Modern Geometry Homework.

1. CRAMER’S RULE.

We now wish to become experts in solving two linear equations in two
unknowns over our field F. We first recall that a 2 x 2 matrix

a b
A=l
its determinant is
a b
det(A) = c d‘ = ad — bc
We will also use the notation
a Z = ad — be

The following generalizes to linear systems of n equations in n unknowns,
but we will only need the case of two equations in two unknowns.

Theorem 1. Ifa,b,c, € F with

ad —bd # 0
then the system
ar +by=e (1)
cx+dy=f (2)
has a unique solution. It is given by
e b
. fodl  ed—fb
“la b ad—bc
c d
a e
e f _af —ce
Y= 04 o]~ ad—be
c d

We call ad — bc the determinant of the system.

Proof. This is done by the usual method of Gaussian elimination. If we
multiply equation (1) by d and equation (2) by b and subtract the y terms
cancel out and we left with

(ad — bc)x = ed — fb.

Dividing by ad — bc, which were are assuming is not zero, gives the required
formula for x.
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Likewise we can multiply equation (2) by d and substract a times equation
1 to cancel out the x terms. The result is

(ad — bc)y = (af — ce)

and we can again divide by ad — bc to get the formula for y.

We are not quite done. What we have done shows that if there are
solutions, then they must be given by the formula we have just derived for x
and y. We still need to show that solutions exist. This is done by checking
that the values for x and y we have just given are solutions. For these values

of z and y
ed — fb af —ce
a$+by:a<ad—bc>+b<ad—bc>
aed — afb+baf — bce
B ad — be
_aed — bee
~ ad—bc
_ e(ad — be)
~ ad—bc
=e
ed — fb af —ce
Cx+dy:c<ad—bc>+d<ad—bc>
_ced—cfd+daf — cde
N ad — be
_ —cfd+daf
~ ad—bc
_ flad — bc)
~ ad—bc
:f.
Which shows they are solutions. ([

2. LINEARLY INDEPENDENT VECTORS.
Given two vectors
5:(a1,bg), b:(bl,bQ).

we ask when we can write all vector ¥ = (v1,v2) as linear combinations of
these two vectors. That is when can we express all vectors ¢ in the form

7 = ad + b,

where o, € F. We call such sums linear combinations of d and b.
Rewriting ¥ = ad + 8b in terms of components gives

(aay + Bby, cag + Bbe) = (v1, v2).



This is the same as the system

aa+b18 =1
azo + baff = vy

where we want to solve for @ and 8. By Cramer’s rule (with o and f in the
roles of x and y) we find this will have a solution whenever

albg — a2b1 7'é 0.

Definition 2. If @b € F define

—.

det( ) airbs — ashy.

We call this the determinant of @ and b. Note it is the same as the
determinant of the matrix

ap az

bi bal|’

Proposition 3. The determinant of two vectors as just defined has the
following properties

(a) det((i d) =0 for all d.
(b) det(b,d) = —det( b).

-,

(¢) det(@+a’,b) = det(a,b) + det(a’, b).
(d) det(d, b+b ") = det(d, det b) + det(d, b’).
(e) If a € F we have det(ad, b) = adet(a,b) and det(d, ab) = acdet(d,b).

Problem 1. Prove this. Hints: The first two are straightforward. That
is let @ = (a1,a2), and b = (b1, bs) plug these in to the equations and see
that they work out. For the third, I don’t know any way that does not just
involve doing the calculation that shows that both sides reduce to the same
thing. (That is let @ = (a1, a1), @' = (d},a}) and b = (by, by) and plug and
chug.) Now (d) can be reduced to (c) using (b). To give you a start

det(a@,b+b') = —det(b+b',a@) = — det(b, @) — det(b’, @)

Finally (e) is more straightforward plugging and chugging. O

—.

Proposition 4 (Cramer’s rule revisted). If @ and b are vectors with det(a, b) #
0, and

Then
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Problem 2. Prove this using Proposition 3. Hint: To get the formula for
« justify the following

det (%, b) = det(ad + 8b, b)

-

(as ¥ = ad + b)

(Give a reason from Prop. 3)
+ Bdet(b, b) (Give a reason from Prop. 3)

(

Give a reason from Prop. 3)

1

QL

Now divide by det(
[ start with

,b) # 0 to get the formula for a. To get the formula for

-,

det(d, ¥) = det(a, ad + (5b)

and do a similar calculation. O

Definition 5. The vectors @ and b are linearly dependent iff there are
scalars a, 8 € F not both zero such that

a&'+55:6.
[l

Problem 3. Show that if 0 = (0,0) is the zero vector, then 0 and b are
linearly dependent for any vector b. (Likewise @ and 0 are linearly dependent
for any a.) O

Proposition 6. The two vector @ and b are linearly dependent if and only

=,

if det(a@, b) = 0.

Problem 4. Prove this. Hint: First assume that the two vectors are linearly
dependent. Then there are o and (3, not both zero, such that

ad + Bg =0.
Assume that o # 0 justify the following
0 = det(0,b) = det(ad + b, b)

= adet(d,b).

But a # 0, so this implies det(d@,b) = 0. Do the corresponding calculation
in the case 8 # 0.
Conversely assume that

-,

det((_z', b) = a1b2 — agbl =0.

If @ = 0, then @ and b are linearly dependent by Problem 3. So we can
assume that @ = (a1, a2) # (0,0). Thus either a; # 0 or as # 0.
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Case 1: a1 # 0. I will do this case. Using a; # 0. Then we can solve for
by in
a1b2 — agbl =0

to get
b
by = @251
ai
Therefore ) .
a . az01 _n _ =
b = (bl, bg) = (bl, 7@1 ) a (al, ag) aa
where
b1
o= —.
ai

Then if we let 8 = —1 # 0 we have
ad+Bb=>b+ (-1)b=0
and thus @ and b are linearly dependent.

Case 2: as # 0. This case is up up to you. O

Definition 7. The two vectors @ and b are linearly independent iff they
are not linearly dependent. Explicitly this means the only way that a linear
combination can vanish, that is

ad + ﬁg =0
is if

a=p=0. 0

Here is an example. Show the two vectors @ = (1,2) and b = (—2,3) are
linearly independent from the definition. That is we need to show that if

ad + ﬁg =0
then o = 8 = 0. Note
ad+ b= a(1,2) + B(=2,3) = (o — 2, 2a + 38) = (0,0).
This leads to the system
a—26=0
2004+ 36 =0

and the only solution to this is @« = 8 = 0 (which can be seen by Cramer’s
rule).

We have seen that @ and b are linearly dependent if and only if det(a, b) =
0 (Proposition 6.) This implies
Theorem 8. The two vectors @ and b are linearly independent if and only

-,

if det(@, b) # 0. O

One reason that linearly independent vectors are important is the follow-
ing:
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Theorem 9. If the two vectors @ and b of F are linearly independent, then
every vector U can uniquely written as a linear combination of @ and b. That
is there are unique scalars o, B € F such that

7= ad -+ Bb.

Moreover a and B are given by the following form of Cramer’s rule.

_ det( . b) _ det(
b)’ (

of
v ,b)
det (@, b) det(d,b)

a
a,

Problem 5. Prove this.

Problem 6. (a) Write ¢ = (5,6) as a linear combination of @ = (3,4) and
b=(-3,2).

(b) Write 7 = (1,2) as a linear combination of @ = (1,—1) and b = (1,

(c) Write ¥ = (v1,v2) as a linear combination of @ = (cost,sint) and
(—sint, cost).

1),
b=

3. MATRICES

From now on we will write vectors as column vectors. That is a vector

will be
U= .
V2

The reason for this is that is works better with matrix multiplication. Let
us review a bit about 2 x 2 matrices. This is a square array of numbers of

the form
A= |01 a1z)
a1 a2

_ |bun D12
bar  baa|’
then the sum of A and B is
A+ B— [211 a12:| n [511 blz] _ [all +b11 a2 +b12:| .
21

If Bis

a2 ba1  bao a1 + b1 ago + bao
The product is

AR — |a1 a2 bi biz| _ |a11bin +arzbar  anbiz + aizbz
a1 azz2| |ba1 bao a21b11 + az2ba1r  a21621 + agoboo|

And we multiply a matrix A by a scalar in the reasonable way:

a a aa aa
OéA:Oé|:H 12:|:|: 11 12:|.

a21 Q22 Qa1 a2

We multiply a vector by a matrix by the rule
A — [an a12:| [m} _ {041111 + a12U2]
U= = .

as1 G22| |V2 ag1v1 + a22v2



Problem 7. This is a problem to review doing matrix operations. Let

=3 m=p A =]l

then find the following

(a) A+B

(b) AB

(c) 2A —4B
(d) Av

(e) BU

(f) AB— BA

The identity matrix is

by

The reason it is called the identity is

Proposition 10. If A is any 2 X 2 matriz and ¥ is any vector, then
Al=TA=A
and
Iv=17.

