
Convex Functions with applications to inequalities.

Proposition 1. Let x < y be real numbers and α, β > 0 with α + β = 1.
Then the linear combination αx + βy is between x and y. That is x <
αx+ βy < y.

Proof. Write αx + βy = x − x + αx + βy = x − (1 − α)x + βy = x − βx +
βy = x + β(y − x). But x < y so (y − x) > 0 and 0 < β < 1 and thus
0 < β(y − x) < (y − x). There

x < αx+ βy = x+ β(y − x) < x+ (y − x) = y

as required. �

Remark 2. If we do not make the assumption that x < y we can just say
that αx+βy is between x and y. That is, when x 6= y, we have min{x, y} <
αx+ βy < max{x, y}. �

Definition 3. Let x, y be real numbers. Then a convex combination of
x and y is a linear combination of the form αx + βy where α, β ≥ 0 and
α+ β = 1.

Thus Proposition 1 tells us that the convex combination of two real num-
bers x and y is between x and y. We can make a more general definition

Definition 4. Let x1, . . . , xn be real numbers. Then a convex combina-
tion of these numbers is a linear combination of the form

α1x1 + · · ·+ αnxn =
n∑
k=1

αkxk

where

α1, . . . , αn > 0 and α1 + · · ·+ αn =
n∑
k=1

αk = 1.

The following is useful in the induction step of a couple of the proofs
below.

Lemma 5. Let α1, . . . , αn+1 > 0 with α1 + · · · + αn+1 = 1. Then for any
real numbers x1, . . . , xn+1 we have

n+1∑
k=1

αkxk = (1− αn+1)

n∑
k=1

( αk
1− αn+1

)
xk + αn+1xn+1.

and
n∑
k=1

( αk
1− αn+1

)
= 1.

Problem 1. Prove this. �
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Remark 6. One way to think about the last lemma is that if x is a convex
combination of x1, . . . , xn+1, then x can be written as

x = αy + βxn+1

where α = 1−αn+1 > 0, β = αn+1 > 0 (so that α+β = 1) and y is a convex
combination of x1, . . . , xn. This is exactly the set up needed for induction
proofs. �

Proposition 7. Let x be a convex combination of x1, . . . , xn. Then

min{x1, . . . , xn} ≤ x ≤ max{x1, . . . , xn}.
(The reason that we have “≤” rather than “<” is to cover the case when
x1 = x2 = · · · = xn. In all other cases the inequalities are strict.)

Problem 2. Prove this. Hint: See 2 (for the base case) and Remark 6 (for
the induction stop).

Definition 8. A function f defined on an interval I is convex iff for all
α, β > 0 with α+ β = 1 and all x, y ∈ I the inequality

(1) f(αx+ βy) ≤ αf(x) + βf(y)

holds. �

Definition 9. A function f defined on an interval I is strictly convex iff
for all α, β > 0 with α+ β = 1 and all x, y ∈ I with x 6= y the inequality

f(αx+ βy) ≤ αf(x) + βf(y)

holds. �

Remark 10. Anther way to say that f is strictly convex is that equality
holds in the inequality (1) if and only if x = y. �

In the terminology of many calculus books this is the same as being
concave up. In terms of the graph of f , the condition that f is convex is
that f is bellow any of its secant segments (see Figure 1).

Problem 3. Show that f(x) = x and g(x) = |x| are convex on R. Hint:
For the absolute value, use the triangle inequality. �

Next is a basic result about convex functions.

Theorem 11 (Jensen’s inequality). If f is convex on the interval I, x1, . . . , xn ∈
I and α1, . . . , αn > 0 with α1 + · · ·+ αn = 1, then

f(α1x1 + · · ·+ αnxn) ≤ α1f(x1) + · · ·+ αnf(xn).

If f is strictly convex, then equality holds if and only if x1 = x2 = · · · = xn.

Problem 4. Prove this. Hint: See the hint to Problem 2. �

If would be nice to have an easily checked criterion that implies that f is
convex. You most likely recall from calculus that a function is concave up,
that is convex, if its second derivative is positive. As a first step in toward
proving this we have
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(x, f(x))

(y, f(y))

(a, f(a))

(a, αf(x) + βf(y))

Figure 1. Here a = αx + βy Using that (a, αf(x) + βf(y)) =
(αx + βy, αf(x) + βf(y)) = α(x, f(x)) + β(y, f(y)) is on the line seg-
ment connecting (x, f(x)) and (y, f(y)) we see that, geometrically, the
inequality defining convex functions is equivalent to requiring that the
graph y = f(x) lies under the secant connecting any two points on the

graph.

Proposition 12. Let f be twice differentiable on the open interval I with
f ′′(x) ≥ 0 for all x ∈ I. Then for any a ∈ I

(2) f(x) ≥ f(a) + f ′(a)(x− a)

for all x ∈ I. If the stronger condition f ′′(x) > 0 holds for all x ∈ I then
equality holds in (2) if and only if x = a.

