when $n=12$ and $a=5$, this implies

$$
0,5,10,15,20,25,30,35,40,45,50,55
$$

is a complete set of residues modulo 12 .
Problem 11. Prove Proposition 10. Hint: Let $r_{j}=j a$ for $j=0,1, \ldots, n-1$. This is a list of n integers. Since there are n of them, by Proposition 9 it is enough to show $r_{i} \equiv r_{j} \bmod n$ implies $i=j$. That is

$$
i a \equiv j a \bmod n \quad \Longrightarrow \quad i=j
$$

If $i a \equiv j a \bmod n$, then $n \mid a(i-j)$. Now use $\operatorname{gcd}(a, n)=1$ to conclude $n \mid(i-j)$. But $0 \leq i, j<n$ which implies $|i-j|<n$.
1.2. Solving a single linear congruence. Given integers a and b and a positive integer n will find all solutions to

$$
a x \equiv b \quad \bmod n
$$

when they exist. There are several possible cases. First there are congruences such as

$$
5 x \equiv 4 \quad \bmod 6
$$

With a little trial and error we see $x=2$ is a solution. But that so are $x=8$, $x=-2$, and in general $x=2+6 t$ where t is any integer and moreover this gives all solutions. As all these solutions are $\equiv 2 \bmod 6$ we will say that in this case the congruence has a unique solution.

Next we can have congruences such as

$$
2 x \equiv 4 \quad \bmod 6
$$

where both $x=2$, and $x=5$ are solutions, but $2 \not \equiv 4 \bmod 6$. So in this case the congruence has solutions, but they are not unique modulo $n=6$. We will see that in this case all solutions are of the form $x=2+6 t$, or $x=5+6 t$. Reduce modulo 6 we this gives two solutions, so we that the congruence has two solutions (modulo 6).

Finally there are congruences such as

$$
2 x \equiv 3 \quad \bmod 6
$$

that have no solutions.
The main idea in understanding this question is to note that $a x \equiv b$ $\bmod n$ is to convert it to a linear Diophantine equation.
x is a solution to $a x \equiv b \bmod n \Longleftrightarrow n \mid(b-a x)$

$$
\begin{aligned}
& \Longleftrightarrow \text { there is } y \in \mathbb{Z} \text { with }(b-a x)=n y \\
& \Longleftrightarrow a x+n y=b \text { has a solution }
\end{aligned}
$$

To be more precise.

Proposition 11. (a) Let $(x, y)=\left(x_{1}, y_{1}\right)$ be a solution to the linear Diophantine equation $a x+n y=b$. Then $x=x_{1}$ is a solution to congruence $a x \equiv b \bmod n$.
(b) Conversely, if x_{1} is a solution to the congruence $a x \equiv b \bmod n$, then there is a y_{1} such that $(x, y)=\left(x_{1}, y_{1}\right)$ is a solution to $a x+n y=b$.

Problem 12. Prove this.
The last proposition basically says that to solve $a x \equiv b \bmod n$, solve $a x+n y=b$ and just use the x values.

Example 12. As a first example let us solve

$$
5 x \equiv 7 \quad \bmod 13
$$

This is equivalent to solving

$$
5 x+13 y=7
$$

We do the Euclidean algorithm to solve Bézout's equation.

$$
\begin{aligned}
& (3)=(13)-2(5) \\
& (2)=(5)-(3) \\
& (1)=(3)-(2)
\end{aligned}
$$

Now back doing the usual back substitution

$$
\begin{aligned}
(1) & =(3)-(2) & & =(3)-((5)-(3)) \\
& =-(5)+2(3) & & =-(5)+2((13)-2(5)) \\
& =2(13)-5(5) . & &
\end{aligned}
$$

Therefore

$$
5(-5)+13(2)=(1)
$$

Multiply by 7 to get

$$
5(-35)+12(14)=(7)
$$

Thus $(x, y)=(-35,14)$ is a particular solution to $5 x+13 y=7$. So the general solution to this equation is

$$
x=-35+13 t, \quad y=14-5 t
$$

Therefore the general solution to the congruence is

$$
x-35+13 t
$$

Note that replacing -35 by any integer of the form $-35+13 k$ will give same set of solutions. Using $-35+3 \cdot 13=4$ then gives that we can write the general solution as

$$
x=4+13 t
$$

with t any integer. If we are considering solutions mod 13 the unique solution is the residue class defined by $x \equiv 4 \bmod 13$ (which is the same as the residue class $x \equiv-35 \bmod 13$).