Problem 8. Prove this. Hint: Here is part of it:

AT — |a1 a2 1 0] _ |a11l +a120 a1n0+apl| _ |ann a2 —A
a1 ag| |0 1 a211 + a0 a210 + azol a1 a2 '

O

There are other properties of matrices we will use, for example the asso-
ciative law

A(BC) = (AB)C
and the distributive laws
A(B+C)=AB + AC, (A+ B)C = AC + BC,
and the commutative law for addition

A+ B =B+ A

But you should keep in mind that the commutative law for multiplication
does not hold. That is for many matrices

AB # BA.

b oepy

Show AB # BA. O

Problem 9. Let



Definition 11. Let

with det(A) = ad — be # 0. Set

_ 1 d —b
1_
A ~ ad — be {—c a} O

Proposition 12. With this definition show
AAT =AT1A=1
where I is the identity matriz. We call A~' the inverse of A. (Note that

the inverse of A is only defined when det(A) # 0.) O
Problem 10. Prove this. Hint: Just multiply out each of AA~! and A='A
long hand and show that the result is I = B (1]] O

The standard basis if F? is the pair of vectors

oof). a-l]

In other classes you may have used the notation i =& and ; = €.

Proposition 13. Let @ and b be any two vectors. Then there is a matriz A
such that
Aéy = a, Aéy =b.

[y

Ezxplicitly if
then the matrix

does the job.
Problem 11. Prove this. Hint: If you start with
- lar bl 1
=l w) o
the rest of the proof should take care of itself. O

While it does not look like it here, the following will later be rewritten to
be one of our main theorems about affine geometry.

Theorem 14. Let @ and b be linearly independent vectors and let @’ and b’
be any vectors. Then there is a matriz A such that

Ad=a'  and Ab=10".

Problem 12. Prove this along the following lines.



(a) There is a matrix B such that
Be, =

Hint: Proposition 13.
(b) There is a matrix C' with

Cey=ad and Be&=10"
(c) det(B) # 0 and therefore B~! exists. Hint: This follows from the form

of B given in Proposition 13 (which gives B = [d@,b] = Bl 21]) and
2 b2

ISI

and Bé& = b. (3)

that @ and b are linearly independent.
(d) Multiply the equations of (3) by B~! to get

B'a=¢ and Blb=aé.
(e) Finally set
A=0B™!
and show that A does what is required. O

4. AFFINE MAPS
We start by giving anther description of lines.
Proposition 15. Let L(a, b, c) be a line in A2 with Py and Py distinct points
on L(a,b,c). Let
P(t) = (1 — t)PO + tP;.
Then as t varies over F, the point P(t) varies all the points of L(a,b,c). We

call the function P(t) an affine parameterization of L(a,b,c).

Proof. Let Py = (xo,y0) and P; = (z1,y1). As these points are on L(a,b, ¢)
we have
axg + byg +c =0, axy1 +by; +c=0.
The point P(t) is
P(t) = (1 = t)(zo, yo) + t(z1,y1) = (1 — t)wo + tay, (1 — t)yo + ty1))-
Let (xz,y) = (1 — t)xo + ta1, (1 — t)yo + ty1)) we see
ax +by 4+ c=a(l —t)xg +tx1) + b((1 — t)yo + ty1)) + ¢
= (1 —t)(azo + byo + ¢) + t(axy + by1 + ¢)
= (1—)0+10
=0.
Therefore P(t) is on L(a,b,c).
We still need to show that all points on L(a, b, ¢) are of the form P(t) for

some t € F. We first consider the case where b # 0. Then in az+by+c =0
we can solve for y to get

y = T(ax +c).
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This shows that if P and @ are points on L(a, b, ¢) with the same x coordi-
nates, then P = Q. Let Q = (z2,y2) be a point on L(a,b,c). As Py and P,
are distinct points on L(a,b,c) and b # 0 we see that z¢p # 1. Thus there
is a t9 such that
To = (1 — tz)xo + t2£L'1

(you can check that to = (z2 — xo)/(x1 — x¢) works). Thus the point P(t2)
is on L(a,b,c). But P(t2) and @ are on L(a,b,c) and both have the same x
coordinate. Therefore ) = P(t2) with shows that @ is of the required form.