Proof. This is a straightforward application of Taylor’s theorem. From Tay-
lor’s theorem with Lagrange’s form of the remainder we have

f(x) = f(a) + f ′(a)(x− a) + f ′′(ξ)
(x− a)2

2
≥ f(a) + f ′(a)(x− a)

as f ′′(ξ)
(x− a)2

2
≥ 0 because (x− a)2 ≥ 0 and we are assuming f ′′ ≥ 0. If

f ′′ > 0 then equality can only hold if x = a. �

Recall that y = f(a) + f ′(a)(x− a) is the equation of the tangent line to
the graph of y = f(x) at the point (a, f(a)). Therefore Proposition 12 tells
us that if f ′′ ≥ 0, then the graph of y = f(x) lies above all its tangent lines.
See Figure 2.

Theorem 13. Let f be twice differentiable on the open interval I and with
f ′′ ≥ 0 on I. Then f is convex on I. If f ′′(x) > 0 for all x ∈ I, then f is
strictly convex.

Problem 5. Prove this. Hint: Let x, y ∈ I. If x = y there is nothing to
prove (as the inequality (1) reduces to f(x) = f(x)). So assume x 6= y. Let
α, β > 0 with α+ β = 1 and set

a = αx+ βy.
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(a, f(a))

Figure 2. If f ′′ ≥ 0, then the second order Taylor’s theorem tells us

f(x) = f(a) + f ′(a)(x− a) + f ′′(ξ)
(x− a)2

2

≥ f(a) + f ′(a)(x− a)

As y = f(a) + f ′(a)(x − a) is the equation of the tangent line to the
graph of y = f(x) at (a, f(a)) the graph of f is lies above all of its
tangent lines. If f ′′(ξ) > 0 then equality can only if x = a, that is the
graph y = f(x) is strictly about the tangent line except at the point of

tangency.

Then we wish to show

(3) f(a) ≤ αf(x) + βf(y).

From Proposition 12 we know

f(x) ≥ f(a) + f ′(a)(x− a), f(y) ≥ f(a) + f ′(a)(y − a).

Multiply the first of these by α and the second by β and add to get an
inequality for αf(x) + βf(y) and show that this simplifies to (3). Then
show if f ′′ > 0 that this inequality is strict.

It is now easy to check (just by computing the second derivative and
noting it is positive) the following

Proposition 14. The following are strictly convex on the indicted intervals.

(a) f(x) = xn where n is an integer with n ≥ 2 and I = (0,∞).
(b) f(x) = ex on I = R.
(c) f(x) = − ln(x) on I = (0,∞).
(d) f(x) = x2n where n ≥ 1 is an integer on I = R. (Showing this is

strictly convex takes a bit of work.) �

We recall the Arithmetic-Geometric mean inequality . This is that
if a, b are positive real numbers, then

(4)
√
ab ≤ a+ b

2



5

and equality holds if and only if a = b. The proof is simple

a+ b

2
−
√
ab =

a− 2
√
a
√
b+ b

2
=

(√
a−
√
b
)2

2
≥ 0

and equality can only hold if
√
a =
√
b. That is if only if a = b. The number√

ab is the geometric mean of a and b, while a+b
2 is the arithmetic mean

of a and b, which is where the inequality gets its name. It can be greatly
generalized.

Theorem 15 (Generalized Arithmetic-Geometric Mean Inequality). Let
α1, . . . , αn > 0 with α1 + · · · + αn = 1. Then for any positive real num-
bers a1, . . . , an the inequality

aα1
1 aα2

2 · · · a
αn
n ≤ α1a1 + α2a2 + · · ·+ αnan

holds. Equality holds if and only if all the aj’s are equality.

Problem 6. Prove this. Hint: We know that the function f(x) = ex is
strictly convex on R. That is for any real numbers x1, . . . , xn we have

f(α1x1 + · · ·αnxn) ≤ α1f(x1) + · · ·+ αnf(xn)

and equality holds if and only if all the xj ’s are equal. Show this can be
rewritten as

(ex2)α1(ex2)α2 · · · (exn)αn ≤ α1e
x1 + α2e

x2 + · · ·+ αne
xn

and equality holds if and only if all the xj ’s are equal.
Now given positive numbers a1, . . . , an there are unique real numbers

x1, . . . , xn with aj = exj for all j = 1, 2, . . . , n. (You can assume these xj ’s
exist.) And you take it from here.

Remark 16. In different notation the generalized Arithmetic-Geometric in-
equality is

n∏
k=1

aαk
k ≤

n∑
k=1

αkax

with equality holding if and only if all the ak’s are equal. �

The can you may have seen before is

n
√
a1a2 · · · an ≤

a1 + · · ·+ an
n

coming form α1 = α2 = · · · = an = 1/n and equality holds if and only if all
the aj ’s are equal. The can of n = 2 is often useful. Then letting α = α1

and β = α2 we have

aαbβ ≤ αa+ βb

with equality holding if and only if a = b. (And as usual α, β > 0 with
α+ β = 1.)

Here is an example of the use of the generalized arithmetic geometric
mean inequality



6

Example 17. For x, y, z ≥ 0 maximize the product xyz subject to the con-
straint x+ y + z = c, where c is a constant. We have

xyz =
(

(xyz)1/3
)3
≤
(
x+ y + z

3

)3

=
( c

3

)3
and equality holds if and only of x = y = z. Thus the maximum is (c/3)3

with equality if any only if x = y = z = c/3. �


