
Number Theory Homework.

1. Congurences, modular arthmetic, and solving linear
congruences.

1.1. Definition and some basic results and examples. The following
definition was fist given by Carl Friedrich Gauss in his book Disquisitiones
Arithmeticae which was published in 1801. It is has proven to simplify many
computations and proofs in number theory and elsewhere.

Definition 1. Let n be a positive integer. Then for a, b ∈ Z we write

a ≡ b mod n

to mean
n | (b− a).

In we say that a is congruent to b modulo n, or just a congruent to b
mod n.

Proposition 2. The following hold for all a, b, c ∈ Z and any positive integer
n.

(a) a ≡ a mod n
(b) a ≡ b mod n implies b ≡ a mod n
(c) a ≡ b mod n and b ≡ c mod n implies a ≡ c mod d

(Using terminology you many have seen in other classes, this is saying that
≡ mod n is an equivalence relation .)

Problem 1. Prove this. Hint: These all follow form basic properties of
divisibility. For example if a ≡ b mod n and b ≡ c mod n, then n | (b− a)
and n | (c − a). But if n divides two numbers it divides their sum. Thus
n | (c− a) = (c− b) + (b− a). �

We now show that congruence mod n plays well with the basic arithmetic
operations.

Proposition 3. If

a ≡ b mod n and c ≡ d mod n

Then

a+ c ≡ b+ d mod n, a− c ≡ b− d mod n, ac ≡ bd mod n.

Problem 2. Prove this. Hint: The assumption of the hypothesis can be
stated as saying that there are q1 and q2 such that (b − a) = q1n and
(d−c) = q2n. Then (b+d)− (a+c) = (b−a)+(d−c) = (q1 +q2)n. Slightly
trickier is the result for products, where we have to use the trick of adding
and subtracting a term:

bd− ac = bd− ad+ ad− ac = (b− a)d+ a(d− c)
and now show that an n can be factored out of this. �
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This can be extended to more than sums and products of just two terms.

Proposition 4. If

aj ≡ bj mod n for j = 1, 2, . . . , k

then

(a1 + a2 + · · ·+ ak) ≡ (b1 + b2 + · · ·+ bk) mod n

and

a1a2 · · · ak ≡ b1b2 · · · bk mod n.

In particular for any nonnegative integer k

a ≡ b mod n =⇒ ak ≡ bk mod n.

Proof. This is just an easy induction on k. �

Proposition 5. If f(x) = ckx
k + ck−1x

k−1 + · · · c1x + c0 is a polynomial
with integer coefficients, then

a ≡ b mod n =⇒ f(a) ≡ f(b) mod n.

Problem 3. Prove this. Hint: One way, and maybe the most natural, to
do this is just by repeated use of the last couple of propositions. But it is
not hard to give an nice proof based on induction on k = deg f(x). Write

f(x) = x(ckx
k−1 + ck−2x

k−1 + · · ·+ c2x+ c1) + c0 = xg(x) + c0.

Then g(x) = ckx
k−1+ck−2x

k−1+· · ·+c2x+c1 is a polynomial with deg g(x) =
k− 1 = deg f(x)− 1. Thus if you have the correct induction hypothesis you
will have that g(a) ≡ g(b) mod n. �

The following shows that two numbers are congruent modulo n if any
only if they have the same remainder with divided by n.

Theorem 6. Let n be a positive integer and a1 and a2 any integers. Divide
n into a1 and a2 to get quotients and remainders

a1 = q1n+ r1, a2 = q2n+ r2 with 0 ≤ r1 < n, 0 ≤ r2 < n.

Then

a1 ≡ a2 mod n ⇐⇒ r1 = r2.

Problem 4. Prove this. Hint: One way to start is a2 − a1 = (q2 − q1)n +
(r2 − r1). Show 0 ≤ |r2 − r1| < n and therefore n | (r2 − r1) if and only if
r1 = r2. �

We can now do “arithmetic modulo n” by adding and multiplying integers
and then “reducing mod n”, that is replacing the result by the remainder
when divided by n. For example working modulo 6 we have

2 + 3 = 5, 2 + 4 = 6 ≡ 0 mod 6, 5 · 4 = 20 ≡ 2 mod 6.

The full addition and multiplication tables modulo 6 and 7 are
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+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 1 2 3 4 5
1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1

The addition and multiplication tables modulo 6.

