
The Weierstrass M test.

The following is a standard result and in many cases the easiest and most
natural method to show a series is uniformly convergent.

Theorem 1 (Weierstrass M test.). Let f1, f2, f3, . . . X → R be a sequence of
functions form a set X to the real numbers. Assume that there are constants,
Mk, such that the two conditions

|fk(x)| ≤Mk holds for all x ∈ X and k ≥ 1

and
∞∑
k=1

Mk <∞

hold. Then the series
∞∑
k=1

fk(x)

converges absolutely and uniformly on X.

Problem 1. Prove this. Hint: First note that
∑∞

k=1 fk(x) converges ab-
solutely on X just by comparison with the series of non-negative terms∑∞

k=1Mk. Let

F (x) =

∞∑
k=1

fk(x).

So we only need show the partial sums Sn(x) =
∑n

k=1 fk(x) converge
uniformly to F (x). Note

|F (x)− Sn(x)| =

∣∣∣∣∣
∞∑

k=n+1

fk(x)

∣∣∣∣∣ ≤
∞∑

k=n+1

|fk(x)| ≤
∞∑

k=n+1

Mk

and you should be able to take it from here. �

Here is an example of the use of the M -test. Define a function on R by

f(x) =
∞∑
k=1

1

x2 + k2
.

The the k-th term satisfies

1

x2 + k2
≤ 1

k2
=: Mk.

The series
∑∞

k=1Mk =
∑∞

k=1 1/k2 converges, there by the M -test the series
for f(x) converges uniformly. Moreover we can say more. As each term of the
series is continuous and the convergence is uniform the sum function is also
continuous. (As the uniform limit of continuous functions is continuous.)
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Problem 2. Define a function on the plane R2 by

f(x, y) =
∞∑
k=1

1

k3/2 +
√
x2 + y4

.

Show this series converges uniformly and that f is continuous on R2. �

Trigonometric functions.

We can now give definitions of the trigonometric functions. It is enough
to define sin and cos as all the others can be defined in terms of these two.

Theorem 2. The two series

c(x) =

∞∑
k=0

(−1)kx2k

(2k)!
= 1− x2

2
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ · · ·

s(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+ · · ·

converge absolutely for all x ∈ R and therefore these series are absolutely
convergent and differentiable for all x ∈ R. The derivatives satisfy

c′(x) = −s(x), s′(x) = c(x).

The values at x = 0 are

c(0) = 1, s(0) = 0.

Also
c′′(x) = −c(x), s′′(x) = −s(x).

Problem 3. Prove this. �

Proposition 3. These functions satisfy

c(x)2 + s(x)2 = 1.

Problem 4. Prove this. Hint: Show that c(x)2+s(x)2 is constant by taking
its derivative. Note that showing it is constant does not finish the problem,
you still have to show the constant is 1. �

Lemma 4. If g is two times differentiable on R and

g′′ = −g, g(0) = 0, g′(0) = 0

then g(x) = 0 for all x.

Problem 5. Prove this. Hint: Let E = g2 + (g′)2 and show E′ = 0. �

Theorem 5. If f is twice differentiable on R and

f ′′ = −f
then f is a linear combination of c and s. In particular

f(x) = f(0)c(x) + f ′(0)s(x).



3

Problem 6. Prove this. Hint: Let g(x) = f(x)− f(0)c(x)− f ′(0)s(x) and
use Lemma 4. �

Theorem 6. The functions c and s satisfy

c(x+ a) = c(a)c(x)− s(a)s(x)

s(x+ a) = s(a)c(x) + c(a)s(x).

Problem 7. Prove this. Hint: For the first one let f(x) = c(x + a). Then
f ′′(x) = −f(x). Thus, by Theorem 5,

f(x) = f(0)c(x) + f ′(0)s(x). �

Lemma 7. If for 0 < x < 6 the inequality

s(x) > x− x3

6
= x

(
1− x2

6

)
holds. In particular s(x) > 0 for 0 < x <

√
3.

Proof. For any x we have

s(x) = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+
x13

13!
− x15

15!
+ · · ·

= x− x3

3!
+
x5

5!

(
1− x2

6 · 7

)
+
x9

9!

(
1− x2

10 · 11

)
+
x13

13!

(
1− x2

14 · 15

)
+ · · ·

If 0 < x < 6 then x2 < 6 · 7 < 10 · 11 < 14 · 15. Therefore all the terms

x5

5!

