Convex Functions with applications to inequalities.

Proposition 1. Let x < y be real numbers and $\alpha, \beta > 0$ with $\alpha + \beta = 1$. Then the linear combination $\alpha x + \beta y$ is between x and y. That is $x < \alpha x + \beta y < y$.

Proof. Write $\alpha x + \beta y = x - x + \alpha x + \beta y = x - (1 - \alpha)x + \beta y = x - \beta x + \beta y = x + \beta (y - x)$. But x < y so (y - x) > 0 and $0 < \beta < 1$ and thus $0 < \beta (y - x) < (y - x)$. There

$$x < \alpha x + \beta y = x + \beta (y - x) < x + (y - x) = y$$

as required. \Box

Remark 2. If we do not make the assumption that x < y we can just say that $\alpha x + \beta y$ is between x and y. That is, when $x \neq y$, we have $\min\{x,y\} < \alpha x + \beta y < \max\{x,y\}$.

Definition 3. Let x, y be real numbers. Then a **convex combination** of x and y is a linear combination of the form $\alpha x + \beta y$ where $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$.

Thus Proposition 1 tells us that the convex combination of two real numbers x and y is between x and y. We can make a more general definition

Definition 4. Let x_1, \ldots, x_n be real numbers. Then a *convex combination* of these numbers is a linear combination of the form

$$\alpha_1 x_1 + \dots + \alpha_n x_n = \sum_{k=1}^n \alpha_k x_k$$

where

$$\alpha_1, \dots, \alpha_n > 0$$
 and $\alpha_1 + \dots + \alpha_n = \sum_{k=1}^n \alpha_k = 1$.

The following is useful in the induction step of a couple of the proofs below.

Lemma 5. Let $\alpha_1, \ldots, \alpha_{n+1} > 0$ with $\alpha_1 + \cdots + \alpha_{n+1} = 1$. Then for any real numbers x_1, \ldots, x_{n+1} we have

$$\sum_{k=1}^{n+1} \alpha_k x_k = (1 - \alpha_{n+1}) \sum_{k=1}^{n} \left(\frac{\alpha_k}{1 - \alpha_{n+1}} \right) x_k + \alpha_{n+1} x_{n+1}.$$

and

$$\sum_{k=1}^{n} \left(\frac{\alpha_k}{1 - \alpha_{n+1}} \right) = 1.$$

Problem 1. Prove this.

Remark 6. One way to think about the last lemma is that if x is a convex combination of x_1, \ldots, x_{n+1} , then x can be written as

$$x = \alpha y + \beta x_{n+1}$$

where $\alpha = 1 - \alpha_{n+1} > 0$, $\beta = \alpha_{n+1} > 0$ (so that $\alpha + \beta = 1$) and y is a convex combination of x_1, \ldots, x_n . This is exactly the set up needed for induction proofs.

Proposition 7. Let x be a convex combination of x_1, \ldots, x_n . Then

$$\min\{x_1,\ldots,x_n\} \le x \le \max\{x_1,\ldots,x_n\}.$$

(The reason that we have " \leq " rather than "<" is to cover the case when $x_1 = x_2 = \cdots = x_n$. In all other cases the inequalities are strict.)

Problem 2. Prove this. *Hint:* See 2 (for the base case) and Remark 6 (for the induction stop).

Definition 8. A function f defined on an interval I is **convex** iff for all $\alpha, \beta > 0$ with $\alpha + \beta = 1$ and all $x, y \in I$ the inequality

(1)
$$f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y)$$

holds. \Box

Definition 9. A function f defined on an interval I is **strictly convex** iff for all $\alpha, \beta > 0$ with $\alpha + \beta = 1$ and all $x, y \in I$ with $x \neq y$ the inequality

$$f(\alpha x + \beta y) < \alpha f(x) + \beta f(y)$$

holds. \Box

Remark 10. Anther way to say that f is strictly convex is that equality holds in the inequality (1) if and only if x = y.

In the terminology of many calculus books this is the same as being concave up. In terms of the graph of f, the condition that f is convex is that f is bellow any of its secant segments (see Figure 1).

Problem 3. Show that f(x) = x and g(x) = |x| are convex on \mathbb{R} . *Hint:* For the absolute value, use the triangle inequality.

Next is a basic result about convex functions.

Theorem 11 (Jensen's inequality). If f is convex on the interval I, $x_1, \ldots, x_n \in I$ and $\alpha_1, \ldots, \alpha_n > 0$ with $\alpha_1 + \cdots + \alpha_n = 1$, then

$$f(\alpha_1 x_1 + \dots + \alpha_n x_n) \le \alpha_1 f(x_1) + \dots + \alpha_n f(x_n).$$

If f is strictly convex, then equality holds if and only if $x_1 = x_2 = \cdots = x_n$.

Problem 4. Prove this. *Hint:* See the hint to Problem 2. \Box

If would be nice to have an easily checked criterion that implies that f is convex. You most likely recall from calculus that a function is concave up, that is convex, if its second derivative is positive. As a first step in toward proving this we have

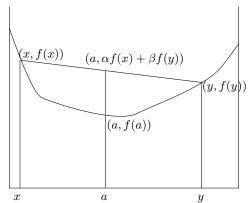


FIGURE 1. Here $a = \alpha x + \beta y$ Using that $(a, \alpha f(x) + \beta f(y)) = (\alpha x + \beta y, \alpha f(x) + \beta f(y)) = \alpha(x, f(x)) + \beta(y, f(y))$ is on the line segment connecting (x, f(x)) and (y, f(y)) we see that, geometrically, the inequality defining convex functions is equivalent to requiring that the graph y = f(x) lies under the secant connecting any two points on the graph.

Proposition 12. Let f be twice differentiable on the open interval I with $f''(x) \ge 0$ for all $x \in I$. Then for any $a \in I$

(2)
$$f(x) \ge f(a) + f'(a)(x - a)$$

for all $x \in I$. If the stronger condition f''(x) > 0 holds for all $x \in I$ then equality holds in (2) if and only if x = a.

Proof. This is a straightforward application of Taylor's theorem. From Taylor's theorem with Lagrange's form of the remainder we have

$$f(x) = f(a) + f'(a)(x - a) + f''(\xi)\frac{(x - a)^2}{2} \ge f(a) + f'(a)(x - a)$$

as $f''(\xi)\frac{(x-a)^2}{2} \ge 0$ because $(x-a)^2 \ge 0$ and we are assuming $f'' \ge 0$. If f'' > 0 then equality can only hold if x = a.

Recall that y = f(a) + f'(a)(x - a) is the equation of the tangent line to the graph of y = f(x) at the point (a, f(a)). Therefore Proposition 12 tells us that if $f'' \ge 0$, then the graph of y = f(x) lies above all its tangent lines. See Figure 2.

Theorem 13. Let f be twice differentiable on the open interval I and with $f'' \ge 0$ on I. Then f is convex on I. If f''(x) > 0 for all $x \in I$, then f is strictly convex.

Problem 5. Prove this. *Hint*: Let $x, y \in I$. If x = y there is nothing to prove (as the inequality (1) reduces to f(x) = f(x)). So assume $x \neq y$. Let $\alpha, \beta > 0$ with $\alpha + \beta = 1$ and set

$$a = \alpha x + \beta y$$
.

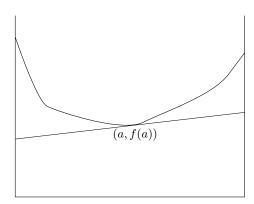


FIGURE 2. If $f'' \ge 0$, then the second order Taylor's theorem tells us

$$f(x) = f(a) + f'(a)(x - a) + f''(\xi) \frac{(x - a)^2}{2}$$

$$\geq f(a) + f'(a)(x - a)$$

As y = f(a) + f'(a)(x - a) is the equation of the tangent line to the graph of y = f(x) at (a, f(a)) the graph of f is lies above all of its tangent lines. If $f''(\xi) > 0$ then equality can only if x = a, that is the graph y = f(x) is strictly about the tangent line except at the point of tangency.

Then we wish to show

(3)
$$f(a) \le \alpha f(x) + \beta f(y).$$

From Proposition 12 we know

$$f(x) \ge f(a) + f'(a)(x - a), \qquad f(y) \ge f(a) + f'(a)(y - a).$$

Multiply the first of these by α and the second by β and add to get an inequality for $\alpha f(x) + \beta f(y)$ and show that this simplifies to (3). Then show if f'' > 0 that this inequality is strict.

