

Mathematics 546 Final Name: _____

Show your work! Answers that do not have a justification will receive no credit.

(1) (25 Points) Define the following:

(a) H is a ***normal subgroup*** of the group G .

(b) b is a ***multiple*** of a where a and b are integers.

(c) The group G is ***Abelian***.

(d) The ***index*** of the subgroup H in the group G .

(e) The ***quotient group*** G/H where H is a normal subgroup of G .

(2) (15 Points) State the following:

(a) Lagrange's Theorem.

(b) The theorem about ideals in \mathbf{Z} .

(c) Gauss' Theorem about rational roots of polynomials with integer coefficients.

(3) (10 Points) Give the addition and multiplication tables for \mathbf{Z}_6 , the integers modulo 6.

(4) (10 Points)

(a) Write the element $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 3 & 2 & 4 & 8 & 1 & 5 \end{pmatrix}$ of S_8 as in cycle notation.

(b) Write the element $(1543)(27)$ of S_8 in two line notation.

(5) (10 Points) Find $\gcd(105, 186)$ and write it as a linear combination of 105 and 186.

(6) (10 Points) Find a solution to $7x \equiv 3 \pmod{22}$. _____

(7) (10 Points) Show that for any integer n the gcd of n and $2n + 5$ is either 1 or 5.

(8) (10 points) Let G be a group with $|G| = p$ where p is a prime. Let $a \in G$ with $a \neq e$. Show that $\langle a \rangle = G$.

(9) (15 Points) In the group $G = \mathbf{Z}_{15}^*$ let $H = \langle 2 \rangle$ be the cyclic subgroup generated by 2.

(a) List all the cosets of H in G .

(b) Give the operation table for the quotient group G/H .

(10) (10 Points)

(a) What is the order of the group \mathbf{Z}_{24}^* ?

$$|\mathbf{Z}_{24}^*| = \underline{\hspace{10cm}}$$

(b) Explain why if x is an integer with $\gcd(x, 24) = 1$ that $x^8 \equiv 1 \pmod{24}$.

(11) (10 Points) Recall the dihedral group D_6 is the group of elements $a^i b^j$ where

$$a^6 = e, \quad b^2 = e, \quad ba = a^{-1}b.$$

The subgroup $H = \langle a^2 \rangle = \{e, a^2, a^4\}$ is a normal subgroup of D_6 . Find the operation table for the quotient group D_6/H .

(12) (10 Points) Use Lagrange's Theorem to show that if G is a finite group, $n = |G|$, and $a \in G$, that $a^n = e$.

(13) (10 Points) Show that if H, K, L are subgroups of a group G , then the intersection $H \cap K \cap L$ is also a subgroup.

*Have a good time with the little bit of summer left.
You have been a fun group to teach.*