Example 13. For a second example let us solve

$$
6 x \equiv 4 \quad \bmod 15
$$

This leads to the Diophantine equation

$$
6 x+15 y=9 .
$$

Going through the usual routine

$$
(3)=(15)-2(6)
$$

so we are lucky and it stops after one step and we have

$$
6(-2)+15(1)=(3) .
$$

Multiply by 3 to get

$$
6(-6)+15(3)=(9)
$$

and therefore $(x, y)=(-6,3)$ is a particular solution to $6 x+15 y=9$. Thus the general solution is

$$
x=-6+\frac{15}{\operatorname{gcd}(6,15)} t=-6+5 t, \quad y=3-\frac{6}{\operatorname{gcd}(6,15)} t=3-2 t .
$$

We only need the x values, so the general solution to the congruence is

$$
x=-6+5 t .
$$

Unlike the last example these are not all the same $\bmod n=15$. Let $t 0,1,2 \ldots$ solutions

$$
-6,-1,4,9,14,19
$$

which starts to repeat after when we get to $9($ as $9 \equiv-6 \bmod 15,14 \equiv-1$ $\bmod 15,19 \equiv 4 \bmod 15$). So $6 x \equiv 4 \bmod 15$ has three residue classes as solutions:

$$
x \equiv 4,9,14 \quad \bmod 15
$$

are all solutions mod 15 , they are distinct $\bmod 15$, and every residue that solves the congruence solves is congruence to one of these residue classes. So in this case we say the congruence has three residue classes as solutions. Or more briefly that the congruence has 3 solutions mod 15 .

Example 14. As a last example consider

$$
8 x \equiv 5 \bmod 12
$$

This leads to the Diophantine equation

$$
8 x+12 y=5
$$

which has no solution as $\operatorname{gcd}(8,12)=4 \nmid 5$. Thus the congruence has no solution.

Theorem 15. The linear congruence

$$
a x \equiv b \quad \bmod n
$$

has solutions if and only if $\operatorname{gcd}(a, n) \mid b$. If it does have a solution and x_{0} is one solution, then the general solution is

$$
x=x_{0}+\frac{n}{\operatorname{gcd}(a, n)} t
$$

with $t \in \mathbb{Z}$. Viewed modulo n, the number of solutions is $\operatorname{gcd}(a, n)$ and are the residue classes of

$$
x=x_{0}+\frac{n}{\operatorname{gcd}(a, n)} t \quad \text { for } \quad t=0,1, \ldots, \operatorname{gcd}(a, n)-1
$$

Problem 13. Prove this.
Problem 14. Solve the following congruences of the form $a x \equiv b \bmod n$. Determine how many solutions they have $\bmod n$.
(a) $12 x \equiv 5 \bmod 31$.
(b) $24 x \equiv 12 \bmod 40$.
(c) $12 x \equiv 13 \bmod 40$.

1.3. Inverses modulo n.

Proposition 16. Let n be a positive integer and a an integer with $\operatorname{gcd}(a, n)=$ 1. Then there is an integer b that is the multiplictive inverse of a modulo n in the sense that

$$
a b \equiv 1 \quad \bmod n .
$$

This inverse is unique in the sense that if b and b^{\prime} are both inverse mod n to a, then $b \equiv b^{\prime} \bmod n$

Problem 15. Prove this in two ways. First note that it is a direct consequence of Theorem 15 as we are just solving the congruences $a x \equiv 1$ $\bmod n$. For a second proof use $\operatorname{gcd}(a, n)=1$ to find integers x and y such that $a x+n y=1$, and this implies $a x \equiv 1 \bmod n$. So $b=x$ is the required inverse modulo n.

In finding finding the inverses modulo n, it is generally easier to use the second method from the last problem. This is because it just involves solving Bézout's equation $a x+n y=1$ and we have become experts on that.