It is now easy to check (just by computing the second derivative and noting it is positive) the following

Proposition 14. The following are strictly convex on the indicted intervals.

- (a) $f(x) = x^n$ where n is an integer with $n \ge 2$ and $I = (0, \infty)$.
- (b) $f(x) = e^x$ on $I = \mathbb{R}$.
- (c) $f(x) = -\ln(x)$ on $I = (0, \infty)$.
- (d) $f(x) = x^{2n}$ where $n \ge 1$ is an integer on $I = \mathbb{R}$. (Showing this is strictly convex takes a bit of work.)

We recall the Arithmetic- $Geometric\ mean\ inequality$. This is that if a,b are positive real numbers, then

$$\sqrt{ab} \le \frac{a+b}{2}$$

and equality holds if and only if a = b. The proof is simple

$$\frac{a+b}{2} - \sqrt{ab} = \frac{a-2\sqrt{a}\sqrt{b}+b}{2} = \frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2} \ge 0$$

and equality can only hold if $\sqrt{a} = \sqrt{b}$. That is if only if a = b. The number \sqrt{ab} is the **geometric mean** of a and b, while $\frac{a+b}{2}$ is the **arithmetic mean** of a and b, which is where the inequality gets its name. It can be greatly generalized.

Theorem 15 (Generalized Arithmetic-Geometric Mean Inequality). Let $\alpha_1, \ldots, \alpha_n > 0$ with $\alpha_1 + \cdots + \alpha_n = 1$. Then for any positive real numbers a_1, \ldots, a_n the inequality

$$a_1^{\alpha_1}a_2^{\alpha_2}\cdots a_n^{\alpha_n} \leq \alpha_1a_1 + \alpha_2a_2 + \cdots + \alpha_na_n$$

holds. Equality holds if and only if all the a_i 's are equality.

Problem 6. Prove this. *Hint:* We know that the function $f(x) = e^x$ is strictly convex on \mathbb{R} . That is for any real numbers x_1, \ldots, x_n we have

$$f(\alpha_1 x_1 + \dots + \alpha_n x_n) \le \alpha_1 f(x_1) + \dots + \alpha_n f(x_n)$$

and equality holds if and only if all the x_j 's are equal. Show this can be rewritten as

$$(e^{x_2})^{\alpha_1}(e^{x_2})^{\alpha_2}\cdots(e^{x_n})^{\alpha_n} \le \alpha_1 e^{x_1} + \alpha_2 e^{x_2} + \cdots + \alpha_n e^{x_n}$$

and equality holds if and only if all the x_i 's are equal.

Now given positive numbers a_1, \ldots, a_n there are unique real numbers x_1, \ldots, x_n with $a_j = e^{x_j}$ for all $j = 1, 2, \ldots, n$. (You can assume these x_j 's exist.) And you take it from here.

Remark 16. In different notation the generalized Arithmetic-Geometric inequality is

$$\prod_{k=1}^{n} a_k^{\alpha_k} \le \sum_{k=1}^{n} \alpha_k a_x$$

with equality holding if and only if all the a_k 's are equal.

The can you may have seen before is

$$\sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + \cdots + a_n}{n}$$

coming form $\alpha_1 = \alpha_2 = \cdots = a_n = 1/n$ and equality holds if and only if all the a_j 's are equal. The can of n=2 is often useful. Then letting $\alpha=\alpha_1$ and $\beta=\alpha_2$ we have

$$a^{\alpha}b^{\beta} < \alpha a + \beta b$$

with equality holding if and only if a = b. (And as usual $\alpha, \beta > 0$ with $\alpha + \beta = 1$.)

Here is an example of the use of the generalized arithmetic geometric mean inequality

Example 17. For $x,y,z\geq 0$ maximize the product xyz subject to the constraint x+y+z=c, where c is a constant. We have

$$xyz = \left((xyz)^{1/3}\right)^3 \le \left(\frac{x+y+z}{3}\right)^3 = \left(\frac{c}{3}\right)^3$$

and equality holds if and only of x=y=z. Thus the maximum is $(c/3)^3$ with equality if any only if x=y=z=c/3.