(
1− x2

6 · 7

)
,

x9

9!

(
1− x2

10 · 11

)
,

x13

13!

(
1− x2

14 · 15

)
, . . .

are positive and the result follows. �

Lemma 8. If 0 < x < 7 the inequality

c(x) < 1− x2

2
+
x4

24

holds.

Problem 8. Prove this. �

Theorem 9. The function c(x) has a unique zero in the interval [0, 2]. We
denote this zero by π/2. This is our official definition of the number π.

Proof. As 2 <
√

6 we have, by Lemma 7, that s(x) > 0 on the interval (0, 2).
Therefore when 0 < x < 2

c′(x) = −s(x) < 0.

This shows that c(x) is strictly decreasing on [0, 2]. Thus c(x) can have at
most one zero on [0, 2]. But

c(0) = 1 > 0
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and by Lemma 8

c(2) < 1− 22

2
+

24

24
=
−1

3
< 0

and therefore c(x) has at least one root in [0, 2] by the Intermediate Value
Theorem. �

Proposition 10. The following hold

c(π/2) = 0 s(π/2) = 1

c(π) = −1 s(π) = 0

c(2π) = 1 s(2π) = 0

Problem 9. Prove this. Hint: That c(π/2) = 0 is the definition of π. Then
c(π/2)2 + s(π/2)2 = 1 implies s(π/2) = ±1. Use Lemma 7 to rule out
s(π/2) = −1. The rest should now follow from Theorem 6. �

Theorem 11. The following hold.

c(x+ π/2) = −s(x) s(x+ π/2) = c(x)

c(x+ π) = −c(x) s(x+ π) = −s(x)

c(x+ 2π) = c(x) s(x+ 2π) = s(x)

Problem 10. Prove this. �

Definition 12. Our official definition of cos and sin is

cos(x) = c(x), sin(x) = s(x)

where c and s are as in Theorem 2. Then tan(x) is defined by

tan(x) =
sin(x)

cos(x)

with the usual formulas for sec(x) etc. �

Proposition 13. The tangent satisfies

tan(x+ π) = tan(x),
d

dx
tan(x) = 1 + tan2(x).

Also the restriction tan: (−π/2, π/2) → R is a bijection. Let arctan: R →
(−π/2, π/2) be the inverse of this restriction of tan. Then

d

dx
arctan(x) =

1

1 + x2
.

Problem 11. Prove this. �

Remark 14. To compute π we can use the series for the arctan:

arctan(x) = x− x3

3
+
x5

5
− x7

7
+ · · · .



5

For this to be efficient we wish to use values of x that are close to zero. In
1796 John Machin showed1

π = 16 arctan
1

5
− 4 arctan

1

239
.

Using this and the series for arctan(x) gives

π = 16
∞∑
k=0

(−1)k

(2k + 1)52k+1
− 4

∞∑
k=0

(−1)k

(2k + 1)(239)2k+1

allows one to compute π to five or six decimals without much trouble. Just
using the first five terms in the series gives

π ≈ 3.14159268240440

while the correct value to 15 significant digits is

π = 3.14159265358979 . . .

so we are already good to seven decimals. Using nine terms in the series
gives you 15 significant digits.

For a less off the wall identity note that if θ1 = arctan(1/2) and θ2 =
arctan(1/3), so that tan θ1 = 1/2 and tan θ2, then using the addition for tan
we have

tan(θ1 + θ2) =
tan(θ1) + tan(θ2)

1− tan θ1 tan θ2
=

1/2 + 1/3

1− (1/2)(1/3)
= 1

and therefore
θ1 + θ2 = arctan(1) =

π

4
.

This gives

π = 4

(
arctan

1

2
+ arctan

1

3

)
= 4

∞∑
k=0

(−1)k

2k + 1

(
1

22k+1
+

1

32k+1

)
.

Using ten terms in this series gives the approximation

π ≈ 3.14159257960635

(correct to 7 decimals) which is good enough for any piratical application.
To get 15 significant digits using 22 terms in this series is enough.

For a modern method there is the formula found in 1995 by Simon Plouffe:

π =

∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

A thousand terms of this gives well over a thousand decimal places. �

1If you wish to prove this, probably the easiest way is to notice that (5+ i)4(239− i) =
−114244(1 + i) and use the polar form of complex numbers to get the result.