Example 17. Find the inverse of 31 modulo 73. First use the Euclidean algorithm

$$
\begin{aligned}
(11) & =(73)-2(31) \\
(9) & =(31)-2(11) \\
(2) & =(11)-(9) \\
(1) & =(9)-4(2) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
(1) & =(9)-4(2) & & =(9)-4((11)-(9)) \\
& =-4(11)+5(9) & & =-4(11)+5((31)-2(11)) \\
& =5(31)-14(11) & & =5(31)-14((73)-2(31)) \\
& =-14(73)+33(31) . & &
\end{aligned}
$$

And, as $-14(73) \equiv 0 \bmod 73$,

$$
-14(73)+33(31)=1
$$

clearly implies

$$
31 \cdot 33 \equiv 1 \quad \bmod 73
$$

Thus 33 is the multiplicative inverse of 31 modulo 73 .
Problem 16. Find the following
(a) The inverse of $19 \bmod 23$.
(b) The inverse of $45 \bmod 64$.
(c) The inverse of $324 \bmod 79$.

Problem 17. Let \hat{a} be the inverse of $a \bmod n$ and \hat{b} the inverse of $b \bmod$ n. Show the product $\hat{a} \hat{b}$ is the inverse of the product $a b \bmod n$

We can use inverses modulo n to prove the following (which also follows form Theorem 15).

Proposition 18. If $\operatorname{gcd}(a, n)=1$, and $a x \equiv a y \bmod n$, then $x \equiv y$ $\bmod n$. That is when $a x \equiv a y \bmod n$ and $\operatorname{gcd}(a, n)=1$, we can cancel

That is when $a x \equiv a y \bmod n$ and $\operatorname{gcd}(a, n)=1$, we can cancel a on both sides of the congruence.

Problem 18. Prove this. Hint: One way is to let \widehat{a} be an inverse of a modulo n and multiply both sides of $a x \equiv a y \bmod n$ by \widehat{n}.
Problem 19. Show that the hypothesis $\operatorname{gcd}(a, n)=1$ is required in Proposition 18 by giving an example where $\operatorname{gcd}(a, n) \neq 1$ and integers x and y such that $a x \equiv a y \bmod n$ but $x \not \equiv y \bmod n$.
1.4. Solving simultaneous linear congruences: the Chinese remainder theorem. Consider the system

$$
\begin{array}{ll}
x \equiv b_{1} & \bmod n_{1} \\
x \equiv b_{2} & \bmod n_{2}
\end{array}
$$

of two linear congruences. We assume

$$
\operatorname{gcd}\left(n_{1}, n_{2}\right)=1
$$

To find a solution to this system set

$$
\begin{aligned}
& m_{1}=n_{2} \\
& m_{2}=n_{1}
\end{aligned}
$$

and let

$$
\begin{array}{ll}
\widehat{m}_{1}=\text { an inverse of } m_{2} & \bmod n_{1} \\
\widehat{m}_{2}=\text { an inverse of } m_{1} & \bmod n_{2}
\end{array}
$$

and let

$$
x=m_{1} \widehat{m}_{1} b_{1}+m_{2} \widehat{m}_{2} b_{2}
$$

Then

$$
\left.\begin{array}{rlrl}
x & =m_{1} \widehat{m}_{1} b_{1}+m_{2} \widehat{m}_{2} b_{2} & & \\
& \equiv m_{1} \widehat{m}_{1} b_{1}+0 & & \left(\text { as } m_{2} \widehat{m}_{2} \equiv 0\right. \\
& \left.\bmod n_{1}\right) \\
& \equiv b_{1} & & \left(\text { as } m_{1} \widehat{m}_{1} \equiv 1\right.
\end{array} \bmod n_{1}\right)
$$

with a similar calculation showing

$$
x \equiv b_{2} \quad \bmod n_{2}
$$

We have therefore proven the existence part of
Theorem 19 (Chinese remainder theorem for two congruences). If n_{1} and n_{2} are positive integers with $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, then for any integers b_{1} and b_{2} there is a simultaneous solution to the congruences

$$
\begin{array}{ll}
x \equiv b_{1} & \bmod n_{1} \\
x \equiv b_{2} & \bmod n_{2}
\end{array}
$$

which can be found by the construction above. If $x=x_{0}$ is one solution, then the general solution is