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

· 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

The addition and multiplication tables modulo 7.

Problem 5. If you have never constructed addition and multiplication ta-
bles as these make the tables for the integers modulo 4 and the integers
modulo 5. �

To give an immediate application of the usefulness of these ideas to give
an easy explanation of the method of “casting out nines”. What this says is
that for any positive decimal integer, for example n = 986,529, the sum of
its digits, in our case S = 9+8+6+5+2+9 = 39, have the same remainder
when divided by 9. In our example

986,529 = 109,614 · 9 + 3 and 39 = 4 · 9 + 3

so in both cases the remainder is 3. The reason this works is that

10 ≡ 1 mod 9.

Taking powers

10k ≡ 1 mod 9.

Therefore

986,529 = 9 · 105 + 8 · 104 + 6 · 103 + 5 · 102 + 2 · 10 + 9

≡ 9 · 1 + 8 · 1 + 6 · 1 + 5 · 1 + 2 · 1 + 9 mod 9

= 9 + 8 + 6 + 5 + 2 + 9

= 39

This shows

986,529 ≡ 9 + 8 + 6 + 5 + 2 + 9 mod 9

and thus these numbers have the same remainder when divided by 9.
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Problem 6. (a) Based on this example give a precise statement to the fact
that a positive integer and the sum of its digits have the same remainder
when divided by 9 and prove it. Show this implies that an integer is
divisible by 9 if and only of the sum of its digits is divisible by 9.

(b) We also have that 10 ≡ 1 mod 3. Use this to state and prove a rule for
“casting out threes” and in particular show an integer is divisible by 3
if and only it the sum of its digits is divisible by 3. �

Until recently, when calculators made having to do such checks pointless,
casting out nines was used as a check on doing arithmetic calculations. For
example in the addition problem:

8643
9634

+ 5326
23603

Digit sum
8+6+4+3=21
9+6+3+4=22
5+3+2+6=16

Sum mod 9
3
4

+ 7
14 ≡ 5 mod 9

Casting the nines out of 23603 (that is take the digit sum and reduce modulo
9) gives 2 + 3 + 6 + 0 + 3 = 14 ≡ 5 mod 9. That we got 5 both times gives
a check that the calculation is correct. This method does not guarantee the
answer is right, but does give a check that let people catch enough errors that
it was worth doing. The method also works to give checks on substation,
multiplication, and division problems.

A related idea comes form the fact 10 ≡ −1 mod 11. Thus

(10)k ≡ (−1)k mod 11.

This can be used as follows:

82,752 = 8(10)4 + 2(10)3 + 7(10)2 + 5(10) + 2

≡ 8(−1)4 + 2(−1)3 + 7(−1)2 + 5(−1) + 2 mod 11

= 8− 2 + 7− 5 + 2

= 10

and therefore 82,752 ≡ 8 − 2 + 7 − 5 + 2 ≡ 10 mod 11 and so if 82,752 is
divided by 11 the remainder is 10.

Problem 7. Based on this example make precise the statement that a pos-
itive integer and the alternating sum of its digits have the same remainder
when divided by 11 and prove the result. (Be careful, there is more than
one way to define the alternate sum of the digits: i.e. when n = 1,435 do we
want 1− 4 + 3− 5 or −1 + 4− 3 + 5?) Thus an integer is divisible by 11 if
and only if the alternating sum of its digits is divisible by 11. �

Hopefully the last problems were straightforward. To get a feel for how
much modular arithmetic simplifies arguments about divisibility and re-
mainders, it is worth spending some time and finding your own proof that
the method of casting out nines works but that does not use arithmetic mod
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9.1 (Casting out nines was known long before Gauss, so modular arithmetic
is not required to prove it.)

Before going on we pause for an aside to discuss how to compute ak

mod n for a large value of k. Later we will find some better methods in
the case gcd(a, n) = 1, and so may not be that important for the mathe-
matical theory, but the trick is pretty and is definitely used by people doing
computational number theory and to some extent by computer scientists.
To start with an example let’s find the remainder when 783 is divided by
13. You definitely do not want to compute2 783, but this can be avoided by
repeatedly squaring and reducing modulo 13. The idea is that it is easy to

compute powers of the form 72
k

mod 13 by repeated squaring:

72 = 49 ≡ 10 mod 13

74 = (72)2 ≡ 102 ≡ 9 mod 13

78 = (74)2 ≡ 92 ≡ 3 mod 13

716 = (78)2 ≡ 32 ≡ 9 mod 13

732 = (716)2 ≡ 92 ≡ 3 mod 13

764 = (732)2 ≡ 32 ≡ 9 mod 13

Back to 783, note

83 = 64 + 16 + 2 + 1

and therefore

783 = 764 · 716 · 72 · 7
≡ 9 · 9 · 10 · 7 mod 13

= 81 · 70

≡ 3 · 5 mod 13

≡ 2 mod 13

Thus the remainder when 783 is divided by 13 is 2.

Problem 8. Use this method to compute (a) the remainder when 1045 is
divided by 7, (b) the remainder when 3739 is divided by 17 (Hint: As a
first step note 37 ≡ 3 mod 17), (c) the remainder when 1070 is divided by
24. �

Definition 7. Let n be a positive integer. Two integers a and b are in
the same residue class modulo n iff a ≡ b mod n. A set of n integers
r1, r2, . . . , rn is a complete set of residues modulo n iff each integer a is
in the residue class of exactly one of the numbers r1, r2, . . . , rn. �

1The Wikipedia article Casting out nines has some elementary proofs.
2Just in case you really felt the need to know:

783 = 13,903,921,949,820,524,683,398,592,075,392,719,113,700,201,232,097,144,724,944,011,875,664,343.
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The following is direct consequence of Theorem 6.

Proposition 8. For any postive integer n the numbers 0, 1, . . . , n− 1 are a
complete set of residues modulo n.

Problem 9. Prove this. Hint: It a ∈ Z use the division algorithm to divide
a by n to get a = qn + r with 0 ≤ r < n. That is r is one of the numbers
0, 1, . . . , n− 1 and also a ≡ r mod n. �

Problem 10. (a) Is 1, 2, 3 a complete set of residues modulo 3?
(b) Is 0, 1, 2 a complete set of residues modulo 3?
(c) Is −1, 0, 1 a complete set of residues modulo 3?
(d) Is −1, 0, 5 a complete set of residues modulo 3?
(e) Is 0, 3, 32, 33, 34, 35, 36 a complete set of residues modulo 7?
(f) Is 0, 2, 22, 23, 24, 25, 26 a complete set of residues modulo 7? �

Proposition 9. Let n be a positive integer and r1, r2, . . . , rn integers such
that

i 6= j =⇒ ri 6≡ rj mod n

then r1, r2, . . . , rn is a complete set of residues modulo n. (Note the hypoth-
esis could also be stated as ri ≡ rj mod n =⇒ i = j.)

Proof. Use the division algorithm to divide n into rj to get

rj = qjn+ sj and sj ∈ {0, 1, . . . , n− 1}.
This implies rj ≡ sj mod n. Therefore if i 6= j, then si 6= sj for if si = sj ,
then

ri ≡ si mod n

= sj

≡ rj mod n

which contradicts our assumption that ri 6≡ rj for i 6= j. Therefore s1, s2, . . . , sn
are distinct elements of {0, 1, . . . , n− 1}. As the set {0, 1, . . . , n− 1} has ex-
actly n elements, it follows that s1, s2, . . . , sn and just the numbers 0, 1, . . . , n−
1 listed in some order. Therefore if a ∈ Z we divide n into a to get

a = qn+ r

where 0 ≤ r < n. Then r = si for some i and thus

a ≡ r mod n

≡ si mod n

≡ ri mod n.

Thus each a ∈ Z is in the residue class modulo n of at least one of the ri’s.
But as ri 6≡ rj for i 6= j this implies that a is in the residue class of exactly
one of the ri’s. �

The following uses the last result to give an example of a complete set of
residues that will be useful to us later.
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Proposition 10. If n is a positive integer and a is an integer with gcd(a, n) =
0 then the set 0, a, 2a, 3a, . . . , (n − 1)a (that is the list of numbers ka for
k = 0, 1, . . . , n− 1) is a complete set of residues modulo n.

For example, when n = 12 and a = 5, this implies

0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55

is a complete set of residues modulo 12.

Problem 11. Prove Proposition 10. Hint: Let rj = ja for j = 0, 1, . . . , n−1.
This is a list of n integers. Since there are n of them, by Proposition 9 it is
enough to show ri ≡ rj mod n implies i = j. That is

ia ≡ ja mod n =⇒ i = j.

If ia ≡ ja mod n, then n | a(i − j). Now use gcd(a, n) = 1 to conclude
n | (i− j). But 0 ≤ i, j < n which implies |i− j| < n. �

1.2. Solving a single linear congruence. Given integers a and b and a
positive integer n will find all solutions to

ax ≡ b mod n.

when they exist. There are several possible cases. First there are congru-
ences such as

5x ≡ 4 mod 6.

With a little trial and error we see x = 2 is a solution. But that so are x = 8,
x = −2, and in general x = 2 + 6t where t is any integer and moreover this
gives all solutions. As all these solutions are ≡ 2 mod 6 we will say that in
this case the congruence has a unique solution.

Next we can have congruences such as

2x ≡ 4 mod 6

where both x = 2, and x = 5 are solutions, but 2 6≡ 4 mod 6. So in this
case the congruence has solutions, but they are not unique modulo n = 6.
We will see that in this case all solutions are of the form x = 2 + 6t, or
x = 5 + 6t. Reduce modulo 6 we this gives two solutions, so we that the
congruence has two solutions (modulo 6).

Finally there are congruences such as

2x ≡ 3 mod 6

that have no solutions.
The main idea in understanding this question is to note that ax ≡ b

mod n is to convert it to a linear Diophantine equation.

x is a solution to ax ≡ b mod n ⇐⇒ n | (b− ax)

⇐⇒ there is y ∈ Z with (b− ax) = ny

⇐⇒ ax+ ny = b has a solution.

To be more precise.
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Proposition 11. (a) Let (x, y) = (x1, y1) be a solution to the linear Dio-
phantine equation ax+ny = b. Then x = x1 is a solution to congruence
ax ≡ b mod n.

(b) Conversely, if x1 is a solution to the congruence ax ≡ b mod n, then
there is a y1 such that (x, y) = (x1, y1) is a solution to ax+ ny = b.

Problem 12. Prove this. �

The last proposition basically says that to solve ax ≡ b mod n, solve
ax+ ny = b and just use the x values.

Example 12. As a first example let us solve

5x ≡ 7 mod 13.

This is equivalent to solving

5x+ 13y = 7.

We do the Euclidean algorithm to solve Bézout’s equation.

(3) = (13)− 2(5)

(2) = (5)− (3)

(1) = (3)− (2).

Now back doing the usual back substitution

(1) = (3)− (2) = (3)−
(
(5)− (3)

)
= −(5) + 2(3) = −(5) + 2

(
(13)− 2(5)

)
= 2(13)− 5(5).

Therefore

5(−5) + 13(2) = (1).

Multiply by 7 to get

5(−35) + 12(14) = (7).

Thus (x, y) = (−35, 14) is a particular solution to 5x + 13y = 7. So the
general solution to this equation is

x = −35 + 13t, y = 14− 5t.

Therefore the general solution to the congruence is

x− 35 + 13t.

Note that replacing −35 by any integer of the form −35+13k will give same
set of solutions. Using −35 + 3 · 13 = 4 then gives that we can write the
general solution as

x = 4 + 13t

with t any integer. If we are considering solutions mod 13 the unique solution
is the residue class defined by x ≡ 4 mod 13 (which is the same as the
residue class x ≡ −35 mod 13). �
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Example 13. For a second example let us solve

6x ≡ 4 mod 15.

This leads to the Diophantine equation

6x+ 15y = 9.

Going through the usual routine

(3) = (15)− 2(6)

so we are lucky and it stops after one step and we have

6(−2) + 15(1) = (3).

Multiply by 3 to get

6(−6) + 15(3) = (9)

and therefore (x, y) = (−6, 3) is a particular solution to 6x+ 15y = 9. Thus
the general solution is

x = −6 +
15

gcd(6, 15)
t = −6 + 5t, y = 3− 6

gcd(6, 15)
t = 3− 2t.

We only need the x values, so the general solution to the congruence is

x = −6 + 5t.

