
Review for test 1

We started out with some preliminary results about bijective maps. You
should know the definition of injective , surjective , and bijective .

We then gave the axioms for affine geometry, which are

Affine Geometry: Axiom 1 (Two points determine a unique line). If P
and Q are distinct points of A2 (that is P 6= Q) then there is a unique line
that passes through both of them. �

Affine Geometry: Axiom 2 (Parallel Axiom). If ` is a line of A2 and P
is a point that is not on `, then there is a unique line m that goes through
P and is parallel to `. �

Affine Geometry: Axiom 3. There exists a set of four points in A2 such
that no three of which are all on the same line. �

You should have these memorized. And you should know the definition
of parallel (and that under our definition a line is parallel to itself).

Problem 1. If `1 and `2 are parallel lines and m is a line that intersects `1
in a single point, then it intersects `2 in a single point.

Solution. If `1 = `2, there is nothing to prove. So assume that `1 6= `2. We
first show that m intersects `2 in at least one point. For if this were not
the case, then let P = m ∩ `1. Towards a contradiction assume m doe not
intersect `2 in any point. Then m is parallel to `1 and we are given that `2
is parallel to `1. Thus the point P has two lines passing through it that are
parallel to `2, contradicting the parallel axiom with says that there is only
one.

To see that `2 intersects m in at most one point, note if it intersected m in
two points by the first axiom of affine geometry we would have m = `2 which
this line is parallel to `1, (as `2 ‖ `1) and that it only only intersects `1 in
one point (as m only intersects `1 in one point). This is a contradiction. �

Problem 2. Show that if `, m and n are lines with ` ‖ m and m ‖ n, then
` ‖ n.

Solution. If ` = m, or m = n, or ` = n then the result is true. So we assume
that `, m and n are distinct. Towards a contradiction assume that ` and n
are not parallel. Then they intersect at some point, call it P . Then P is not
on m (as P is on ` and ` and m have no points in common as ` ‖ m and
` 6= m). But then the point P has two distinct lines through it (` and n)
which are parallel to m which contradicts the parallel axiom. �

Problem 3. Let ` be a line and m a line that intersects ` in exactly one
point. Then there is a bijective correspondence between the points, P , on
m and the lines, `′, parallel to `. Proof by picture, provided there is enough
description in English, is fine.
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Solution. The correspondence is given as follows. For each point, P , on m
let `′(P ) be the line through P parallel to `. For each line `′ parallel to ` let
P (`′) = `′∩m be the point where `′ intersects m. From Figure 1 we see that
each point P on m determines a unique line `′ parallel to ` (by the Parallel
Axiom) and each line `′ parallel to ` determines a unique point P = m ∩ `′
on m (by Problem 1). This gives a bijective correspondence.

m

`

`′

P = m ∩ `′

Figure 1

�

Problem 4. Show that any affine plane contains at least 6 lines.

Solution. You think about this one in light of Affine axiom 3. �

You should understand Theorem 14 on Homework 1.

Problem 5. In Figure 2 find the following

(a) The line through C parallel to the line e.
(b) All lines parallel to c.

(c)
←−−−−−−−−→
(f ∩ d)(a ∩ e)

A

C B

D

ea b

c

f d

Figure 2

Solution. (a) f , (b) b and c, (c)
←−−−−−−−−→
(f ∩ d)(a ∩ e) =

←→
DA = b

Problem 6. In Figure 3
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(a) What is the line through E and parallel to b?
(b) What is the line through I and parallel to g?
(c) What are the lines parallel to b?
(d) What are the lines parallel to a?
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`

Figure 3

Solution. (a) c, (b) d, (c) b, c, and f , (d) a, e, and `.

After giving the basic axioms, propositions, and some examples of affine
geometries, we went about the project of showing that the basic coordinate

plane F2 = A22, that is the set of ordered pairs (x, y) with x, y ∈ F we know
and love from high school geometry is an example of an affine plane where
we defined a line to be a set

L(a, b, c) = {(x, y) : ax+ by + c = 0}
where a and b are not both zero. In the case that our filed is F = R you
should certainly be able to graph these lines.

Problem 7. Graph the following

(a) L(1, 2, 3). What is the slope of this line? What is its slope intercept
equation?

(b) L(1, 0, 5)
(c) L(m,−1, β)

Here is a particular case of showing that the first axiom of affine geometry
holds.

Problem 8. Find the line that goes through (3,−2) and (4, 1).
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Solution. A vector parallel to this line is (4, 1) − (3,−2) = 〈1, 3〉. Thus
~n =〉 − 3, 1〈 is a perpendicular to this line. Therefore one equation for this
line is

~n · ((x, y)− (4, 1)) = 0.

That is
−3(x− 4) + 1(y − 1) = 0

which can be rewritten as

−3x+ y + 11 = 0.

As a check note

−3(3) + (−2) + 11 = 0 and (−3)(4) + (1) + 11 = 0.

So the line is L(−3, 1, 11). This is the same as L(3,−1,−11) or L(6,−2,−22).
�

More generally

Problem 9. If P = (x0, y0) and Q = (x1, y1) are distinct points of A2, show
that there is a line L(a, b, c) that passes through these points.