This only leaves the case where b = 0. In that case a # 0 and a similar
argument works (just reverse the roles of a and b and of x and y). (]

Let t = 1/2 in affine parameterization of the line through P and @ gives
the following:

Definition 16. Let P and Q be points of A?. Then the midpoint of P and
Q is the point

1.1
M=-P+-Q.
P30 O

Here is a nice geometric property of midpoints (and the first result we
have had in a while that really looks like a geometry result).

Proposition 17. Let A, B, C, and D be point of A?. Let
My = midpoint of A and B
My = midpoint of B and C
M3 = midpoint of C and D
My = midpoint of D and A.

Then
M1]\42 I MstL and MlM:a | Mzsz

Put somewhat informally this says that for any quadrilateral ABC' D that the
midpoints of the sides of ABCD always form a parallelogram. (See Figure

1)
Problem 13. Prove this. Hint: It is enough to show that the following
equalities of vectors.

MM, = M3Ms
MM, = MyM,
which should not be hard. O

Definition 18. A map f: A? — A? is an affine map iff for all Py, P, € A?
and all scalars a, 5 € F the equality

flaPy+ BP) = af (Po) + Bf(P1)
holds. O
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My

M3

D
FiGURE 1. In any quadrilateral the midpoints of the sides

form a parallelogram. More precisely MM, = MgMQ and
MsMy = Mo M.

Let 8 =1t, so that « =1 — 3 =1 —t we see that the definition of f being
affine is the same as requiring

F(A=t)Py +th) = (1 —t)f(Fo) +tf(P)
for all ¢t € F. This implies that f maps lines to lines.
Proposition 19. Let f: A? — A? be an affine map and let Py and P; be

distinct points of A2. Then f maps the point on the line through Py and P,
onto the points on the line through f(Py) and f(Py).

Problem 14. Prove this along the following line. Let £ be the line through
Py and P;. Let ¢ be the line through f(Fy) and f(P;). We wish to show
that f maps the points of £ to the points of ¢'.

(a) Show the points of ¢ are just the points of the form
Pit)=(1—-t)Py+th

with ¢ € F. Hint: You just have to say that Proposition 15 applies.
(b) Show the points of ¢ are all of the form

P'(t) = (1 —t)f(Py) +t(P)

with ¢ € F. Hint: Again it is enough to just quite Proposition 15.
(c) Use that affine maps satisfy f((1 —¢)Py+tP1) = (1 —t)f(FPy) +tf(P1)
to show

f(P(t)) = P'(t)
and explain why this shows that f maps the points of £ bijectively onto
the points of ¢'. O

Problem 15. Let f: A2 — A2 be an affine map such that
f(170> - (17_1> and f(()’ 1) - (273)
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(a) Let ¢ be the line through (1,0) and (0,1) and let ¢ be the line through
f(1,0) and f(0,1). Draw these two line on the same axis.
(b) Find f(1/2,1/2) and label it on your graph. Hint: We have

(1/2,1/2) = %(1,0) - %(o, 1)

and as f is affine

F(/2,1/2) = $7(1,0) + 2 (0, 1)
(c) Find f(3,—2) and label it on your graph. Hint: We have that (3, —2)
is an affine combination of (1,0) and (0,1) as
(3,-2) =3(1,0) + (—2)(0,1)
and 3+ (—2) = 1. Thus

(d) Find f(—7,8) and label it on your graph. O

Problem 16. Let f: A2 — A2 be an affine map with f(1,2) = (3,4) and

f(=1,6) = (5,1).

(a) Draw ¢, the line through (1,2) and (—1,6) and the line, ¢, trough f(1,2)
and f(—1,6) on the same axis.

(b) Find f(0,4). Label (0,4) (which should be on ¢) f(0,4) on your graph.