Unlike the last example these are not all the same mod n = 15. Let t0, 1, 2 . . .
solutions

−6, −1, 4, 9, 14, 19

which starts to repeat after when we get to 9 (as 9 ≡ −6 mod 15, 14 ≡ −1
mod 15, 19 ≡ 4 mod 15). So 6x ≡ 4 mod 15 has three residue classes as
solutions:

x ≡ 4, 9, 14 mod 15

are all solutions mod 15, they are distinct mod 15, and every residue that
solves the congruence solves is congruence to one of these residue classes.
So in this case we say the congruence has three residue classes as solutions.
Or more briefly that the congruence has 3 solutions mod 15. �

Example 14. As a last example consider

8x ≡ 5 mod 12.

This leads to the Diophantine equation

8x+ 12y = 5

which has no solution as gcd(8, 12) = 4 - 5. Thus the congruence has no
solution. �
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Theorem 15. The linear congruence

ax ≡ b mod n

has solutions if and only if gcd(a, n) | b. If it does have a solution and x0 is
one solution, then the general solution is

x = x0 +
n

gcd(a, n)
t

with t ∈ Z. Viewed modulo n, the number of solutions is gcd(a, n) and are
the residue classes of

x = x0 +
n

gcd(a, n)
t for t = 0, 1, . . . , gcd(a, n)− 1.

Problem 13. Prove this. �

Problem 14. Solve the following congruences of the form ax ≡ b mod n.
Determine how many solutions they have mod n.

(a) 12x ≡ 5 mod 31.
(b) 24x ≡ 12 mod 40.
(c) 12x ≡ 13 mod 40.

1.3. Inverses modulo n.

Proposition 16. Let n be a positive integer and a an integer with gcd(a, n) =
1. Then there is an integer b that is the multiplictive inverse of a mod-
ulo n in the sense that

ab ≡ 1 mod n.

This inverse is unique in the sense that if b and b′ are both inverse mod n
to a, then b ≡ b′ mod n

Problem 15. Prove this in two ways. First note that it is a direct con-
sequence of Theorem 15 as we are just solving the congruences ax ≡ 1
mod n. For a second proof use gcd(a, n) = 1 to find integers x and y such
that ax+ ny = 1, and this implies ax ≡ 1 mod n. So b = x is the required
inverse modulo n. �

In finding finding the inverses modulo n, it is generally easier to use the
second method from the last problem. This is because it just involves solving
Bézout’s equation ax+ ny = 1 and we have become experts on that.

Example 17. Find the inverse of 31 modulo 73. First use the Euclidean
algorithm

(11) = (73)− 2(31)

(9) = (31)− 2(11)

(2) = (11)− (9)

(1) = (9)− 4(2).
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Thus

(1) = (9)− 4(2) = (9)− 4
(
(11)− (9)

)
= −4(11) + 5(9) = −4(11) + 5

(
(31)− 2(11)

)
= 5(31)− 14(11) = 5(31)− 14

(
(73)− 2(31)

)
= −14(73) + 33(31).

And, as −14(73) ≡ 0 mod 73,

−14(73) + 33(31) = 1

clearly implies
31 · 33 ≡ 1 mod 73.

Thus 33 is the multiplicative inverse of 31 modulo 73. �

Problem 16. Find the following

(a) The inverse of 19 mod 23.
(b) The inverse of 45 mod 64.
(c) The inverse of 324 mod 79. �

Problem 17. Let â be the inverse of a mod n and b̂ the inverse of b mod
n. Show the product âb̂ is the inverse of the product ab mod n �

We can use inverses modulo n to prove the following (which also follows
form Theorem 15).

Proposition 18. If gcd(a, n) = 1, and ax ≡ ay mod n, then x ≡ y
mod n. That is when ax ≡ ay mod n and gcd(a, n) = 1, we can cancel

That is when ax ≡ ay mod n and gcd(a, n) = 1, we can cancel a on both
sides of the congruence.

Problem 18. Prove this. Hint: One way is to let â be an inverse of a
modulo n and multiply both sides of ax ≡ ay mod n by n̂. �

Problem 19. Show that the hypothesis gcd(a, n) = 1 is required in Propo-
sition 18 by giving an example where gcd(a, n) 6= 1 and integers x and y
such that ax ≡ ay mod n but x 6≡ y mod n. �

1.4. Solving simultaneous linear congruences: the Chinese remain-
der theorem. Consider the system

x ≡ b1 mod n1

x ≡ b2 mod n2

of two linear congruences. We assume

gcd(n1, n2) = 1

To find a solution to this system set

m1 = n2

m2 = n1



12

and let

m̂1 = an inverse of m2 mod n1

m̂2 = an inverse of m1 mod n2

and let

x = m1m̂1b1 +m2m̂2b2.

Then

x = m1m̂1b1 +m2m̂2b2

≡ m1m̂1b1 + 0 (as m2m̂2 ≡ 0 mod n1)

≡ b1 (as m1m̂1 ≡ 1 mod n1)

with a similar calculation showing

x ≡ b2 mod n2.

We have therefore proven the existence part of

Theorem 19 (Chinese remainder theorem for two congruences). If n1 and
n2 are positive integers with gcd(n1, n2) = 1, then for any integers b1 and
b2 there is a simultaneous solution to the congruences

x ≡ b1 mod n1

x ≡ b2 mod n2

which can be found by the construction above. If x = x0 is one solution,
then the general solution is

x = x0 + n1n2t

with t ∈ Z. (Thus the solution is unique modulo n1n2.)

Problem 20. Prove uniqueness part of this. That it that the general solu-
tion is of the given form. Hint: First check that x = x0+n1n2t is a solution.
Now assume that x is a solution. Then x ≡ b1 ≡ x0 mod n, which implies
n1 | (x−x0). Likewise n2 | (x−x0). Use these facts and that gcd(n1, n2) = 1
to show n1n2 | (x− x0). �

Example 20. Solve the system

x ≡ 5 mod 8

x ≡ 4 mod 11

In the notataion above we have

m1 = 11, m2 = 9

You can check

11(3) ≡ mod 8, 8(7) ≡ 1 mod 11

so that we can use

m̂1 = 3, m̂2 = 7.



13

Then a particular solution to our equation is

x0 = m1m̂1b1 +m2m̂2b2 = 11 · 3 · 5 + 8 · 7 · 4 = 389.

Thus the general solution is

x = 389 + 8 · 11t = 389 + 88t.

Or working mod 88 we have

389 ≡ 37 mod 88

so we could also write the general solution as

x = 37 + 88t.

(As a check note 37 ≡ 5 mod 8 and 37 ≡ 4 mod 11.) �

Problem 21. Solve the following:

(a) x ≡ 7 mod 13
x ≡ 3 mod 21

(b) x ≡ 21 mod 27
x ≡ −4 mod 14

(c) 3x ≡ 5 mod 8
2x ≡ 6 mod 15

Hint: For (c) first find solutions to 3x ≡ 5 mod 8 and 2x ≡ 6 mod 15 to
reduce the system to one of the form x ≡ b1 mod 8 and x ≡ b2 mod 15. �

It is only a bit more work to do this for three or more simultaneous
congruences. Let n1, n2, and n3 be positive integers with

gcd(n1, n2) = gcd(n1, n3) = gcd(n2, n3) = 1.

Set

m = n1n2n3

m1 = n2n3 =
m

n1

m2 = n1n3 =
m

n2

m3 = n1n2 =
m

n3

Then

gcd(n1,m1) = gcd(n2,m2) = gcd(n3,m3) = 1.

Thus there are m̂1, m̂2, and m̂3 such that

m̂1 = an inverse of m1 mod n1

m̂2 = an inverse of m2 mod n2

m̂3 = an inverse of m3 mod n3
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Then

m1m̂1 ≡ 1 mod n1 (definition of inverse mod n1)

m1m̂1 ≡ 0 mod n2 (as n1 | m2, and thus m2 ≡ 0 mod n2)

m1m̂1 ≡ 0 mod n3 (as n1 | m3, and thus m3 ≡ 0 mod n3)

Likewise

m2m̂2 ≡ 0 mod n1 m2m̂2 ≡ 1 mod n2 m2m̂2 ≡ 0 mod n3

m3m̂3 ≡ 0 mod n1 m3m̂3 ≡ 0 mod n2 m3m̂3 ≡ 1 mod n3

If we introduce the Kronecker delta :

δij =

{
1, i = j;

0, i 6= j.

this can all be summarized by

mim̂i ≡ δij mod nj .

For any integers b1, b2, b3 set

x = m1m̂1b1 +m2m̂2b2 +m3m̂3b3

Then

x = m1m̂1b1 +m2m̂2b2 +m3m̂3b3

≡ 1 · b1 + 0 · b2 + 0 · b3 mod n1

= b1.

