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1. Vectors and Matrices.

A size n vector, v, is a list of n numbers put in a column:

v :=









v1

v2
...
vn









.

When for the values n = 2 and n = 3 this looks like

v =

[

v1

v2

]

, v =





v2

v2

v3



 .

where v1, v2, v3 are numbers (often called scalars when also talking
about vectors). Examples of size 2, 3 and 4 vectors are

[

3
−2

]

,





4
1
9



 ,









−5.2
31.7
4.6
9.1









.

For use a matrix, A, is an n × n array of numbers1 Thus 2 × 2 and
3 × 3 matrices look like

[

a1 1 a1 2

a2 1 a2 2

]

,





a1 1 a1 2 a1 3

a2 1 a2 2 a2 3

a3 1 a3 2 a3 3





where the entries ai j are scalars.
The formula for multiplying a matrix A with a vector v in the cases

n = 2 and n = 3 is
[

a1 1 a1 2

a2 1 a2 2

] [

v1

v2

]

=

[

a1 1v1 + a1 2v2

a2 1v1 + a2 2v2

]

1The general definition of a matrix is an m×n array, as we will only be working

with the case of square matrices it seems pointless to complicate things with the

more general rectangular matrices.
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2





a1 1 a1 2 a1 3

a2 1 a2 2 a2 3

a3 1 a3 2 a3 3









v1

v2

v3



 =





a1 1v1 + a1 2v2 + a1 3v3

a2 1v1 + a2 2v2 + a2 3v3

a3 1v1 + a3 2v2 + a3 3v3



 .

Thus a matrix times a vector yields a vector.
We can also multiply two matrices together. If Aand Bare 2 × 2

matrices then let

B =

[

b1 1 b1 2

b2 1 b2 2

]

=
[

B1, B2

]

where B1 =

[

b1 1

b2 1

]

and B2 =

[

b1 2

b2 2

]

are the columns of B. Note these

columns are vectors and thus we can multiple them by the matrix A

to get AB1 and AB2. Then the product AB is

AB =
[

AB1,AB2

]

.

That is AB is the matrix whose columns are the result of multiplying
the columns of B by A. In full detail this is

AB =

[

a1 1 a1 2

a2 1 a2 2

] [

b1 1 b1 2

b2 1 b2 2

]

=

[

a1 1b1 1 + a1 2a2 1 a1 1b1 2 + a1 2a2 2

a2 1b1 1 + a2 2a2 1 a2 1b1 2 + a2 2a2 2

]

.

In the 3 × 3 case this is in terms of the columns of B:

AB = A
[

B1,B2,B3

]

=
[

AB1,AB2,AB3

]

.

The full blown, and fully hideous, formula is

AB =

2

4

a1 1 a1 2 a1 3

a2 1 a2 2 a2 3

a3 1 a3 2 a3 3

3

5

2

4

b1 1 b1 2 b1 3

b2 1 b2 2 b2 3

b3 1 b3 2 b3 3

3

5

=

2

4

a1 1b1 1 + a1 2b2 1 + a1 3b3 1 a1 1b1 2 + a1 2b2 2 + a1 3b3 2 a1 1b1 3 + a1 2b2 3 + a1 3b3 3

a2 1b1 1 + a2 2b2 1 + a2 3b3 1 a2 1b1 2 + a2 2b2 2 + a2 3b3 2 a2 1b1 3 + a2 2b2 3 + a2 3b3 3

a3 1b1 1 + a3 2b2 1 + a3 3b3 1 a3 1b1 2 + a3 2b2 2 + a3 3b3 2 a3 1b1 3 + a3 2b2 3 + a3 3b3 3

3

5

We can also define powers An of a matrix. So A2 = AA, A3 = AAA,
A4 = AAAA etc. Fortunately we can have the calculator multiply
and take powers of a matrices.

2. Eigenvectors and Eigenvalues of Matrices.

Let A be a square matrix (that is A has the same number of rows
and columns). Let v be a vector and λ a number. Then v and λ

number is an eigenvector of A with eigenvalue λ iff

Av = λv.

For a 2 matrix

A =

[

a b

c d

]



3

the eigenvalues are the roots of the characteristic equation

det (xI − A) = det

[

x − a −b

−c x − d

]

= (x − a)(x − d) − cd

= x2
− (a + d)x + (ad − bc) = 0.

(If you don’t know what det and I are in the above, don’t worry, in
the case we will need these will not be important.)

3. Eigenvalues and Eigenvectors of Leslie matrices.

Assume we have a population of organisms where we will count their
numbers of each age once during progressive time periods of the same
length (which to be concrete we assume to be a year). Let m be the
maximum reproductive age of the organism. For each x with 1 ≤ x ≤

m, let Nx,t be the number of organisms that have age x during the
census in year t. Thus N1,t is the number of organisms that were born
in the year before the year t census and survived until the time of
the census (which is different from the number of births), N2,t is the
number of two year olds at the time of the year t census, and in general
Nx,t the number of x-year olds at the time of the year t census. For
1 ≤ x ≤ m − 1 let sx be the proportion of the age x organisms from
the year t census that survive until the year t + 1 census. This means
that

Nx+1,t+1 = sxNx,t for 1 ≤ x ≤ m− 1.

If bx is the net fecundity (which can also be thought of as the per capita
birth rate) of the organisms of age x, that is the number average number
of offspring of an age x organism that survive until the next census,
then

N1,t+1 = b1N1,t + b2n2,t + · · ·+ FmNm,t.

(In most realistic cases b1 = 0, but there is no reason to rule it out
mathematically.)

For most of the rest of these notes we will simplify notation and as-
sume that m = 4. Then our evolution equations become (see Figure 1.)

N1,t+1 = b1N1,t + b2N2.t + b3N3,t + b4N4,t

N2,t+1 = s1N1,t

N3,t+1 = s2N2,t

N4,t+1 = s3N3,t.(1)
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N2 N3 N4
s2 s3

b4

s1

N1

b2

b3

Figure 1

We rewrite this as a matrix equation. Let

Nt :=









N1,t

N2,t

N3,t

N4,t









, and L :=









b1 b2 b3 b4

s1 0 0 0
0 s2 0 0
0 0 s3 0









.

The vector Nt gives the age distribution of ages at the year t census, and
L is the Leslie matrix. Then the system (1) of four scalar equations
can be written as the single matrix equation:

(2) Nt+1 = LNt.

Our next goal is to find eigenvectors for L. That is vector v for some
scalar λ

Lv = λv.

If we have such an eigenvector, then

Nt = λtv

is a solution to the matrix equation (2). To see this note if Nt = λtv

Nt+1 = λt+1v = λtλv = λtLv = L(λtv) = LNt,

where we have used that Lv = λv. Also note that if v is an eigenvector
and c is a scalar, then cv is also an eigenvector. (Exercise: Show this.)
Therefore given an eigenvector with first element v1 we can multiple by
the scalar c = v−1

1 and get a new eigenvector cv where the first entry
is 1. That is we assume we have an eigenvector of the form

v =









1
v2

v3

v4









.
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Then computing Lv and λv and setting them equal we get

(3) Lv =









b1 + b2v2 + b3v3 + b4v4

s1

s2v2

s3v3









= λv =









λ

λv2

λv3

λv4









.

Comparing the last three entries of these vectors gives the equations

s1 = λv2, s2v2 = λv3, s3v3 = λv4.

We can solve successively for v2, v3, and v4 to get

v2 = λ−1s1, v3 = λ−1s2v2 = λ−2s1s2, v4 = λ−1s3v3 = λ−3s1s2s3.

Using these values in (3) gives
(4)

Lv =









b1 + b2λ
−1s1 + b3λ

−2s1s2 + b4λ
−3s1s2s3

s1

λ−1s2

λ−2s1s2s3









= λv =









λ

s1

λ−1s1s2

λ−2s1s2s3









.

So for v to be an eigenvector the only condition left is make the first
entries agree. That is

(5) b1 + b2λ
−1s1 + b3λ

−2s1s2 + b4λ
−3s1s2s3 = λ.

For x from 1 to m let ℓ1 = 1 and for 2 ≤ x ≤ m Let ℓx be the product
of s1, s2, up to sx−1:

ℓx = s1 · · · sx−1, that is ℓx =
x−1
∏

j=1

sj .

In our case of m = 4 we have

ℓ1 = 1, ℓ2 = s1, ℓ3 = s1s2, ℓ4 = s1s2s3.

Then ℓx the proportion of one year olds that survive to the beginning
of the x-th year. Using this notation we can rewrite (5) as

(6) b1ℓ1 + b2ℓ2λ
−1 + b3ℓ3λ

−2 + b4ℓ4λ
−3 = λ.

Now divide this by λ to get

(7) b1ℓ1λ
−1 + b2ℓ2λ

−2 + b3ℓ3λ
−3 + b4ℓ4λ

−4 = 1.

This is the Lotka-Euler equation. Note if we write it in summation
notation it becomes

(8)
m

∑

x=1

bxℓxλ
−x = 1.
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Just to be specific about the dependence of the Lotka-Euler equation
on the survival rates sx we note it can be written as

(9) λ−1b1 + b2λ
−2s1 + b3λ

−3s1s2 + b4λ
−4s1s2s3 = 1,

which in the general case looks like

m
∑

x=1

bxs1s2 · · · sx−1λ
−x = 1

If we multiple (5) by λ move all the terms of the result to one side
of the equation we get

(10) λ4
− b1λ

3
− b2s1λ

2
− b3s1s2λ − b4s1s2s3 = 0.

which is the characteristic equation (that is the equation det(λI−

L) = 0 which is the equation for λ to be an eigenvalue of the matrix
L, see any text on linear algebra) of the Leslie matrix L. This can be
rewritten in terms of the ℓx’s as

(11) λ4
− b1ℓ1λ

3
− b2ℓ2λ

2
− b3ℓ3λ − b4ℓ4 = 0.

(And this can also be derived by multiplying (7) by λ4 and rearranging
a bit.)

Note that as the characteristic equation (11) results from the Lotka-
Euler equation by just multiplying by λ4 the two equation have the
same collection of non-zero roots. As both equation only have one
positive root (this is not really quite elementary, but can be shown
without too much trouble) we have:

Proposition. The Lotka-Euler equation has exactly one positive root.

We call it the dominate eigenvalue of Leslie matrix.

Finally we note that when λ is a solution to the Lotka-Euler equation
then (4) becomes

Lv = λv where v =









1
λ−1s1

λ−2s1s2

λ−3s1s2s3









.

Therefore

(12) v =









1
λ−1s1

λ−2s1s2

λ−3s1s2s3








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gives the stable age distribution normalized so that n1(t) = 1. Written
in terms of the ℓx’s this is

(13) v =









1
λ−1ℓ2

λ−2ℓ3

λ−3ℓ4









.

To be explicit about the general case (that is for general values of
m, not just m = 4) the Leslie matrix is

(14) L =

















b1 b2 b3 · · · bm−1 bm
s1 0 0 · · · 0 0
0 s2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · sm−1 0

















The characteristic equation is

λm
− b1ℓ1λ

m−1
− b2ℓ2λ

m−2
− · · · − bm−1ℓm−1λ − bmℓm = 0

which in summation notation is

λm
−

m−1
∑

k=0

bm−kℓm−kλ
k = 0.

(Dividing by λm and rearranging gives the Lotka-Euler equation (8).)
It has exactly one positive root (the others are negative or complex)
and this positive root is the dominate eigenvalue of L. The stable
age distribution, normalized so that n1(t) = 1, is given by the column
vector

v =





















1
λ−1ℓ2

λ−2ℓ3
...

λ−(m−2)ℓm−1

λ−(m−1)ℓm





















.