Solution. This works just like the last problem. The vector

Q− P = 〈x1 − x0, y1 − y0〉
is parallel to the line. Thus

~n = 〈−(y1 − y0), (x1 − x0)〉
is perpendicular to the line. Thus the equation should be

〈−(y1 − y0), (x1 − x0)〉 · 〈x− x0, y − y0〉 = 0.

This simplifies down to

(y0 − y1)x+ (x1 − x0)y + (x0y1 − x1y0) = 0.

Thus L(y0−y1, x1−x0, x0y1−x1y0) should work. Verify by direct calculation
that P and Q are on L(y0−y1, x1−x0, x0y1−x1y0) and explain why (y0−y1)
and (x1 − x0) are not both zero.

For anther way to do this problem see Remark 6 on Homework 2. �

Here is a particular case of showing that the second axiom of affine ge-
ometry holds.

Problem 10. Find the line through (3, 7) that is parallel to L(6,−2, 9).

Solution. The lines parallel to L(6,−2, 9) are of the form L(6,−2, c). We
want to choose c so that (3, 7) is on this line. That is we want

6(3)− 2(7) + c = 0

This gives c = −18 + 14 = −4. Thus the line is L(6,−2,−4). �

Problem 11. Let L(a, b, c) be a line and P = (x0, y0) any point of A2. Show
there is a line through P and parallel to L(a, b, c).



5

Solution. The lines parallel to L(a, b, c) are of the form L(a, b, c′). We wish
to choose c′ so that P is on the line. That is so that

ax0 + by0 + c′ = 0.

This clearly works when c′ = −ax0−by0. So the required parallel to L(a, b, c)
through P is L(a, b,−ax0 − by0). �

We next started to review some linear algebra. The first topic we hit here
was Cramer’s rule.

Theorem 1 (Cramer’s rule). If a, b, c,∈ F with

ad− bd 6= 0

then the system

ax+ by = e

cx+ dy = f

has a unique solution. It is given by

x =

∣∣∣∣e b
f d

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ =
ed− fb
ad− bc

y =

∣∣∣∣a e
c f

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ =
af − ce
ad− bc

We call ad− bc the determinant of the system .

A special case that we have use repeatedly is

Theorem 2 (Cramer’s rule for homogeneous equations). If a, b, c,∈ F with

ad− bd 6= 0

then the system

ax+ by = 0

cx+ dy = 0

only has the solution
x = 0 y = 0.

Some basic definitions are

Definition 3. The two vectors ~a and ~b are linearly dependent iff there
are scalars α and β with at least one of them nonzero with

α~a+ β~b = ~0.

Thus to show two vectors ~a and ~b are linearly dependent, your job is to

find scalars α and β, not both zero such that α~a+ β~b = ~0.
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Problem 12. Show that the vector ~a = 〈2, 4〉 and ~b = 〈3, 6〉 are linearly
dependent.

Solution. Note

3~a+ (−2)~b = 3〈2, 4〉 − 2〈3, 6〉 = 〈0, 0〉 = ~0.

Therefore if α = 3 and β = −2 we have α~a+ β~b = ~0 with and α 6= 0. Thus

~a and ~b are linearly dependent. (Note this is not the only possible choice of
α and β that works. For example α = 15 and β = −10 would work. But to
show vectors are linearly dependent, you don’t have to find all α and β that
work, you only to find one pair of α and β that work.) �

Problem 13. For any vector ~c show that ~a4~c and ~b = 5~c are linearly depen-
dent.

Solution. Just note that

5~a+ (−4)~b = 20~c− 20~c = ~0.

Thus for α = 5 and β = −4 we have α~a+ β~b = ~0 and β 6= 0. So the vectors
are linearly dependent. �

Definition 4. The vectors ~a and ~b are linearly independent iff

α~a+ β~b = ~0

for scalars α and β implies α = β = 0.

Problem 14. Show the vectors ~a = 〈1, 2〉 and ~b = 〈3,−1〉 are linearly
independent.

Solution. If α~a+ β~b = ~0 we have

α〈1, 2〉+ β〈3,−1〉 = 〈α+ 3β, 2α− β〉 = 〈0, 0〉.

This gives the system

α+ 3β = 0

2α− β = 0

The determinant of this system is (1)(−1) − (3)(2) = −7 6= 0. Thus by
Cramer’s rule α = β = 0. Which is just what we needed to show that the
vectors are linearly independent. �

You should look at Homework 3 and understand the basic properties of

the determinant , det(~a,~b) of two vector ~a and ~b. It would not hurt to be
able to prove the properties of det given in Proposition 3 of Homework 3.

Problem 15. Let ~a and ~b be vectors with det(~a,~b) 6= 0. Then show that ~a

and ~b are linearly independent.
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Solution. Let ~a = 〈a1, a2〉 and ~b = 〈b1, b2〉. We are assuming that

det(~a,~b) = a2b2 − a2b1 6= 0.

If α and β are scalars such that

α~a+ β~b = ~0

then
α~a+ β~b = 〈a1α+ b1β, a2α+ b2β〉 = 〈0, 0〉.

This gives the system

a1α+ b1β = 0

a2α+ b2β = 0

for α and β. By assumption the determinant of this system is not zero,
and therefore by Cramer’s rule we have that α = β = 0. Which is what is

required to show that ~a and ~b are linearly independent. �

This is enough sample problems. Here are some other topics that you
should review.

(1) The definition of affine linear combination of two or three points. Review
the quiz.

(2) Be prepared for surprise mystery questions.