(c) Find f(—7,18). Label (=7, 18) (which should be on ¢) f(—7,18) on your
graph. ([

Proposition 20. Let P and Q be points of A% and M their midpoint. Then
for any affine map f: A% — A?

f(M) = midpoint of f(P) and f(Q).
Problem 17. Prove this. (]

Proposition 21. Let f: A> — A? be an affine map and Py, Pi, Py any
points of A%. Let o, B, € F be any scalars with
a+pB+v=1
Then
flaPy+ BPL+vP1) = af(Ry) + Bf(P1) + 7 f ().
Problem 18. Prove this. Hint: If « = = v = 1, then we have the

contradiction that o+ 8+ v =3 # 1. So at least one of «, 3, or 7y is # 1.
By possibly relabeling we can assume that v # 1. Then write

(0%
aP0+5P1+7P2=(1’Y)( _7P0+ 1€7P1> TP =1 =P +P,

1

where
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Now explain why

f(aPy+ 8P+ vP2) = (1 =) f(P) +7f(P).

Then show
« n L _1
L=y 1-v
and use this to show
o p
P)= P P
f( ) 1 — v ot 1— ~y 1
and from there you should be able to finish the proof. ([
Proposition 22. Let Py, Py, ..., P, be points in A? and ag, o1, . . . , o, scalars

such that
Qo+ a1+ Fag = 1.

Then for any affine map f: A®> — A% we have

flaoPo + a1 Pr+ -+ anPy) = aof(Po) + aa f(P1) + -+ + an f(Pn).
Problem 19. Prove this. Hint: Use induction. Problem 18 shows what the
induction step looks like going from n =2 to n = 3. ([
Definition 23. Let b be a vector in F2. Then the translation defined by
@ is the map 75: A? — A2 given by

Ta(P) =P4+ad.
|

If @ = (a1,a2) then in coordinates we have that the translation defined

Ta(z,y) = (x + a1,y + a2).
Thus 7, (x,y) = (x + 1,y). This can be described be saying it moves all
the points of the plane one unit to the right.

Problem 20. Give descriptions of what the translations 7; when @ = (0, 1),
and d = (1,2).

Proposition 24. Every translation is an affine map.
Problem 21. Prove this. ]

Proposition 25. The following hold.
(a) The translation 75 is the identity map on A%

(b) For any two vectors @ and b we have

~ 0T = T,
TG Tb Ta

-

+b

(c) The translations 7;: A?> — A2 is a bijection.

Problem 22. Prove this. O
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More generally if A is a 2 X 2 matrix and bis a vector, then define a map
FAb: A2 — A% be
FA,E(P) = AP +b.

Proposition 26. The map F, ; is an affine map.
Proof. Let a, 8 be scalars with o+ 8 = 1. Then for any points P and ) we
have

F,5(aP +8Q) = A(aP + Q) +b

:A(aP)+A(ﬁQ)+5 <Additive property of )

matrix multiplication.

= aAP + BAQ + b (Anther property of )

matrix multiplication.
= aAP + BAQ + (a+8)b (Asa+8=1)
= a(AP +b) + B(AQ +b)
= aF  5(P) + BF, Q)

which shows F' 'AB is affine. O

5. AFFINELY INDEPENDENT SETS.

Definition 27. The points A, B, C € A? are affinely independent iff they
are not collinear. That is if they do not all line on the same line. O

Proposition 28. The points A, B,C € A? are affinely independent if and
only if the vectors AB and AC are linearly independent.

Proof. We will prove the equivalent statement that A, B, C' € A? are affinely
dependent (that is collinear) if and only if AB and AC are linearly depen-
dent.

First assume AB and AC are linearly dependent. Then one is a scalar
multiple of the other, say AB = AAC. This implies

B—-A=\C-A).
This can be rearranged to give
B=(1-XMNA+XC

and therefore B is an affine combination of A and C. Thus by Proposition 15

B is on the line 28 , which shows that the three points are collinear.

Conversely assume that A, B,C € A? are affinely dependent, that is they
are collinear. Then B is on the line through A and C and so by Proposition
15 B is an affine combination of A and B, that is

B=(1-MNA+XC
for some scalar A\. But then
B—-—A=\C-A),
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which shows that AB is a scalar multiple of AC' and therefore these two
vectors are linearly dependent. ([

Theorem 29. Let Py, Pi, P> be affinely independent points. Then every
point P € A? can be uniquely expressed as an affine combination of Py, P,
and Py. FExplicitly this means there are unique scalars g, a1, and ag such
that such

P=oayPy+ a1 P+ asP and o+ a1+ as = 1.

Proof. We first show the existence of the scalars ag, a1, and as. By Propo-
sition 28 the vectors Po_Pl and Po_Pl are linearly independent and therefore
by Theorem 9 every vector is a linear combination of these two vectors. In
particular there are scalars a; and ag such that

P(;P = alPo_Pl + azPO_PQ.

Using that PyP = P — Py, PP, = P, — Py, and PyP» = P, — P; the last
equation can be rewritten as

P = (1 — o1 — ag)P() 4+ a1 P + asPs.

Letting ap = 1 — a3 — g completes the proof of existence.
To prove uniqueness let

P =oayPy+ a1 P+ aaPo = Py + B1P1 + Ba P
where
apt+ap+az= P0G+ B+ B2=1.
We can thus rewrite as
P=(1—-a1—a)Py+a1P+asPy = (12— Po)Py+ B1P1 + B2 P>
which in turn can be rewritten as
(a1 = B1) (P — Py) + (a2 — o) (P — P1) = 0,
that is
(a1 — B1)PoPy + (a2 — B2) PaPy = .

By Proposition 28 the vectors Po_Pl and PP, are linearly independent so
this implies

(a1 = B1) = (a2 — P2).
That is a1 = 1 and ay = (9. Then

ay=1-a1+az=1-01— 2= [
which completes the proof of uniqueness. O

This has a nice corollary, that is important enough to be called a theorem.
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Theorem 30. Let f,g: A> — A2 be affine maps and Py, Pi, P> affinely
independent points. If f and g agree on Py, Py, and P,, that is

f(R) =g(R),  f(P)=g(P),  f(PR)=g(P)

then f(P) = g(P) for all P € A%. (Concisely: If two affine maps agree on
three affinely independent points, then the maps are equal.)

Problem 23. Prove this. Hint: Let P € A?. By Theorem 29 there scalars
g, o, ag € F such that

P=ogPy+ a1 P + aoPs.
By Proposition 21 and the hypothesis
f(P) = aof(Po) + a)1f(P1) + oo f(P2) = aog(Fo) + ang(Pr) + azg(P2)
and the rest should be easy. ([

We now show the existence affine maps that map affinely independent
sets anywhere we want. Recall that if A is a 2 x 2 matrix and b is a vector,
then the map F', 7 defined by

F,;(P)=AP+b
is an affine map (see Proposition 26).

Theorem 31. Let Py, Pi, P, be an affinely independent set and Pj, PJ,
and P} any points of A%2. Then there is a matriz and a vector b such that

Fyp(Po) =R,  Fup(P) =P, F;(P)=P

Proof. We are looking for a matrix A and a vector b such that

APy +b= P (4)
AP +b=P} (5)
AP, +b=Py (6)
Subtracting (4) from equations (5) and (6) gives
A(P, — P) = P, — P, (7)
A(Py = Py) = P, — Iy (8)

As the vector Py, P1, P» are linearly independent Proposition 28 yields that
the vectors Py, = (P — Py) and PPy = (P, — Py are linearly independent.
Therefore by Theorem 14 there is a matrix A such that equations (7) and
(8) hold. Now set

b= P} — AP,.
We now show that this matrix and vector work. First

Fy5(P) = APy + (Py — APy) = B,
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Next we use equation (7)
Fy5(P1)=AP + Pj— APy = A(Pi — Ry) + Py = P| — Fy + Py = P|

A similar calculation shows F, 5(P) = P;. O

Theorem 32. Let f: A> — A%. Then there is a matriz A and a vector b
such that f = F, . That is every affine map f: A? — A2 is one of the
FA,E ’s.

Problem 24. Prove this. Hint: Let Py, P;, and P, be any affinely inde-
pendent points in A% Let P} = f(Ry), P{ = f(P1), and Py = f(P»). By
Theorem there are A and b such that F', (P;) = P} = f(P;) for j =0,1,2.
Now note that F', > is affine and so you can use Theorem 30 to conclude
that f = FA i [l

We now note that affine bijections f: A? — A? preserve all affine proper-
ties of figures. Here are some results that make this precise.

Proposition 33. Let f: A2 — A? be a bijective map affine map. Then the
inverse of f is also an affine map.

