

Mathematics 546 Test #2 Name: _____

Show your work! Answers that do not have a justification will receive no credit.

(1) (25 Points) Define the following:

(a) The **order** of an element a of a group G .

(b) The **cyclic subgroup** $\langle a \rangle$ generated by an element a of a group G .

(c) H is a **subgroup** of the group G .

(d) If H is a subgroup of G and $x \in G$ then define the **left coset** xH .

(e) The groups G_1 and G_2 are **isomorphic**.

(2) (10 Points) A partial group table is given below. Complete the table.

	e	a	b	c	d	f
e	e	a	b	c	d	f
a	a	b	e	d		
b	b					
c	c	f		e		a
d	d				e	
f	f					

(3) (10 Points) Let G be the group \mathbf{Z}_8^* .

(a) Find the order of all the elements in \mathbf{Z}_8^* .

(b) Is \mathbf{Z}_8^* cyclic? Justify your answer.

(4) (10 Points) In the group $\mathbf{Z}_3 \times \mathbf{Z}_3$ find all the cosets of the cyclic subgroup $H = \langle (1, 2) \rangle$.

(5) (10 Points) Let H be a finite subset of a group that is closed under the group operations. Show that H contains the identity element.

(6) (10 Points) Let G be a group and $g_0 \in G$. Let $H = \{x \in G : xg_0 = g_0x\}$. (That is H is the set of elements of G that commute with g_0). Show that H is a subgroup of G .

(7) (10 Points) Prove that if H and K are subgroups of a group G , then $H \cap K$ is also a subgroup of G .

(8) (10 Points)

(a) Explain why \mathbf{Z}_2 and \mathbf{Z}_3^* are isomorphic.

(b) Explain why \mathbf{Z}_4 and \mathbf{Z}_8^* are not isomorphic.

(9) (10 Points) Let G be a group such that $x^2 = e$ for all $x \in G$. Then show that G is Abelian.