Similar calculations yield

x ≡ b2 mod n2

x ≡ b3 mod n3

To summarize

Theorem 21. Let n1, n2, and n3 be positive integers with gcd(ni, nj) = 1
for i 6= j. Then for any integers b1, b2, and b3 the simultaneous congruences

x ≡b1
x ≡b2
x ≡b3

have a solution. This solution is unique modulo the product n1n2n3. That
is if x0 is one solution, then the general solution is

x = x0 +mt

where m = n1n2n3 and t ∈ Z.

Problem 22. We have proven the existence part of this. Prove the unique-
ness part. �
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Example 22. Solve the system

x ≡ 2 mod 3

x ≡ 1 mod 4

x ≡ 3 mod 5.

This is just plug and chug.

m1 = 4 · 5 = 20, m2 = 3 · 5 = 15, m3 = 3 · 4 = 12.

Noting that

20(2) ≡ 1 mod 3, 15(3) ≡ 1 mod 4, 12(3) ≡ 1 mod 5

we see we can take

m̂1 = 2, m̂2 = 3, widehatm3 = 3.

Then a particular solution to the system is

x0 = m1m̂1b1 +m2m̂2b2 +m3m̂3b3 = 20 · 2 · 2 + 15 · 3 · 1 + 12 · 3 · 3 = 233.

This is unique modulo m = 3 · 4 · 5 = 60 and

233 ≡ 53 mod 60.

Thus we can write
x = 53 + 60T

for the general solution. Or, and this is probably better, say the solution is
x ≡ 53 mod 60. �

Problem 23. Solve the following:

(a) x ≡ 2 mod 3
x ≡ 3 mod 5
x ≡ 4 mod 7

(b) x ≡ 1 mod 7
x ≡ 1 mod 9
x ≡ 1 mod 16
Hint: If you think about this for a while you should be able to write
down the solution without doing any calculations.

(c) x ≡ 21 mod 22
x ≡ 34 mod 35
x ≡ 38 mod 39
Hint: Anther one that can be done without calculation (as a start note
21 ≡ −1 mod 22). �

We now do the general case, not because there are any new ideas involved,
but as practice in using the Kronecker delta and summation notation. Let
n1, n2, . . . , nk be k positive integers such that

gcd(ni, nj) = 1 when i 6= j.

Let m be the product of these integers:

m = n1n2 · · ·nk.
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For i = 1, 2, . . . , k let

mi =
m

ni
= n1n2 · · ·ni−1ni+1 · · ·nk︸ ︷︷ ︸

Product with ni omitted

be the product of all the nj ’s other than ni. Note that if j 6= i, then nj is a
factor in mi and therefore

mi ≡ 0 mod nj when i 6= j. (1)

As gcd(nj , ni) = 1 the numbers nj and ni have no common prime factors.
As mi is the product of the nj ’s other than ni it will also have no prime
factors in common with ni and therefore

gcd(ni,mi) = 1.

Thus mi will have an inverse modulo ni. So there is an integer m̂i with

mim̂i ≡ 1 mod ni.

Combining this with (1) gives

mjm̂j ≡ δij mod ni.

If b1, b2, . . . , bk are any integers, set

x =
k∑

j=1

mjm̂jbj .

Then

x =
k∑

j=1

mjm̂jbj

≡
k∑

j=1

δijbj mod ni (as mjm̂j ≡ δij mod ni.)

= bi (as δij = 0 for j 6= i, all but one term vanishes.)

So we have

Theorem 23. Let n1, n2, . . . , nk be positive integers with

gcd(ni, nj) = 1 for i 6= j.

Then for any integers b1, b2, . . . , bk the simultaneous congruences

x ≡ bi mod ni i = 1, 2, . . . , k

have a common solution. This solution is unique modulo the the product
m = n1n2 · · ·nk. That is if x0 is one solution, then the general solution is

x = x0 +mt

with t ∈ Z.
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Proof. We have done everything but the uniqueness. If x0 is one solution
and x is anther solution. Then x − x0 ≡ bi − bi = 0 mod ni and thus
ni | (x − x0). As n1, n2, . . . , nk are pairwise relatively prime, this implies
x−x0 is divisible by the product m = n1n2 · · ·nk. Therefore for some integer
t we have x− x0 = mt, that is x = x0 +mt. �


