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Abstract

The problem of radio channel assignments with multiple levels of interference can

be modelled using graph theory. The theory of integer vertex-labellings of graphs

with distance conditions has been investigated for several years now, and the authors

recently introduced a new model of real number labellings that is giving deeper

insight into the problems. Here we present an overview of the recent outpouring

of papers in the engineering literature on such channel assignment problems, with

the goal of strengthening connections to applications. Secondly, we present a new

contribution to the theory, the formulas for the optimal span of labellings with

conditions at distance two for finite complete bipartite graphs.

Dedicated to Prof. Frank K. Hwang on the occasion of his 65th birthday

1 Introduction

For a large network of transmitters spread out in a planar region, the channel assignment
problem is to assign a numerical channel, representing a frequency, to each transmitter.
The channels assigned to nearby transmitters satisfy some separation constraints so as to
avoid interference. The goal is to minimize the portion of the frequency spectrum that
must be allocated to the problem, so it is desired to minimize the span of a feasible assign-
ment. In 1980, Hale [31] recast such channel assignment problems in network engineering
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as graph labelling problems. To do this, each transmitter is represented by a vertex, and
any pair of vertices that may interfere is represented by an edge in the graph. In the orig-
inal T -coloring model the labels are integers, and there is a specified set T of forbidden
differences between labels for adjacent vertices (corresponding to nearby transmitters).

In the quarter century since Hale’s paper appeared, there has been a flurry of activity
on both sides: The growth of wireless communication networks has spawned considerable
activity in the engineering literature on efficient channel assignments, while mathemati-
cians have been fascinated by the problems of graph vertex-labellings with conditions on
their differences. Here, we won’t focus on T -coloring (see Roberts [47] (1991) for a nice
survey). Instead, we concentrate on labellings with distance constraints.

In 1988 Roberts [48] described a channel assignment that had been proposed to him by
Tim Lanfear at NATO. Integer channels are to be assigned to transmitters, and there are
two levels of interference to be avoided, depending on the distance between the transmit-
ters, due to spectral spreading: There is some given distance A such that channels for two
transmitters within distance A must differ by at least one (that is, be different, since they
are integers). This is called the cochannel constraint, and the channel reuse distance A
depends in part on the power of the transmitters. Further, two transmitters that are very
close, within distance A/2, must differ by at least two, so that the channels cannot be
the same or consecutive integers . This is called the adjacent channel constraint. The two
interference levels are due in part to the spectral spreading of the transmission. Again,
the goal is to construct a feasible assignment with minimum span.

Griggs [29] proposed the graph-theoretic analogue of the distance-constrained channel
assignment problem, and he generalized it to permit p levels of interference. Specifically,
given integers k1, . . . , kp ≥ 0, called separations, we say a L(k1, k2, · · · , kp)-labelling of a
graph G is an assignment of nonnegative integers f(v) to the vertices v of G, such that
|f(u)−f(v)| ≥ ki if u and v are at distance i in G. We say that labelling f belongs to the
set L(k1, k2, · · · , kp)(G). We denote by λ(G; k1, k2, · · · , kp) the minimum span over such f ,
where the span is the difference between the largest and smallest labels f(v). Griggs and
Yeh [29] concentrated on the fundamental case of L(2, 1)-labellings, where the minimum
span is denoted more simply by λ(G). Many authors have subsequently contributed to
the literature on these labellings (see [13, 26, 28, 37, 38, 48]). Increasing attention has
been paid recently to more general L(k1, k2)-labellings (see [10, 11, 12, 22, 23, 24, 35]).

In this paper we endeavor to help bridge the gap between the mathematics/computer
science community, which investigates the properties of distance-dependent graph la-
bellings, and the engineering community, which describes the analogous channel assign-
ment problems arising frequently in connection with the evolving technology for commu-
nications networks. In Section 2 we call attention to the growing number of papers in the
engineering literature on channel assignments. Although they are not all directly related
to the lambda-labellings above, these references will likely suggest a wealth of interesting
new challenges to the interested reader.

Then in Section 3 we briefly describe the more recently-developed theory of real-
number graph labellings introduced by the authors, in which the separations and labels
are allowed to range over real numbers. This theory, while it is motivated by the idea that
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channel frequencies can range over the continuum of real numbers, has exposed properties,
even for integer labellings, that escaped us before.

In Section 4, we present a new result, which is the complete determination of the
optimal spans of real-number labellings with conditions on the separations at distance
two for the family of complete bipartite graphs. Besides contributing to the theory, the
techniques illustrated in the proof are of interest.

Finally, we conclude in Section 5 with some directions for future research related to
labellings with conditions at distance three or larger.

2 Recent Progress on Channel Assignments

Many applications concern dynamic channel assignment, in which available channels are
assigned dynamically in every time slot [30]. In this paper, we focus on fixed channel
assignments. The channel assignment problem is usually formulated in the engineering
literature as a nonlinear optimization problem. A huge collection of contributions in
IEEE journals explore various aspects of current research on radio channel assignment
problems, among them “IEEE Transactions on Vehicular Technology” [1, 2, 4, 16, 18, 20,
21, 25, 33, 40, 42, 49, 50, 51], “IEEE Transactions on Wireless Communication” [15, 30],
“IEEE/ACM Transactions on Networking” [3, 5], “IEEE/ACM Transactions on Parallel
and Distributed Systems” [7, 32], “Wireless Networks” [39, 46, 52], and IEEE Conferences
[6, 9, 10, 17, 27, 44].

Wireless networks include cellular mobile networks, wireless computer networks [5],
wireless ATM networks [39], and private mobile radio networks [52]. Mobile multime-
dia applications with variable data rate transmission for such integrated services can be
done by means of efficient assignment of time slots, frequencies, codes, or their com-
binations [15]. Different channel assignment problems in the frequency, time and code
domains (with a channel defined as a frequency, a time slot [3], or a control code [5])
can be modeled by graph labelling problem. Ramanathan [46] formulated a framework of
channel assignments unified by the similarity of the constraints across these domains.

Efficient utilization of the scarce frequency spectrum for cellular communications is
certainly one of the major challenges. Efficient frequency channel assignment will help
the modelling and efficient solution of network design problems [41]. Consequently, more
users can be supported in the system and this leads to an overall system capacity gain [41].

The processing time required by a channel assignment system that performs optimiza-
tion by exhaustively searching all combinations increases exponentially relative to the
number of base stations (1000 base stations is typical in engineering). As the number of
base stations grows, it becomes difficult to find optimal channel assignments in a short
time [19]. A rapid growth in demand for wireless communication services has in turn cre-
ated a need for developing the corresponding efficient channel assignment theory, methods
and computational tools.

The frequency channel separations ki for two transmitters are often inversely propor-
tional to the distance i between them (raising to some constant power α > 1) [7]. Most
articles assume that the separations are nonincreasing, k1 ≥ k2 ≥ . . . ≥ kp. But this is not
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required in our mathematics theory. One special case where k1 < k2 has already arisen:
Bertossi and Bonuccelli [5] (1995) introduced an integer “control code” assignment in
packet radio networks of computers to avoid hidden terminal interference. This occurs for
stations (transmitters), which are outside the hearing range of each other, that transmit
to the same receiving stations: It is the L(0, 1) graph-labelling problem [36].

3 Optimal Labellings with Real Numbers

Since we can use any frequencies (channels) in the available continuous frequency spec-
trum, not only from a discrete set, Griggs and Jin [28] extended integer graph labellings
to allow the labels and separations ki to be nonnegative real numbers. We use the same
notation as before, L(k1, . . . , kp)(G) and λ(G; k1, . . . , kp), but now the span of a real la-
belling is the difference between the supremum and the infimum of the labels used, and
λ is the infimum of the spans of such labellings. For example, λ(P4;

√
2, 1) =

√
2 + 1 for

path P4 on four vertices
For graphs of bounded maximum degree, Griggs and Jin proved the existence of an

optimal labelling of a nice form, in which all labels belong to the discrete set, denoted by
D(k1, k2, . . . , kp), of linear combinations

∑

i
aiki, with nonnegative integer coefficients ai.

Theorem 3.1 (The D-Set Theorem [28]). Let G be a graph, possibly infinite, with finite
maximum degree. Let real numbers ki ≥ 0, i = 1, 2, . . . , p. Then there exists a finite
optimal L(k1, k2, . . . , kp)-labelling f ∗ : V (G) → [0,∞) in which the smallest label is 0
and all labels belong to the set D(k1, k2, . . . , kp). Hence, λ(G; k1, k2, . . . , kp) belongs to
D(k1, k2, . . . , kp).

Some natural properties of distance-constrained labellings become more evident in the
setting of real number labellings. Due to the D-set Theorem, previous optimal integer
labelling results are compatible with our optimal real number labelling results. In partic-
ular, we observe the following Scaling property: For real numbers d, ki ≥ 0, i = 1, 2, . . . , p,

λ(G; d · k1, d · k2, . . . , d · kp) = d · λ(G; k1, k2, . . . , kp).

In [28, 35], we proved λ(G; k1, k2, . . . , kp) is a continuous function of the separations ki

for any graph G with finite maximum degree. Hence, results about the minimum spans
λ(G; k1, k2, . . . , kp) for ki being rational numbers can often be extended into the results
for ki being real numbers. Indeed, by Scaling, it is usually enough to obtain results for
integer ki. But the analysis is more clear, and more results emerged, by considering real
number labellings.

For any fixed p and any graph G with finite maximum degree, we [28] proved that
λ(G; k1, k2, . . . , kp) is a piecewise-linear function of real numbers ki if G is finite or if p = 2.

By Scaling, we have that for k2 > 0, λ(G, k1, k2) = k2λ(G; k, 1), where k = k1/k2. This
reduces the two-parameter function to a one parameter function, λ(G; k, 1), k ≥ 0. As
just discussed, we can be sure it is a continuous, nondecreasing, piecewise-linear function
with finitely many pieces. Further, each piece has the form ak + b for some integers
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Figure 1: Minimum Spans λ(Kn,n; k, 1) (left) and λ(Kn1,n2
; k, 1), n1 > n2 (right)

a, b ≥ 0. We prove upper bounds on the minimum span by labelling constructions, and
lower bounds by restricting our focus on some induced subgraph H of G, since a lower
bound on H is a lower bound on G.

4 Optimal Spans of Complete Bipartite Graphs.

We have the following minimum spans for complete bipartite graphs (see Figure 1).

Theorem 4.1. If n1 ≥ n2 are positive integers and k is a non-negative real number, then

λ(Kn1,n2
; k, 1) =







max{n1 − 1, n2 − 1 + k}, if 0 ≤ k ≤ 1

2
;

(2n2 − 1)k + max{n1 − n2 − 1 + k, 0}, if 1

2
≤ k ≤ 1;

k + n1 + n2 − 2, if k ≥ 1.

Proof: Let G = Kn1,n2
have partite sets X = {x0, x1, . . . , xn1−1} and Y = {y0, y1, . . . , yn2−1}.

We first present labellings that achieve the stated spans.

• For 0 ≤ k ≤ 1

2
, let f(xi) = i when 0 ≤ i ≤ n1 − 1, and let f(yj) = j + k when

0 ≤ j ≤ n2 − 1.

• For 1

2
≤ k ≤ 1, let f(xi) = 2ik when 0 ≤ i ≤ n2 − 1 and f(xi) = 2n2k + i−n2 when

n2 ≤ i ≤ n1 − 1, and let f(yj) = (2j + 1)k when 0 ≤ j ≤ n2 − 1.

• For k ≥ 1, let f(xi) = i when 0 ≤ i ≤ n1 − 1, and f(yj) = n1 − 1 + j + k when
0 ≤ j ≤ n2 − 1.

Next we derive the lower bounds according to the following cases. Suppose f is an
optimal labelling for G.

Case 1: 0 ≤ k ≤ 1

2
. By the separation conditions, there is at most one label f(v) for

v ∈ X in each interval [i, i + 1). So X has at least one label beyond [0, n1 − 1), and the
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same is true for Y when n1 = n2. Consequently, the span is at least n1 −1, and is at least
n1 − 1 + k = n2 − 1 + k for n1 = n2, as desired.

Case 2: k ≥ 1

2
. List the n1 + n2 labels f(v) in increasing order. Note that two

consecutive labels in the ordering differ by at least k (respectively, at least 1), if they are
used for vertices in opposite (resp., the same) partite sets of G. Let a (resp., b) denote the
number of pairs of consecutive labels for vertices in opposite (resp., the same) partite sets.
Hence, a+ b = n1 +n2 − 1, and the span of f is at least ak + b. No matter what order the
labels are in, it must be that a ≥ 1 and b ≥ max{n1−n2−1, 0}. For the case of 1

2
≤ k ≤ 1,

the span is at least ak + b ≥ (n1 +n2 − 1−max{n1 −n2 − 1, 0})k +max{n1 −n2 − 1, 0} =
(2n2 − 1)k + max{n1 − n2 − 1 + k, 0}, as desired. For the case of k ≥ 1, the span is at
least ak + b ≥ k + (n1 + n2 − 1 − 1) = k + n1 + n2 − 2, as desired. �

Independently of us, Calamoneri, Pelc, Petreschi solved the special case of stars:

Corollary 4.2 ([11]). For real number k ≥ 0, and integer n ≥ 2, we have

λ(Kn,1; k, 1) =







n − 1 if 0 ≤ k ≤ 1

2

2k + n − 2 if 1

2
≤ k ≤ 1

k + n − 1 if k ≥ 1

5 Future Research Directions

We conclude by describing some of the directions for future research which have applica-
tions in wireless communications. Rapid growth in the demand for mobile communication
has led to intense research and development efforts towards a new generation of cellular
systems. Due to the decreasing cost of transmitter constructions, a large number of small
cells is expected in the new generation of wireless systems [7]. Small cell systems allow
greater channel reuse and large capacity [45]. When each cell has significant power, the
channel reuse distance will be larger, and it means we need to consider L(k1, k2, . . . , kp)
for larger p ≥ 3.

There are several papers in engineering with research on the case that k1 = k ≥
k2 = k3 = · · · = kp = 1. Van den Heuvel, Leese, and Shepherd [34] show a result
which is equivalent to λ(Pn; 2, 1, 1) = 4, for a path Pn, n ≥ 2. Bertossi, Pinotti, Tan [7]
give values and labellings for the triangular lattice Γ4 (which is the 6-regular, infinite
planar lattice): λ(Γ4; 1, 1, 1) and λ(Γ4; 2, 1, 1). Bertossi et al. [7] and then Panda et
al. [44] present a lower bound for the square lattice Γ� (the 4-regular planar lattice)

independently, λ(Γ�; 1, 1, . . . , 1) ≥ bp2+2p

2
c, where p is as above and hence p + 1 is the

channel reuse distance.
Motivated by engineering problem in communications, Chartrand et al. [14] introduce

“radio k-coloring” on the vertices of a graph G, with x ∈ V (G) labelled c(x) such that
d(u, v)+ |c(u)− c(v)| ≥ k +1, where k is a fixed integer between 1 and the diameter of G.
When k is the diameter of G, and G is finite, it is called radio labelling or radio coloring.
Subsequently, many papers (see [14, 8, 53]) contributed to the radio labelling problems in
mathematics. It is interesting to consider the corresponding L(k, k − 1, k − 2, · · · , 2, 1)-
labellings of a (possibly infinite) graph G for any fixed number k (instead of the diameter).
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We believe that the minimum span λ(G; k, k−1, k−2, · · · , 2, 1) is a piecewise-polynomial
function of k.

Moon et al. [43] mention a mobile network using a frequency hopping technique (called
synthesizer hopping). In the stage of network design, a list of channels is assigned to each
transmitter in the network under some separation conditions. In the usage stage of the
system, the traffic carriers (i.e., transmitted signals) hop in a defined sequence over a
predefined set of frequencies of the transmitters. So we assign a pre-generated channel
list for each transmitter in the design stage. Then assign each traffic carrier a channel at
the transmitter among the corresponding channel list synchronically (dynamically) in the
system usage stage. For example, some of the transmitters (like military and governmental
stations) already have preassigned labels corresponding to frequency channels which are
not allowed to change [8]. That is, assign all vertices label-lists of fixed size, then we may
assign each traffic carrier at each vertex a label in its label list (called list labelling). During
the assignment, we may try to equalize the number of cells using the same channel [45]
as much as possible.

Concerning graph models of wireless networks, Dubhashi et al. [17] present bounds on
the minimum span for L(2, 1, 1, · · · , 1)-labelling of the d-dimensional square lattice (grid),
in which V (G) = Z

p, and two vertices, say (x1, x2, . . . , xp) and (y1, y2, . . . , yp), are joined
by an edge whenever

∑p

i=1
|xi − yi| = 1. The motivation is that when the networks of

several service providers overlap geographically, they must use different channels for their
clients. The overall network can be modelled in a higher dimensional lattice.

We expect that by extending these problems of optimal integer graph labelling to
more general real number labellings, our developing theory will give more insight into the
original problems.
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