Problem 25. Prove this. Hint: We need to show that for any point A and
B and any scalars a and 8 with o + 5 = 1 that

F7H @A+ BB) = af~(A) + 5f7H(B)
holds. We know that for any P and @) that
faP+BQ) =af(P)+Bf(Q)
Holds. In this equation let P = f~'(A) and Q = f~(B) and use f(f~1(A4) =
Aand (f~1(B) = B to get
f(af™(A) + B571(B)) = aA + BB.
Now apply f~! to both sides. O

Proposition 34. Let f: A2 — A? be an affine bijection. The the points A,
B and C are collinear if and only if the points f(A), f(B), and f(C) are
collinear.

Problem 26. Prove this. Hint: Three points are collinear if and only if
one of then can be expressed as an affine combination of the other two and
affine maps preserve affine combinations. O

Proposition 35. Let ¢ and m be lines in A? and let f: A> — A? be an
affine bijection. Let f[¢] = {f(P): P € £} and fm] = {f(P) : P € m}.
Then £ and m are parallel if and only if f[¢] and f[m] are parallel.

Problem 27. Prove this. O
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Definition 36. If A, B,C € A? then the center of mass of these points
is

1 1 1
M=-A+_-B+ -C.
3 +3 +3

(Note this is an affine combination of the points.)

Proposition 37. Let A, B,C have center of mass M and f: A2 — A? and
affine map. Then

f(M) = Center of mass of f(A), f(B), and f(C).

Put a little differently if M' is the center of mass of f(A), f(B), and f(C)
then

fM) =M’
Problem 28. Prove this. U
Problem 29. Let P;, P, ..., P, be n points in AZ.

(a) Define M is the center of mass of these points.

(b) Let f: A2 — A2 be an affine map. Give a precise statement “f maps
the center of mass of set of points to the center of mass of their images
under f” and prove your version. ([

Problem 30. Recall that a median of a triangle is a line that goes through
vertex of the triangle and the midpoint of the opposite side.

(a) Draw some pictures of medians of triangles.

(b) Show that if A, B and C' are the vertices of the triangle AABC and that
m1, meo, and mg are the medians of this triangle, then for any bijective
affine map f: A% — A? the lines f[m1], f[ma] and f[ms] are the medians
of Af(A)f(B)f(C). -

Problem 31. Show that if there is any one triangle AABC such that the
medians of AABC all go through a point, then for every triangle APQR
that the medians of APQR all go through a point. O

Proposition 38. Any two triangles are affinely equivalent in the sense that
if NABC and APQR are triangles, then there is an affine bijection f: A2 —
A? such that f(A) = P, f(B) = Q, f(C) = R. (We assume that for three
points to form a triangle that they are not collinear.)

Problem 32. Prove this. Hint: This is more or less a straightforward
consequence of Theorem 31 O

We can now put this all together to get a theorem.

Theorem 39. In an triangle AABC (with A, B, and C not colinear) the
meadians of the triangle all go through the center of mass of NABC.

Proof. See Figure 2. O
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FIGURE 2. In an equilateral triangle it is more or less obvious
that all the medians (in red) pass pass through the center of
mass, M, of the vertices. In light of Proposition 38, Problem
30, and Proposition 37 this implies that in every triangle the
medians all pass through the center of mass of the vertices.

Problem 33. We say that the points ABCD form a parallelogram iff
ABC' are not collinear and

4B I oD and  BC I 4D,

We denote a parallel gram by //ABC'D. Show that any two parallelograms
are affinely equivalent in the sense it //ABCD and //A'B'C'D’ are paral-
lelograms, then there is an affine bijection f: A2 — A? with
=4, fB)=fDB), flC)=C, [f(D)=D"
Hint: By Theorem 31 there is an affine map f: A2 — A? with f(4) = A/,

D c

A B

FIGURE 3

f(B) = f(B), and f(C) = C'". Now argue that f(D) = f(D’). One way
to start is to note that fl jﬁ D; is a line through f(A) that

is parallel to f(B) ) f[%] nd that flC ﬁ] f(C)f(D)] is a line
through f(C) parallel to f(A (B) O

Problem 34. Consider the standard square (see Figure 4).