$$
x=x_{0}+n_{1} n_{2} t
$$

with $t \in \mathbb{Z}$. (Thus the solution is unique modulo $n_{1} n_{2}$.)
Problem 20. Prove uniqueness part of this. That it that the general solution is of the given form. Hint: First check that $x=x_{0}+n_{1} n_{2} t$ is a solution. Now assume that x is a solution. Then $x \equiv b_{1} \equiv x_{0} \bmod n$, which implies $n_{1} \mid\left(x-x_{0}\right)$. Likewise $n_{2} \mid\left(x-x_{0}\right)$. Use these facts and that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$ to show $n_{1} n_{2} \mid\left(x-x_{0}\right)$.

Example 20. Solve the system

$$
\begin{array}{ll}
x \equiv 5 & \bmod 8 \\
x \equiv 4 & \bmod 11
\end{array}
$$

In the notataion above we have

$$
m_{1}=11, \quad m_{2}=9
$$

You can check

$$
11(3) \equiv \bmod 8, \quad 8(7) \equiv 1 \quad \bmod 11
$$

so that we can use

$$
\widehat{m}_{1}=3, \quad \widehat{m}_{2}=7
$$

Then a particular solution to our equation is

$$
x_{0}=m_{1} \widehat{m}_{1} b_{1}+m_{2} \widehat{m}_{2} b_{2}=11 \cdot 3 \cdot 5+8 \cdot 7 \cdot 4=389 .
$$

Thus the general solution is

$$
x=389+8 \cdot 11 t=389+88 t .
$$

Or working $\bmod 88$ we have

$$
389 \equiv 37 \bmod 88
$$

so we could also write the general solution as

$$
x=37+88 t .
$$

(As a check note $37 \equiv 5 \bmod 8$ and $37 \equiv 4 \bmod 11$.)
Problem 21. Solve the following:
(a) $x \equiv 7 \bmod 13$
$x \equiv 3 \bmod 21$
(b) $x \equiv 21 \bmod 27$
$x \equiv-4 \bmod 14$
(c) $3 x \equiv 5 \bmod 8$
$2 x \equiv 6 \bmod 15$
Hint: For (c) first find solutions to $3 x \equiv 5 \bmod 8$ and $2 x \equiv 6 \bmod 15$ to reduce the system to one of the form $x \equiv b_{1} \bmod 8$ and $x \equiv b_{2} \bmod 15$.

It is only a bit more work to do this for three or more simultaneous congruences. Let n_{1}, n_{2}, and n_{3} be positive integers with

$$
\operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(n_{1}, n_{3}\right)=\operatorname{gcd}\left(n_{2}, n_{3}\right)=1 .
$$

Set

$$
\begin{aligned}
m & =n_{1} n_{2} n_{3} \\
m_{1} & =n_{2} n_{3}=\frac{m}{n_{1}} \\
m_{2} & =n_{1} n_{3}=\frac{m}{n_{2}} \\
m_{3} & =n_{1} n_{2}=\frac{m}{n_{3}}
\end{aligned}
$$

Then

$$
\operatorname{gcd}\left(n_{1}, m_{1}\right)=\operatorname{gcd}\left(n_{2}, m_{2}\right)=\operatorname{gcd}\left(n_{3}, m_{3}\right)=1 .
$$

Thus there are $\widehat{m}_{1}, \widehat{m}_{2}$, and \widehat{m}_{3} such that

$$
\begin{aligned}
& \widehat{m}_{1}=\text { an inverse of } m_{1} \bmod n_{1} \\
& \widehat{m}_{2}=\text { an inverse of } m_{2} \bmod n_{2} \\
& \widehat{m}_{3}=\text { an inverse of } m_{3} \bmod n_{3}
\end{aligned}
$$

Then

$$
\begin{array}{llll}
m_{1} \widehat{m}_{1} \equiv 1 & \bmod n_{1} & \left(\text { definition of inverse } \bmod n_{1}\right) \\
m_{1} \widehat{m}_{1} \equiv 0 & \bmod n_{2} & \left(\text { as } n_{1} \mid m_{2}, \text { and thus } m_{2} \equiv 0\right. & \left.\bmod n_{2}\right) \\
m_{1} \widehat{m}_{1} \equiv 0 & \bmod n_{3} & \left(\text { as } n_{1} \mid m_{3}, \text { and thus } m_{3} \equiv 0\right. & \left.\bmod n_{3}\right)
\end{array}
$$

Likewise

$$
\begin{array}{llllll}
m_{2} \widehat{m}_{2} \equiv 0 & \bmod n_{1} & m_{2} \widehat{m}_{2} \equiv 1 & \bmod n_{2} & m_{2} \widehat{m}_{2} \equiv 0 & \bmod n_{3} \\
m_{3} \widehat{m}_{3} \equiv 0 & \bmod n_{1} & m_{3} \widehat{m}_{3} \equiv 0 & \bmod n_{2} & m_{3} \widehat{m}_{3} \equiv 1 & \bmod n_{3}
\end{array}
$$

If we introduce the Kronecker delta:

$$
\delta_{i j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

this can all be summarized by

$$
m_{i} \widehat{m}_{i} \equiv \delta_{i j} \quad \bmod n_{j}
$$

For any integers b_{1}, b_{2}, b_{3} set

$$
x=m_{1} \widehat{m}_{1} b_{1}+m_{2} \widehat{m}_{2} b_{2}+m_{3} \widehat{m}_{3} b_{3}
$$

Then

$$
\begin{array}{rlr}
x & =m_{1} \widehat{m}_{1} b_{1}+m_{2} \widehat{m}_{2} b_{2}+m_{3} \widehat{m}_{3} b_{3} & \\
& \equiv 1 \cdot b_{1}+0 \cdot b_{2}+0 \cdot b_{3} & \bmod n_{1} \\
& =b_{1}
\end{array}
$$

Similar calculations yield

$$
\begin{array}{ll}
x \equiv b_{2} & \bmod n_{2} \\
x \equiv b_{3} & \bmod n_{3}
\end{array}
$$

To summarize
Theorem 21. Let n_{1}, n_{2}, and n_{3} be positive integers with $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$. Then for any integers b_{1}, b_{2}, and b_{3} the simultaneous congruences

$$
\begin{aligned}
x & \equiv b_{1} \\
x & \equiv b_{2} \\
x & \equiv b_{3}
\end{aligned}
$$

have a solution. This solution is unique modulo the product $n_{1} n_{2} n_{3}$. That is if x_{0} is one solution, then the general solution is

$$
x=x_{0}+m t
$$

where $m=n_{1} n_{2} n_{3}$ and $t \in \mathbb{Z}$.
Problem 22. We have proven the existence part of this. Prove the uniqueness part.

Example 22. Solve the system

$$
\begin{array}{ll}
x \equiv 2 & \bmod 3 \\
x \equiv 1 & \bmod 4 \\
x \equiv 3 & \bmod 5 .
\end{array}
$$

This is just plug and chug.

$$
m_{1}=4 \cdot 5=20, \quad m_{2}=3 \cdot 5=15, \quad m_{3}=3 \cdot 4=12 .
$$

Noting that

$$
20(2) \equiv 1 \quad \bmod 3, \quad 15(3) \equiv 1 \quad \bmod 4, \quad 12(3) \equiv 1 \bmod 5
$$

we see we can take

$$
\widehat{m}_{1}=2, \quad \widehat{m}_{2}=3, \quad \text { widehatm }{ }_{3}=3 .
$$

Then a particular solution to the system is
$x_{0}=m_{1} \widehat{m}_{1} b_{1}+m_{2} \widehat{m}_{2} b_{2}+m_{3} \widehat{m}_{3} b_{3}=20 \cdot 2 \cdot 2+15 \cdot 3 \cdot 1+12 \cdot 3 \cdot 3=233$.
This is unique modulo $m=3 \cdot 4 \cdot 5=60$ and

$$
233 \equiv 53 \quad \bmod 60 .
$$

Thus we can write

$$
x=53+60 T
$$

for the general solution. Or, and this is probably better, say the solution is $x \equiv 53 \bmod 60$.

Problem 23. Solve the following:
(a) $x \equiv 2 \bmod 3$
$x \equiv 3 \bmod 5$
$x \equiv 4 \bmod 7$
(b) $x \equiv 1 \bmod 7$
$x \equiv 1 \bmod 9$
$x \equiv 1 \bmod 16$
Hint: If you think about this for a while you should be able to write down the solution without doing any calculations.
(c) $x \equiv 21 \bmod 22$
$x \equiv 34 \bmod 35$
$x \equiv 38 \bmod 39$
Hint: Anther one that can be done without calculation (as a start note $21 \equiv-1 \bmod 22)$.

We now do the general case, not because there are any new ideas involved, but as practice in using the Kronecker delta and summation notation. Let $n_{1}, n_{2}, \ldots, n_{k}$ be k positive integers such that

$$
\operatorname{gcd}\left(n_{i}, n_{j}\right)=1 \quad \text { when } \quad i \neq j .
$$

Let m be the product of these integers:

$$
m=n_{1} n_{2} \cdots n_{k} .
$$

For $i=1,2, \ldots, k$ let

$$
m_{i}=\frac{m}{n_{i}}=\underbrace{n_{1} n_{2} \cdots n_{i-1} n_{i+1} \cdots n_{k}}_{\text {Product with } n_{i} \text { omitted }}
$$

be the product of all the n_{j} 's other than n_{i}. Note that if $j \neq i$, then n_{j} is a factor in m_{i} and therefore

$$
\begin{equation*}
m_{i} \equiv 0 \quad \bmod n_{j} \quad \text { when } \quad i \neq j . \tag{1}
\end{equation*}
$$

As $\operatorname{gcd}\left(n_{j}, n_{i}\right)=1$ the numbers n_{j} and n_{i} have no common prime factors. As m_{i} is the product of the n_{j} 's other than n_{i} it will also have no prime factors in common with n_{i} and therefore

$$
\operatorname{gcd}\left(n_{i}, m_{i}\right)=1
$$

Thus m_{i} will have an inverse modulo n_{i}. So there is an integer \widehat{m}_{i} with

$$
m_{i} \widehat{m}_{i} \equiv 1 \quad \bmod n_{i} .
$$

Combining this with (1) gives

$$
m_{j} \widehat{m}_{j} \equiv \delta_{i j} \quad \bmod n_{i} .
$$

If $b_{1}, b_{2}, \ldots, b_{k}$ are any integers, set

$$
x=\sum_{j=1}^{k} m_{j} \widehat{m}_{j} b_{j} .
$$

Then

$$
\begin{array}{rlr}
x & =\sum_{j=1}^{k} m_{j} \widehat{m}_{j} b_{j} & \\
& \equiv \sum_{j=1}^{k} \delta_{i j} b_{j} & \bmod n_{i}
\end{array} \quad\left(\text { as } m_{j} \widehat{m}_{j} \equiv \delta_{i j} \bmod n_{i} .\right) .
$$

So we have
Theorem 23. Let $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers with

$$
\operatorname{gcd}\left(n_{i}, n_{j}\right)=1 \quad \text { for } \quad i \neq j .
$$

Then for any integers $b_{1}, b_{2}, \ldots, b_{k}$ the simultaneous congruences

$$
x \equiv b_{i} \quad \bmod n_{i} \quad i=1,2, \ldots, k
$$

have a common solution. This solution is unique modulo the the product $m=n_{1} n_{2} \cdots n_{k}$. That is if x_{0} is one solution, then the general solution is

$$
x=x_{0}+m t
$$

with $t \in \mathbb{Z}$.

Proof. We have done everything but the uniqueness. If x_{0} is one solution and x is anther solution. Then $x-x_{0} \equiv b_{i}-b_{i}=0 \bmod n_{i}$ and thus $n_{i} \mid\left(x-x_{0}\right)$. As $n_{1}, n_{2}, \ldots, n_{k}$ are pairwise relatively prime, this implies $x-x_{0}$ is divisible by the product $m=n_{1} n_{2} \cdots n_{k}$. Therefore for some integer t we have $x-x_{0}=m t$, that is $x=x_{0}+m t$.

[^0]: ${ }^{1}$ The Wikipedia article Casting out nines has some elementary proofs.
 ${ }^{2}$ Just in case you really felt the need to know: $7^{83}=13,903,921,949,820,524,683,398,592,075,392,719,113,700,201,232,097,144,724,944,011,875,664,343$.