(a) Use that all parallelograms are affinely equivalent to the square to ex-
plain why the diagonals of any parallelogram intersect at the center of
mass of the vertices.
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FIGURE 4. In the standard square the diagonals (in red) in-
tersect in the center of mass, M, of the vertices. By Problem
33 all parallel grams are affinely equivalent to the square.
Therefore in all parallelograms the diagonals will intersect at
the center of mass of the vertices.

(b) Use that all parallelograms are affinely equivalent to the square to ex-
plain why the midpoint of a diagonal is the same as the center of mass
of the vertices in every parallelogram. ([

Proposition 40. Let f,g: A2 — A? be affine maps. Then the composition
fog: A2 — A? is also an affine map.

Problem 35. Prove this. O

Remark 41. If we let G be the set of all affine bijections f: A? — A? then
Proposition 40 tells us that G is closed under composition and Proposition
33 that G is closed under taking inverses. Therefore G is a group in the
sense of abstract algebra (see Math 546). In more advanced presentations
of affine geometry this group plays a prominent role. O

6. DESARGUES’ THEOREM FIRST VERSION.

Here we are going to prove what looks like a rather special theorem, but
we will see that it can be generalized to some surprising results, once we
know some projective geometry. The proof we give is nice in that it will let
us review much of what we have already done. We will start with the usual
coordinate plane. Let z be the z-axis, y the y-axis and § the line y = =x.
That is in our notation 6 = L(1,—1,0). We give some names to some points

A= (1,0), B =(0,1), C = (crc)

where ¢ can be any scalar.
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FIGURE 5. Our goal is to prove B | A’B" and Ac | A'C’

——
implies BC || B'C'. We will do this by using that two lines
are parallel if and only if they have the same slope. This will
let us find equations relating ¢, a’, b’ and ¢’ and finally let us

show that % and B’C’ have the same slope. In this figure

figure

P =(0,0) (the origin.)
A=(1,0)

B=1(0,1)

C = (c1,c2)

Al = (d,0)

B’ = (0,b)

C" = (c}, )

Problem 36. Referring to Figure 5 we assume
— —
AB||AB  and  AC | AC

and want to prove
Yal
E(/i | B'C".

(a) Using the coordinates of the points involved show

—1 S
Slope of % -2 and Slope of B'C' = 2 ;

21
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Therefore what we need to show is that
co—1 5=V

C1 C/2
(b) Show
Slope of j@ =-1
—
and use this and A’B’ | AB to show
a=1. (10)
—
(c) Use that AC and A'C" have the same slope to show

ca c

c—1 - cy—d
(d) Use that (0,0), (c1,c2), and (¢}, c,) are collinear to show
ca ¢
a

(e) Use Parts (c¢) and (d) and some algebra to show

co—1 ddy—d

(11)

Hint: The equation of part (d) implies ¢1¢;, = ¢{co. Cross multiply in
the equation of Part (c) to get cac) —a’ca = cher — ¢y and therefore that

c1 c

¢y = da'ca. Then use part (c) to show ¢j = a/c¢;. Plug these into CQ;,&
2

and cancel to complete the argument.
(f) Combine equations (10) and (11) to show that (9) holds and complete

—
the proof that ¢ | A'C". O

Problem 37. In the last problem we divided by ¢; — 1, that is when ¢; = 1.
So the proof does not work in that case. So find a proof for the special case
where ¢; = 1. O

Theorem 42 (A special case of Desargues’ Theorem). Let AAygByCy and

NALB(Cy. be so that the lines AOA{), BOB{), CoCy, all go through the point
Py. Assume

R <————/> s
A()B(] || A6BO and AOC(] || A6C(/)

Then -

(See Figure 6.)

Problem 38. Prove Theorem 42 along the lines suggested by Figure 6. [J



S H —
FIGURE 6. We are assuming Ay By || AyB(, and AyCy || AyC)

and wish to conclude that m | B{Cy. Towards this
and using the notation of Figure 5 (that is P = (0,0),
A = (1,0), B = (0,1)) use Theorem 31 to find an affine
bijection f: A2 — A? with

f(Ry) =(0,0) =P, f(Ao)=A, [f(By)=D8.

Now set C' = f(Cy), A" = f(A4p), B' = f(By), C'" = f(C}).
Then the points P, A, B, C, A’, B’, C’ are in the set up of
Problem 36 and therefore we can conclude that AC | A'B'.
This can be transfered back to the original setup to conclude

? e
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