

Linyuan Lu

University of South Carolina

Collaborators: Jerrold R. Griggs, Weitian Li Travis Johnston

SIAM Conference on Discrete Mathematics Minneapolis, MN, June 16-19, 2014

Overview

Extremal problems on subsets (posets)

Turán problems on (non-uniform) hypergraphs

Part I: Posets

Notation:

- [n]: the set of first n positive integers.
- \mathcal{F} : a family of subsets of [n].

The size of \mathcal{F} is dented by $|\mathcal{F}|$.

Part I: Posets

Notation:

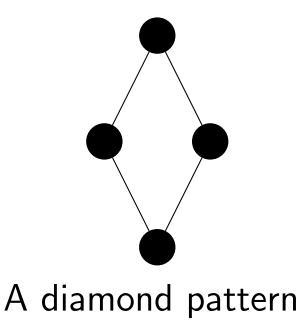
- [n]: the set of first n positive integers.
- \mathcal{F} : a family of subsets of [n].

The size of \mathcal{F} is dented by $|\mathcal{F}|$.

Example: $\mathcal{F} = \{\{\{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}\}$

$$\begin{array}{c} \{1, 2, 3\} \\ / \\ \\ \{1, 3\} \ \{1, 2\} \\ \\ \\ / \ / \\ \\ \{1\} \ \ \{2\} \end{array}$$

The inclusion relations of \mathcal{F} .



Sperner theorem [1928]: Let \mathcal{F} be an inclusion-free family of subsets of [n]. Then $|\mathcal{F}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$.

Sperner theorem [1928]: Let \mathcal{F} be an inclusion-free family of subsets of [n]. Then $|\mathcal{F}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$.

This result is tight.

Sperner theorem [1928]: Let \mathcal{F} be an inclusion-free family of subsets of [n]. Then $|\mathcal{F}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$.

This result is tight.

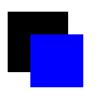
LYM inequality: $\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \leq 1$. It is discovered by Lubell, Yamamoto, Meshalkin, Bollobás independently.

Sperner theorem [1928]: Let \mathcal{F} be an inclusion-free family of subsets of [n]. Then $|\mathcal{F}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$.

This result is tight.

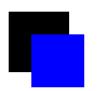
LYM inequality: $\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \leq 1$. It is discovered by Lubell, Yamamoto, Meshalkin, Bollobás independently.

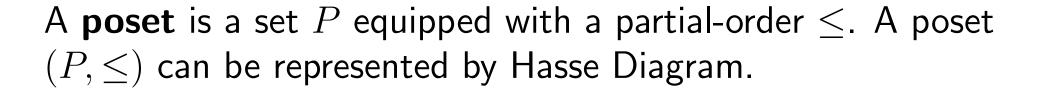
 $LYM \Rightarrow Sperner \ theorem$



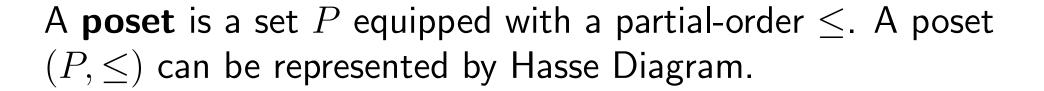
A **poset** is a set P equipped with a partial-order \leq . A poset (P, \leq) can be represented by Hasse Diagram.







A poset $P_1 = (P_1, \leq_1)$ is a *(weak) subposet* of a poset $P_2 = (P_2, \leq_2)$ if there exists an injection f from P_1 to P_2 such that $f(a) \leq_2 f(b)$ whenever $a \leq_1 b$.



A poset $P_1 = (P_1, \leq_1)$ is a *(weak) subposet* of a poset $P_2 = (P_2, \leq_2)$ if there exists an injection f from P_1 to P_2 such that $f(a) \leq_2 f(b)$ whenever $a \leq_1 b$.

The poset V is a (weak) sub-poset of the Chain P_3 .

Chain and anti-Chain

A chain is a subset of a poset such that any two elements in the subset are comparable.

Chain and anti-Chain

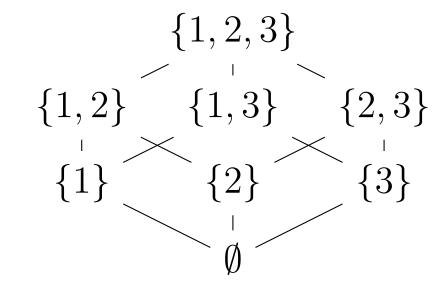
A chain is a subset of a poset such that any two elements in the subset are comparable.

An antichain is a subset of a poset such that any two elements in the subset are incomparable.

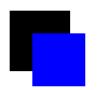
Chain and anti-Chain

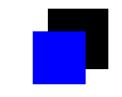
A chain is a subset of a poset such that any two elements in the subset are comparable.

An antichain is a subset of a poset such that any two elements in the subset are incomparable.

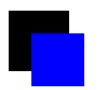


Chain: $\emptyset \subset \{1\} \subset \{1,2\} \subset \{1,2,3\}$. Anti-chain: $\{1,2\}, \{1,3\}, \{2,3\}$.



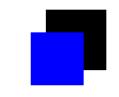


 $La(n, P) = max\{|\mathcal{F}|: \mathcal{F} \subset 2^{[n]}, \text{ contains no subposet } P\}.$



 $La(n, P) = max\{|\mathcal{F}|: \mathcal{F} \subset 2^{[n]}, \text{ contains no subposet } P\}.$

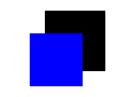
For $k \ge 1$, let $\mathcal{B}(n, k)$ be the middle k levels of \mathcal{B}_n and $\Sigma(n, k) = |\mathcal{B}(n, k)|$.



 $La(n, P) = max\{|\mathcal{F}|: \mathcal{F} \subset 2^{[n]}, \text{ contains no subposet } P\}.$

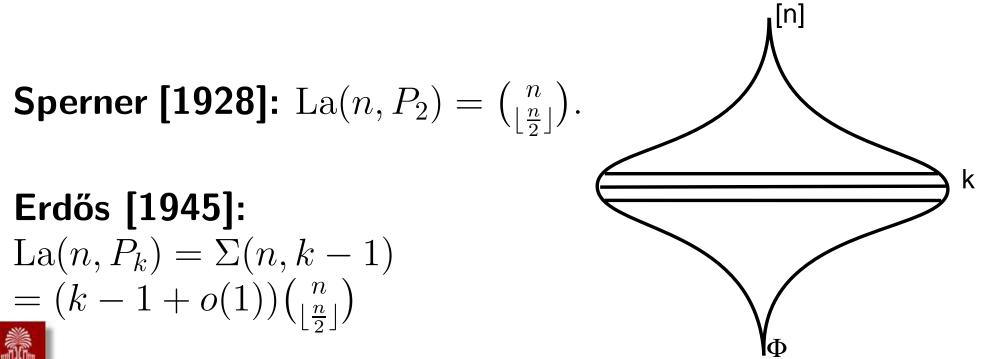
For $k \ge 1$, let $\mathcal{B}(n, k)$ be the middle k levels of \mathcal{B}_n and $\Sigma(n, k) = |\mathcal{B}(n, k)|$.

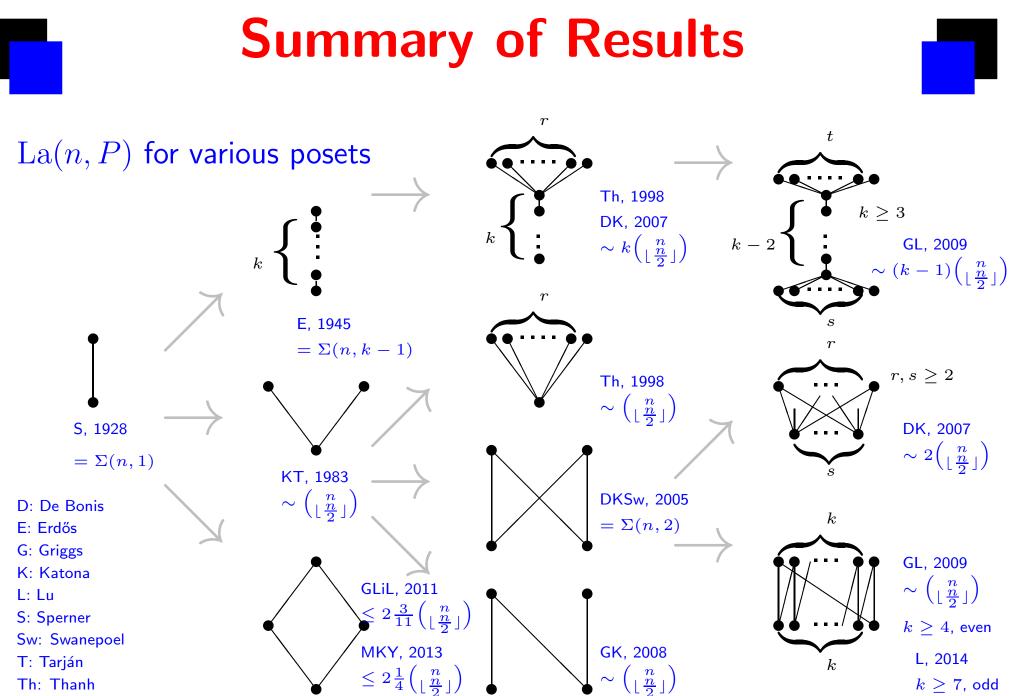
Sperner [1928]: La $(n, P_2) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$.



 $La(n, P) = max\{|\mathcal{F}|: \mathcal{F} \subset 2^{[n]}, \text{ contains no subposet } P\}.$

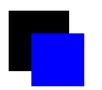
For $k \ge 1$, let $\mathcal{B}(n, k)$ be the middle k levels of \mathcal{B}_n and $\Sigma(n, k) = |\mathcal{B}(n, k)|$.



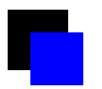


Courtesy of Wei-Tian Li

Th: Thanh MKY: Martin-Kramer-Young



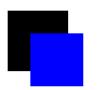
Conjecture [Griggs-Lu, 2009]: The limit $\pi(P) := \lim_{n \to \infty} \frac{\operatorname{La}(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ exists and is an integer.



Conjecture [Griggs-Lu, 2009]: The limit $\pi(P) := \lim_{n \to \infty} \frac{\operatorname{La}(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ exists and is an integer.

Given a poset P, let e(P) be the maximum integer m such that for all n, $\mathcal{B}(n,m)$ does not contain P as a subposet. We have

 $\pi(P) \ge e(P).$

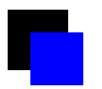


Conjecture [Griggs-Lu, 2009]: The limit $\pi(P) := \lim_{n \to \infty} \frac{\operatorname{La}(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ exists and is an integer.

Given a poset P, let e(P) be the maximum integer m such that for all n, $\mathcal{B}(n,m)$ does not contain P as a subposet. We have

$$\pi(P) \ge e(P).$$

Observation [Saks and Winkler]: All posets with $\pi(P)$ determined satisfied $\pi(P) = e(P)$.



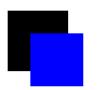
Conjecture [Griggs-Lu, 2009]: The limit $\pi(P) := \lim_{n \to \infty} \frac{\operatorname{La}(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ exists and is an integer.

Given a poset P, let e(P) be the maximum integer m such that for all n, $\mathcal{B}(n,m)$ does not contain P as a subposet. We have

$$\pi(P) \ge e(P).$$

Observation [Saks and Winkler]: All posets with $\pi(P)$ determined satisfied $\pi(P) = e(P)$.

Conjecture: $\pi(P) = e(P)$ for any poset P.



Conjecture [Griggs-Lu, 2009]: The limit $\pi(P) := \lim_{n \to \infty} \frac{\operatorname{La}(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ exists and is an integer.

Given a poset P, let e(P) be the maximum integer m such that for all n, $\mathcal{B}(n,m)$ does not contain P as a subposet. We have

$$\pi(P) \ge e(P).$$

Observation [Saks and Winkler]: All posets with $\pi(P)$ determined satisfied $\pi(P) = e(P)$.

Conjecture: $\pi(P) = e(P)$ for any poset P.

What about we restrict \mathcal{F} to e(P) + 1 consecutive levels?

Lubell function

The Lubell function $h_n: 2^{2^{[n]}} \to \mathbb{R}$ defined as

$$h_n(\mathcal{F}) = \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}}$$

for any $\mathcal{F} \subset 2^{[n]}$.

Lubell function

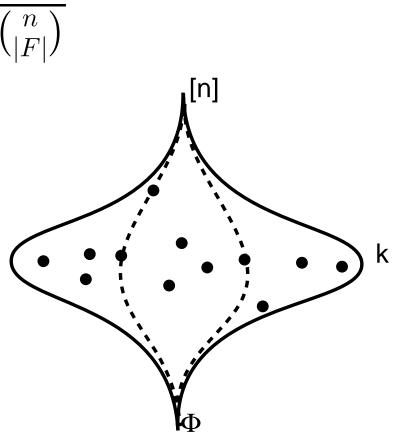
The Lubell function $h_n: 2^{2^{[n]}} \to \mathbb{R}$ defined as

$$h_n(\mathcal{F}) = \sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}}$$

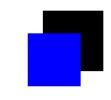
for any $\mathcal{F} \subset 2^{[n]}$.

Let X be the number of elements in \mathcal{F} hit by a random full chain. Then

$$h_n(\mathcal{F}) = \mathrm{E}(X).$$



Uniform *L*-bounded posets



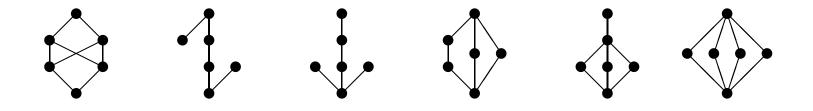
A poset P is called a **uniformly L-bounded** poset if for all n, all P-free families $\mathcal{F} \subset 2^{[n]}$ satisfying $h_n(\mathcal{F}) \leq e(P)$.

Uniform *L***-bounded posets**

uniformly L-bounded poset if for all

A poset P is called a **uniformly L-bounded** poset if for all n, all P-free families $\mathcal{F} \subset 2^{[n]}$ satisfying $h_n(\mathcal{F}) \leq e(P)$.

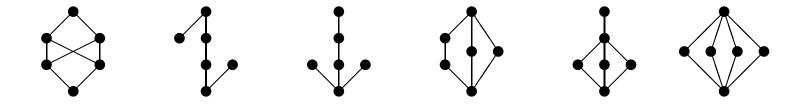
Example: Various uniformly L-bounded posets:



Uniform *L*-**bounded posets**

A poset P is called a **uniformly L-bounded** poset if for all n, all P-free families $\mathcal{F} \subset 2^{[n]}$ satisfying $h_n(\mathcal{F}) \leq e(P)$.

Example: Various uniformly L-bounded posets:



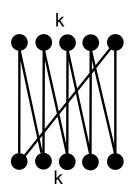
Lemma [Griggs, Li, and Lu, 2011]: If P is a uniformly L-bounded poset P, then the maximum P-free family must be $\mathcal{B}(n, e(P))$. In particular,

$$La(n, P) = \Sigma(n, e(P))$$
 for all n .

Bukh [2009]: For any height-k tree T, $\pi(T) = k - 1$.

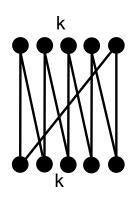
Bukh [2009]: For any height-k tree T, $\pi(T) = k - 1$.

For $t \geq 2$, crown \mathcal{O}_{2t} is the height-2 poset whose Hasse diagram is cycle C_{2t} .



Bukh [2009]: For any height-k tree T, $\pi(T) = k - 1$.

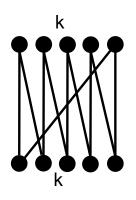
For $t \geq 2$, crown \mathcal{O}_{2t} is the height-2 poset whose Hasse diagram is cycle C_{2t} .



De Bonis-Katona-Swanepoel [2005]: $\pi(\mathcal{O}_4) = 2$.

Bukh [2009]: For any height-k tree T, $\pi(T) = k - 1$.

For $t \geq 2$, crown \mathcal{O}_{2t} is the height-2 poset whose Hasse diagram is cycle C_{2t} .



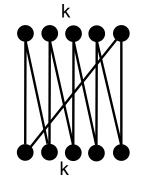
De Bonis-Katona-Swanepoel [2005]: $\pi(\mathcal{O}_4) = 2.$ Griggs-Lu [2009]: For even $t \ge 4$, $\pi(\mathcal{O}_{2t}) = 1.$

Bukh [2009]: For any height-k tree T, $\pi(T) = k - 1$.

For $t \geq 2$, crown \mathcal{O}_{2t} is the height-2 poset whose Hasse diagram is cycle C_{2t} .

- **De Bonis-Katona-Swanepoel** [2005]: $\pi(\mathcal{O}_4) = 2$.
- Griggs-Lu [2009]: For even $t \ge 4$, $\pi(\mathcal{O}_{2t}) = 1$.
- Lu [2014]: For odd $t \ge 7$, $\pi(\mathcal{O}_{2t}) = 1$.

 $\pi(\mathcal{O}_6)$ and $\pi(\mathcal{O}_{10})$ are still open.



Diamond \mathcal{D}_2

• Easy bound $\pi(\mathcal{D}_2) \leq 2.5$.

Diamond \mathcal{D}_2

- Easy bound $\pi(\mathcal{D}_2) \leq 2.5$.
- Griggs-Li-Lu: $\pi(\mathcal{D}_2) \leq 2.296$.

- Easy bound $\pi(\mathcal{D}_2) \leq 2.5$.
- Griggs-Li-Lu: $\pi(\mathcal{D}_2) \leq 2.296$.
- Axenovich-Manske-Martin [2011]: $\pi(\mathcal{D}_2) \leq 2.283261.$

- Easy bound $\pi(\mathcal{D}_2) \leq 2.5$.
- Griggs-Li-Lu: $\pi(\mathcal{D}_2) \leq 2.296$.
- Axenovich-Manske-Martin [2011]: $\pi(\mathcal{D}_2) \leq 2.283261.$
- Griggs-Li-Lu [2011]: $\pi(\mathcal{D}_2) \le 2\frac{3}{11} = 2.\overline{27}$.

- Easy bound $\pi(\mathcal{D}_2) \leq 2.5$.
- Griggs-Li-Lu: $\pi(\mathcal{D}_2) \leq 2.296$.
- Axenovich-Manske-Martin [2011]: $\pi(\mathcal{D}_2) \leq 2.283261.$
- Griggs-Li-Lu [2011]: $\pi(\mathcal{D}_2) \le 2\frac{3}{11} = 2.\overline{27}$.
- Martin-Kramer-Young [2013]: $\pi(\mathcal{D}_2) \leq 2.25$.

- Easy bound $\pi(\mathcal{D}_2) \leq 2.5$.
- Griggs-Li-Lu: $\pi(\mathcal{D}_2) \leq 2.296$.
- Axenovich-Manske-Martin [2011]: $\pi(\mathcal{D}_2) \leq 2.283261.$
- **Griggs-Li-Lu [2011]:** $\pi(\mathcal{D}_2) \le 2\frac{3}{11} = 2.\overline{27}.$
- Martin-Kramer-Young [2013]: $\pi(\mathcal{D}_2) \leq 2.25$.

If \mathcal{F} is contained in three consecutive layers, then the upper bound can be further improved:

- Axenovich-Manske-Martin [2009]: $\pi^*(\mathcal{D}_2) \leq 2.2071$.
- Manske-Shen [2012]: $\pi^*(\mathcal{D}_2) \le 2.1547$.
- Balogh-Hu-Lidický-Liu [2014]: $\pi^*(\mathcal{D}_2) \le 2.15121$.

A weaker conjecture

A consective-level version: For any poset P, let

 $\operatorname{La}_{c}(n, P) = \max\{|\mathcal{F}| \colon \mathcal{F} \subset \Sigma(n, e(P) + 1), P \operatorname{-free}\}.$

A weaker conjecture

A consective-level version: For any poset P, let

 $\operatorname{La}_{c}(n, P) = \max\{|\mathcal{F}| \colon \mathcal{F} \subset \Sigma(n, e(P) + 1), P \operatorname{-free}\}.$

Is the limit
$$\pi_c(P) := \lim_{n \to \infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$$
 exists?

A weaker conjecture

A consective-level version: For any poset P, let

 $\operatorname{La}_{c}(n, P) = \max\{|\mathcal{F}| \colon \mathcal{F} \subset \Sigma(n, e(P) + 1), P \operatorname{-free}\}.$

■ Is the limit $\pi_c(P) := \lim_{n \to \infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ exists? ■ Is $\pi_c(P) = e(P)$?

Part II: hypergraphs

Hypergraph H = (V, E):

- V: the vertex set.
- $E \subset 2^V$: the edge set.

Part II: hypergraphs

Hypergraph H = (V, E):

- V: the vertex set.
- $E \subset 2^V$: the edge set.

The set of edge types: $R(H) := \{ |F| : F \in E \}.$

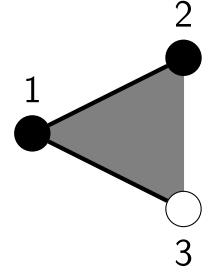
Part II: hypergraphs

Hypergraph
$$H = (V, E)$$
:

- V: the vertex set.
- $E \subset 2^V$: the edge set.

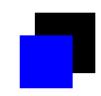
The set of edge types: $R(H) := \{ |F| : F \in E \}.$

Example:
$$H = (V, E)$$
 where
 $V = \{1, 2, 3\}$
 $E = \{\{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}.$
 $R(H) = \{1, 2, 3\}.$



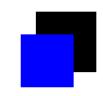
Let H be a hypergraph.

 $\blacksquare \quad R(H) = \{2\}: H \text{ is a graph.}$



Let H be a hypergraph.

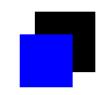
- $\blacksquare \quad R(H) = \{2\}: H \text{ is a graph.}$
- $R(H) = \{r\}$: *H* is an *r*-graph (*r*-uniform hypergraph).



Let H be a hypergraph.

- $\blacksquare \quad R(H) = \{2\}: H \text{ is a graph.}$
- $R(H) = \{r\}$: *H* is an *r*-graph (*r*-uniform hypergraph).
- $R(H) \subseteq R$: *H* is an *R*-graph (*R*-type hypergraph).

A good question for graphs should be asked for r-graphs, and then R-graphs.



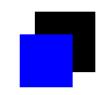
Let H be a hypergraph.

- $\blacksquare \quad R(H) = \{2\}: H \text{ is a graph.}$
- $R(H) = \{r\}$: *H* is an *r*-graph (*r*-uniform hypergraph).
- $R(H) \subseteq R$: *H* is an *R*-graph (*R*-type hypergraph).

A good question for graphs should be asked for r-graphs, and then R-graphs.

Guideline: A good generalization

should offer an insightful view of original problem.



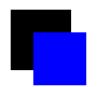
Let H be a hypergraph.

- $\blacksquare \quad R(H) = \{2\}: H \text{ is a graph.}$
- $R(H) = \{r\}$: *H* is an *r*-graph (*r*-uniform hypergraph).
- $R(H) \subseteq R$: *H* is an *R*-graph (*R*-type hypergraph).

A good question for graphs should be asked for r-graphs, and then R-graphs.

Guideline: A good generalization

- should offer an insightful view of original problem.
- should be useful for problems in other areas.



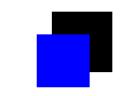
Edge density

The edge density for r-graph H is $\frac{|E(H)|}{\binom{n}{r}}$.

Edge density

- The edge density for r-graph H is $\frac{|E(H))|}{\binom{n}{r}}$.
- The edge density for R-graph H is defined as

$$h_n(H) := \sum_{F \in E(H)} \frac{1}{\binom{n}{|F|}}$$



The edge density for *r*-graph *H* is $\frac{|E(H)|}{\binom{n}{r}}$.

The edge density for R-graph H is defined as

$$h_n(H) := \sum_{F \in E(H)} \frac{1}{\binom{n}{|F|}}.$$

This is the **Lubell function** widely used in extremal poset problems.

Edge density

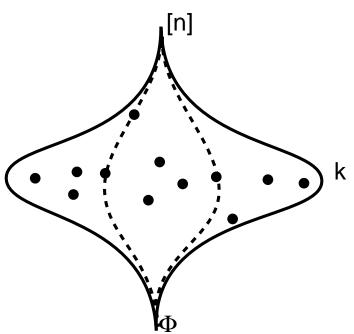
The edge density for *r*-graph *H* is $\frac{|E(H)|}{\binom{n}{r}}$.

The edge density for R-graph H is defined as

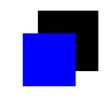
$$h_n(H) := \sum_{F \in E(H)} \frac{1}{\binom{n}{|F|}}.$$

This is the **Lubell function** widely used in extremal poset problems.

It is the expected number of edges hit by a random full chain.

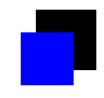


An *R*-graph H_1 is a subgraph of another *R*-graph H_2 if there exists an injective map $f: V(H_1) \to V(H_2)$ keeping edges.



An *R*-graph H_1 is a subgraph of another *R*-graph H_2 if there exists an injective map $f: V(H_1) \to V(H_2)$ keeping edges.

Given a family \mathcal{H} of R-graphs, an R-graph G is H-free if G contains no graph in \mathcal{H} as subgraph.

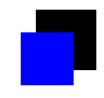


An *R*-graph H_1 is a subgraph of another *R*-graph H_2 if there exists an injective map $f: V(H_1) \to V(H_2)$ keeping edges.

Given a family \mathcal{H} of R-graphs, an R-graph G is H-free if G contains no graph in \mathcal{H} as subgraph.

Turán problems: Determine the maximum edge density among all \mathcal{H} -free R-graphs G_n :

$$\pi_n(\mathcal{H}) = \max\{h_n(G_n) \colon G_n \text{ is } \mathcal{H}\text{-}\mathsf{free.}\}.$$



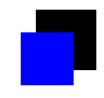
An *R*-graph H_1 is a subgraph of another *R*-graph H_2 if there exists an injective map $f: V(H_1) \to V(H_2)$ keeping edges.

Given a family \mathcal{H} of R-graphs, an R-graph G is H-free if G contains no graph in \mathcal{H} as subgraph.

Turán problems: Determine the maximum edge density among all \mathcal{H} -free R-graphs G_n :

$$\pi_n(\mathcal{H}) = \max\{h_n(G_n) \colon G_n \text{ is } \mathcal{H}\text{-}\mathsf{free.}\}.$$

Turán density: $\pi(\mathcal{H}) := \lim_{n \to \infty} \pi_n(\mathcal{H}).$



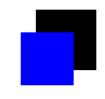
An *R*-graph H_1 is a subgraph of another *R*-graph H_2 if there exists an injective map $f: V(H_1) \to V(H_2)$ keeping edges.

Given a family \mathcal{H} of R-graphs, an R-graph G is H-free if G contains no graph in \mathcal{H} as subgraph.

Turán problems: Determine the maximum edge density among all \mathcal{H} -free R-graphs G_n :

 $\pi_n(\mathcal{H}) = \max\{h_n(G_n) \colon G_n \text{ is } \mathcal{H}\text{-free.}\}.$

Turán density: $\pi(\mathcal{H}) := \lim_{n \to \infty} \pi_n(\mathcal{H}).$ **Lemma [Johnston-Lu 2012+]:** $\pi(\mathcal{H})$ is well-defined.



An *R*-graph H_1 is a subgraph of another *R*-graph H_2 if there exists an injective map $f: V(H_1) \to V(H_2)$ keeping edges.

Given a family \mathcal{H} of R-graphs, an R-graph G is H-free if G contains no graph in \mathcal{H} as subgraph.

Turán problems: Determine the maximum edge density among all \mathcal{H} -free R-graphs G_n :

$$\pi_n(\mathcal{H}) = \max\{h_n(G_n) \colon G_n \text{ is } \mathcal{H}\text{-}\mathsf{free.}\}.$$

Turán density: $\pi(\mathcal{H}) := \lim_{n \to \infty} \pi_n(\mathcal{H}).$

Lemma [Johnston-Lu 2012+]: $\pi(\mathcal{H})$ is well-defined. It generalizes **Katona-Nemetz-Simonovits**' result for *r*-graphs.

For any family of R-graphs \mathcal{H} , we have

- If $\mathcal{H} = \{H\}$, then $|R(H)| 1 \le \pi(H) \le |R(H)|$.

For any family of R-graphs \mathcal{H} , we have

- $\quad \quad 0 \le \pi(\mathcal{H}) \le |R|.$
- If $\mathcal{H} = \{H\}$, then $|R(H)| 1 \le \pi(H) \le |R(H)|$.

Examples:

$$\pi\left(\bigcup_{O}\right) = 1.$$

For any family of R-graphs \mathcal{H} , we have

- $\quad \quad 0 \le \pi(\mathcal{H}) \le |R|.$
- If $\mathcal{H} = \{H\}$, then $|R(H)| 1 \le \pi(H) \le |R(H)|$.

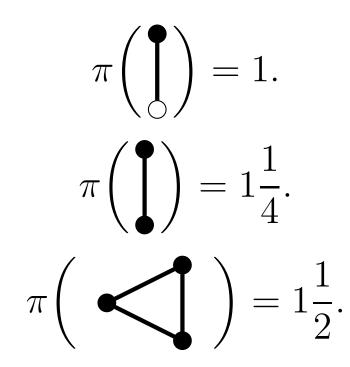
Examples:

$$\pi\left(\bigcup_{\bigcirc} \right) = 1.$$
$$\pi\left(\bigcup_{\bigcirc} \right) = 1\frac{1}{4}.$$

For any family of R-graphs \mathcal{H} , we have

- $\quad \quad 0 \le \pi(\mathcal{H}) \le |R|.$
- If $\mathcal{H} = \{H\}$, then $|R(H)| 1 \le \pi(H) \le |R(H)|$.

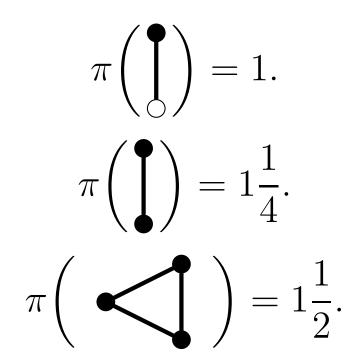
Examples:

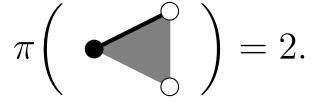


For any family of R-graphs \mathcal{H} , we have

- $\quad \quad 0 \le \pi(\mathcal{H}) \le |R|.$
- If $\mathcal{H} = \{H\}$, then $|R(H)| 1 \le \pi(H) \le |R(H)|$.

Examples:

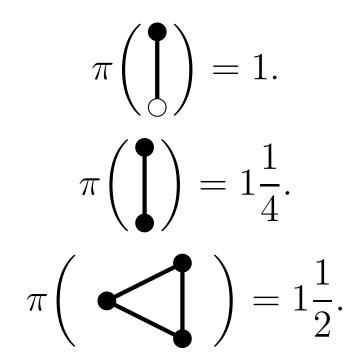


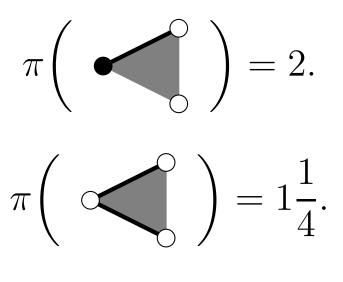


For any family of $R\text{-}\mathsf{graphs}\ \mathcal{H},$ we have

- $\quad \quad 0 \le \pi(\mathcal{H}) \le |R|.$
- If $\mathcal{H} = \{H\}$, then $|R(H)| 1 \le \pi(H) \le |R(H)|$.

Examples:

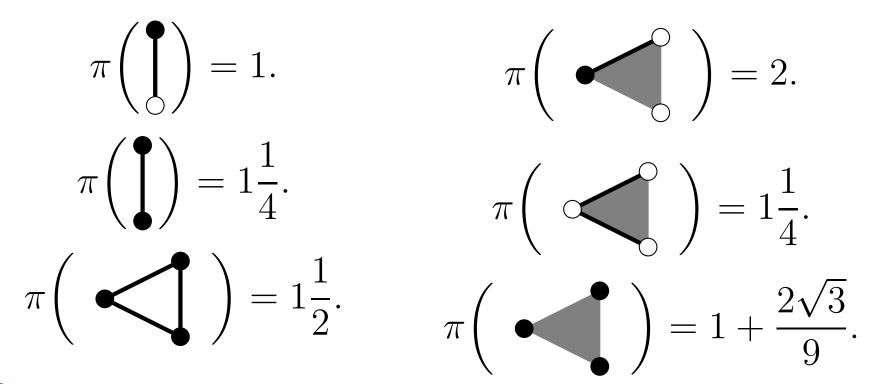


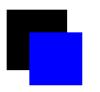


For any family of R-graphs \mathcal{H} , we have

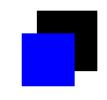
- $\quad \quad 0 \le \pi(\mathcal{H}) \le |R|.$
- If $\mathcal{H} = \{H\}$, then $|R(H)| 1 \le \pi(H) \le |R(H)|$.

Examples:





Supersaturation



Supersaturation Lemma for *r*-graphs: For any *r*-graph H and a > 0 there are b, $n_0 > 0$ so that if G is a *r*-graph on $n > n_0$ vertices with $|E(G)| > (\pi(H) + a) \binom{n}{r}$ then G contains at least $b\binom{n}{|V(H)|}$ copies of H.

Supersaturation

Supersaturation Lemma for *r*-graphs: For any *r*-graph H and a > 0 there are b, $n_0 > 0$ so that if G is a *r*-graph on $n > n_0$ vertices with $|E(G)| > (\pi(H) + a) {n \choose r}$ then G contains at least $b {n \choose |V(H)|}$ copies of H.

Supersaturation Lemma for *R*-graphs: For any *R*-graph *H* and a > 0 there are *b*, $n_0 > 0$ so that if *G* is an *R*-graph on $n > n_0$ vertices and $h_n(G) > \pi(H) + a$ then *G* contains at least $b\binom{n}{v(H)}$ copies of *H*.

Blowup for *R*-graphs

For any hypergraph H_n and positive integers s_1, s_2, \ldots, s_n , the blowup of H is a new hypergraph (V, E), denoted by $H_n(s_1, s_2, \ldots, s_n)$, satisfying

1.
$$V := \bigsqcup_{i=1}^{n} V_i$$
, where $|V_i| = s_i$.
2. $E = \bigcup_{F \in \mathcal{E}(H)} \prod_{i \in F} V_i$.

H

When $s_1 = s_2 = \cdots = s_n = s$, we simply write it as H(s). $v_{1,1}$ v_2 v_3 $v_{1,2}$ H(2,1,1)

Blowup for *R*-graphs

For any hypergraph H_n and positive integers s_1, s_2, \ldots, s_n , the blowup of H is a new hypergraph (V, E), denoted by $H_n(s_1, s_2, \ldots, s_n)$, satisfying

1.
$$V := \bigsqcup_{i=1}^{n} V_i$$
, where $|V_i| = s_i$.
2. $E = \bigcup_{F \in \mathcal{E}(H)} \prod_{i \in F} V_i$.

When $s_1 = s_2 = \cdots = s_n = s$, we simply write it as H(s). 1 $v_{1,1}$ v_2 v_3

 $v_{1,2}$ H(2,1,1)

Blowup Lemma:
$$\pi(H(s)) = \pi(H)$$
.

H

Blowup for *R*-graphs

For any hypergraph H_n and positive integers s_1, s_2, \ldots, s_n , the blowup of H is a new hypergraph (V, E), denoted by $H_n(s_1, s_2, \ldots, s_n)$, satisfying

1.
$$V := \bigsqcup_{i=1}^{n} V_i$$
, where $|V_i| = s_i$.
2. $E = \bigcup_{F \in \mathcal{E}(H)} \prod_{i \in F} V_i$.

H

When $s_1 = s_2 = \cdots = s_n = s$, we simply write it as H(s). 1 $v_{1,1}$ v_2 v_3

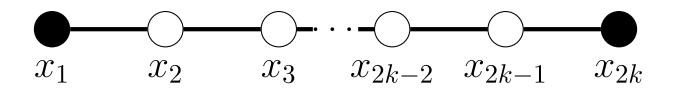
Blowup Lemma:
$$\pi(H(s)) = \pi(H)$$
.
Corollary: If $H_1 \subset H_2 \subset H_1(s)$, then $\pi(H_2) = \pi(H_1)$.

 $v_{1,2}$ H(2,1,1)

Theorem [Johnston-Lu 2012+]: For any $\{1, 2\}$ -graph H, we have

$$\pi(H) = \begin{cases} 2 - \frac{1}{\chi(H^2) - 1} & \text{if } \chi(H^2) > 2; \\ \frac{5}{4} & \text{if } \chi(H^2) \text{ and } \bar{P}_2 \subseteq H; \\ \frac{9}{8} & \text{if } H^2 \text{ is bipartite and} \\ \frac{1}{P_{2k} \not\subseteq H} \geq 2; \\ 1 & \text{if } H^2 \text{ is bipartite and} \\ \bar{P}_{2k} \not\subseteq H \text{ for any } k \geq 1. \end{cases}$$

Here H^2 is the level-2 subgraph of H and \overline{P}_{2k} is the following closed even path.



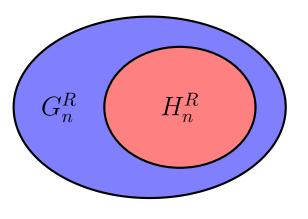
Jump problem of $R\mbox{-}{\rm graphs}$

A value $\alpha \in [0, |R|)$ is a **jump** for R if $\exists c > 0 \forall \epsilon > 0 \forall t \ge \max\{r : r \in R\}$ $\exists n_0 \forall G_n^R$ with $n \ge n_0$ and $h_n(G_n^R) \ge \alpha + \epsilon$ implies $\exists H_t^R \subset G_n^R$ with $h_t(H_t^R) \ge \alpha + c$.

 G_n^R

Jump problem of $R\mbox{-}{\rm graphs}$

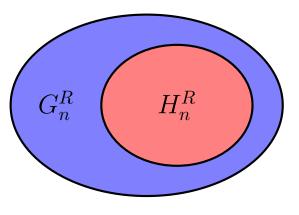
A value $\alpha \in [0, |R|)$ is a **jump** for R if $\exists c > 0 \forall \epsilon > 0 \forall t \ge \max\{r : r \in R\}$ $\exists n_0 \forall G_n^R$ with $n \ge n_0$ and $h_n(G_n^R) \ge \alpha + \epsilon$ implies $\exists H_t^R \subset G_n^R$ with $h_t(H_t^R) \ge \alpha + c$.



Fact : Every $\alpha \in [0, 1)$ is a jump for 2 (graphs).

Jump problem of R-graphs

A value $\alpha \in [0, |R|)$ is a **jump** for R if $\exists c > 0 \forall \epsilon > 0 \forall t \ge \max\{r : r \in R\}$ $\exists n_0 \forall G_n^R$ with $n \ge n_0$ and $h_n(G_n^R) \ge \alpha + \epsilon$ implies $\exists H_t^R \subset G_n^R$ with $h_t(H_t^R) \ge \alpha + c$.

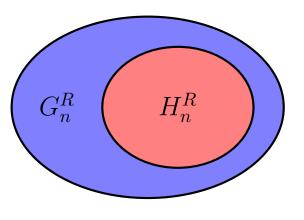


Fact : Every $\alpha \in [0, 1)$ is a jump for 2 (graphs).

Let k be an integer so that $\alpha \in [\frac{k-1}{k}, \frac{k}{k+1})$. Then by Erdős-Simonovits-Stone Theorem, every graph G_n with density $\alpha + \epsilon$ contains a subgraph $K_{k+1}(s)$, which has density $\geq \frac{k}{k+1}$.

Jump problem of R-graphs

A value $\alpha \in [0, |R|)$ is a **jump** for R if $\exists c > 0 \forall \epsilon > 0 \forall t \ge \max\{r : r \in R\}$ $\exists n_0 \forall G_n^R$ with $n \ge n_0$ and $h_n(G_n^R) \ge \alpha + \epsilon$ implies $\exists H_t^R \subset G_n^R$ with $h_t(H_t^R) \ge \alpha + c$.



Fact : Every $\alpha \in [0, 1)$ is a jump for 2 (graphs).

Let k be an integer so that $\alpha \in [\frac{k-1}{k}, \frac{k}{k+1})$. Then by Erdős-Simonovits-Stone Theorem, every graph G_n with density $\alpha + \epsilon$ contains a subgraph $K_{k+1}(s)$, which has density $\geq \frac{k}{k+1}$. Erdős asked "Do hypergraphs jump?"

Erdős [1971]: Every α in $[0, \frac{r!}{r^r})$ is a jump for $r \ge 3$.

■ Erdős [1971]: Every α in $[0, \frac{r!}{r^r})$ is a jump for $r \ge 3$. ■ Frankl-Rödl [1984]: For every $r \ge 3$ and l > 2r, $1 - \frac{1}{l^{r-1}}$ is not a jump for r.

- **Erdős [1971]:** Every α in $[0, \frac{r!}{r^r})$ is a jump for $r \ge 3$.
- Frankl-Rödl [1984]: For every $r \ge 3$ and l > 2r, $1 \frac{1}{l^{r-1}}$ is not a jump for r.
- Frankl-Peng-Rödl-Talbot [2007]: $\frac{5}{9}$ is a non-jump for 3-graph. $(\frac{5}{2}\frac{r!}{r^r})$ is a non-jump for every $r \ge 3$.)

- **Erdős [1971]:** Every α in $[0, \frac{r!}{r^r})$ is a jump for $r \ge 3$.
- Frankl-Rödl [1984]: For every $r \ge 3$ and l > 2r, $1 \frac{1}{l^{r-1}}$ is not a jump for r.
- Frankl-Peng-Rödl-Talbot [2007]: $\frac{5}{9}$ is a non-jump for 3-graph. $(\frac{5}{2}\frac{r!}{r^r})$ is a non-jump for every $r \ge 3$.)
- Peng [2008]: Let $r \ge p \ge 3$ and $l \ge 2$ be integers. If $\frac{p^p}{r^r} \le \frac{l^p}{(l+r-p)^r}$, then $(1 \frac{1}{l^{p-1}})\frac{r!}{p!}\frac{l^p}{(l+r-p)^r}$ is a non-jump for r.

- **Erdős [1971]:** Every α in $[0, \frac{r!}{r^r})$ is a jump for $r \ge 3$.
- Frankl-Rödl [1984]: For every $r \ge 3$ and l > 2r, $1 \frac{1}{l^{r-1}}$ is not a jump for r.
- Frankl-Peng-Rödl-Talbot [2007]: $\frac{5}{9}$ is a non-jump for 3-graph. $(\frac{5}{2}\frac{r!}{r^r})$ is a non-jump for every $r \ge 3$.)
 - **Peng [2008]:** Let $r \ge p \ge 3$ and $l \ge 2$ be integers. If $\frac{p^p}{r^r} \le \frac{l^p}{(l+r-p)^r}$, then $(1 \frac{1}{l^{p-1}})\frac{r!}{p!}\frac{l^p}{(l+r-p)^r}$ is a non-jump for r.
 - **Baber-Talbot [2011]** Every α in the interval [0.2299, 0.2316) and $[0.2871, \frac{8}{27})$ is a jump for 3.

Jump for r-graphs

- **Erdős [1971]:** Every α in $[0, \frac{r!}{r^r})$ is a jump for $r \ge 3$.
- Frankl-Rödl [1984]: For every $r \ge 3$ and l > 2r, $1 \frac{1}{l^{r-1}}$ is not a jump for r.
- Frankl-Peng-Rödl-Talbot [2007]: $\frac{5}{9}$ is a non-jump for 3-graph. $(\frac{5}{2}\frac{r!}{r^r})$ is a non-jump for every $r \ge 3$.)
 - **Peng [2008]:** Let $r \ge p \ge 3$ and $l \ge 2$ be integers. If $\frac{p^p}{r^r} \le \frac{l^p}{(l+r-p)^r}$, then $(1 \frac{1}{l^{p-1}})\frac{r!}{p!}\frac{l^p}{(l+r-p)^r}$ is a non-jump for r.
- **Baber-Talbot [2011]** Every α in the interval [0.2299, 0.2316) and $[0.2871, \frac{8}{27})$ is a jump for 3.
- Problem (Erdős, \$500): Prove or disprove that ²/₉ is a jump for 3.

Strong jump and weak jump

A value $\alpha \in (0, |R|)$ is a **strong jump** for R if $\exists c > 0 \forall t \ge \max\{r : r \in R\} \exists n_0$ $\forall G_n^R$ with $n \ge n_0$ and $h_n(G_n^R) \ge \alpha - c$ implies $\exists H_t^R \subset G_n^R$ with $h_t(H_t^R) \ge \alpha + c$.

Extremal problems on posets and hypergraphs

 G_n^R

Strong jump and weak jump

A value $\alpha \in (0, |R|)$ is a strong jump for R if $\exists c > 0 \forall t \ge \max\{r : r \in R\} \exists n_0$ $\forall G_n^R$ with $n \ge n_0$ and $h_n(G_n^R) \ge \alpha - c$ implies $\exists H_t^R \subset G_n^R$ with $h_t(H_t^R) \ge \alpha + c$.

■ Jump: $\exists c > 0 \ \forall \epsilon > 0$ $\alpha + \epsilon \longrightarrow \alpha + c$. ■ Strong jump: $\exists c > 0$ $\alpha - c \longrightarrow \alpha + c$.

 G_n^R

Strong jump and weak jump

A value $\alpha \in (0, |R|)$ is a strong jump for R if $\exists c > 0 \forall t \ge \max\{r : r \in R\} \exists n_0$ $\forall G_n^R$ with $n \ge n_0$ and $h_n(G_n^R) \ge \alpha - c$ implies $\exists H_t^R \subset G_n^R$ with $h_t(H_t^R) \ge \alpha + c$.

- $\blacksquare \quad \mathsf{Jump:} \ \exists c > 0 \ \forall \epsilon > 0 \quad \alpha + \epsilon \longrightarrow \alpha + c.$
- Strong jump: $\exists c > 0 \quad \alpha c \longrightarrow \alpha + c$. (Not same as Peng-Zhao [2008]'s definition: $\exists c > 0 \quad \alpha \longrightarrow \alpha + c$!)

Properties:

- Strong jump implies jump.
- The set of all strong jumps is open.
- If α_i is not a strong jump for (disjoint) R_i , then $\sum_i \alpha_i$ is not a strong jump for $\Box R_i$.

lpha is a **weak jump** if it is a jump but not strong jump.

Characterization of non-jump

A property \mathcal{P} is called **hereditary** if it is closed under taking induced subgraphs. $\pi(\mathcal{P}) := \lim_{n \to \infty} \max_{G \in \mathcal{P}_n} h_n(G)$ exists.

Characterization of non-jump

A property \mathcal{P} is called **hereditary** if it is closed under taking induced subgraphs. $\pi(\mathcal{P}) := \lim_{n \to \infty} \max_{G \in \mathcal{P}_n} h_n(G)$ exists.

Theorem [Johnston-Lu 2014+]:

1. A value $\alpha \in [0, |R|]$ is not a strong jump for R iff there exists a hereditary property \mathcal{P} of R-graphs such that $\pi(\mathcal{P}) = \alpha$.

Characterization of non-jump

A property \mathcal{P} is called **hereditary** if it is closed under taking induced subgraphs. $\pi(\mathcal{P}) := \lim_{n \to \infty} \max_{G \in \mathcal{P}_n} h_n(G)$ exists.

Theorem [Johnston-Lu 2014+]:

- 1. A value $\alpha \in [0, |R|]$ is not a strong jump for R iff there exists a hereditary property \mathcal{P} of R-graphs such that $\pi(\mathcal{P}) = \alpha$.
- 2. A value $\alpha \in [0, |R|)$ is not a jump for R iff there exists a sequence of values $\{\alpha_i\}$ satisfying
 - (a) All α_i are not strong jumps for R.
 - (b) The sequence $\{\alpha_i\}$ decreases and goes to the limit α .

Strong jump for $\{1, 2\}$

Theorem [Johnston-Lu 2013+]: The non-strong-jumps for $\{1, 2\}$ are precisely $0, \frac{1}{2}, \frac{2}{3}, \dots, \frac{k}{k+1}, \dots, 1, \frac{9}{8}, \frac{7}{6}, \dots, 1 + \frac{k}{4(k+1)}, \dots, \frac{5}{4}, \frac{3}{2}, \frac{5}{3}, \dots, \frac{2k+1}{k+1}, \dots, 2.$

All these values are Turán densities. For $k \ge 1$,

$$\frac{k}{k+1} = \pi(K_{k+1}^2), \qquad \frac{2k+1}{k+1} = \pi(K_{k+1}^{\{1,2\}})$$
$$1 + \frac{k}{4(k+1)} = \pi(\{K_2^{\{1,2\}}, K_{k+2}^{*2}\}).$$

Strong jump for $\{1, 2\}$

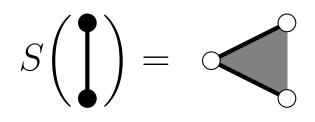
Theorem [Johnston-Lu 2013+]: The non-strong-jumps for $\{1, 2\}$ are precisely $0, \frac{1}{2}, \frac{2}{3}, \dots, \frac{k}{k+1}, \dots, 1, \frac{9}{8}, \frac{7}{6}, \dots, 1 + \frac{k}{4(k+1)}, \dots, \frac{5}{4}, \frac{3}{2}, \frac{5}{3}, \dots, \frac{2k+1}{k+1}, \dots, 2.$

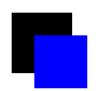
All these values are Turán densities. For $k \ge 1$,

$$\frac{k}{k+1} = \pi(K_{k+1}^2), \qquad \frac{2k+1}{k+1} = \pi(K_{k+1}^{\{1,2\}})$$
$$1 + \frac{k}{4(k+1)} = \pi(\{K_2^{\{1,2\}}, K_{k+2}^{*2}\}).$$

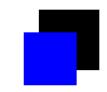
For any finite family \mathcal{H} of $\{1,2\}$ -graphs, $\pi(\mathcal{H})$ must be one of the values listed above.

• $V(S(H)) = V(H) \bigcup \{*\},$ • $E(S(H)) = \{F \bigcup \{*\} : F \in E(H)\}.$



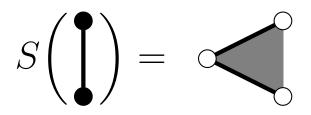


Suspension



Suspension S(H):

• $V(S(H)) = V(H) \bigcup \{*\},$ • $E(S(H)) = \{F \bigcup \{*\} : F \in E(H)\}.$

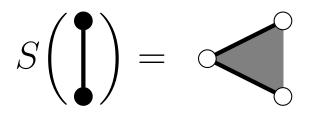


Lemma [Johnston-Lu 2012+]: For any hypergraph H we have that $\pi(S(H)) \leq \pi(H)$.

Suspension

Suspension S(H):

• $V(S(H)) = V(H) \bigcup \{*\},$ • $E(S(H)) = \{F \bigcup \{*\} : F \in E(H)\}.$



Lemma [Johnston-Lu 2012+]: For any hypergraph H we have that $\pi(S(H)) \leq \pi(H)$.

Corollary: Let $S^t(H) := S(S(\cdots S(H)))$: iterating t times. Then the limit $\lim_{t\to\infty} \pi(S^t(H))$ always exists.

Theorem [Johnston-Lu 2014+]: For any poset P, limit $\pi_c(P) := \lim_{n \to \infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ exists.

Theorem [Johnston-Lu 2014+]: For any poset P, limit $\pi_c(P) := \lim_{n \to \infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ exists.

Sketch proof:

• There is a hypergraph H (of (e(P) + 1)-level) representing P.

Theorem [Johnston-Lu 2014+]: For any poset P, limit $\pi_c(P) := \lim_{n \to \infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ exists.

Sketch proof:

- There is a hypergraph H (of (e(P) + 1)-level) representing P.
- Whe have $\limsup_{n\to\infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} \leq \lim_{t\to\infty} \pi(S^t(H)).$

Theorem [Johnston-Lu 2014+]: For any poset P, limit $\pi_c(P) := \lim_{n \to \infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ exists.

Sketch proof:

• There is a hypergraph H (of (e(P) + 1)-level) representing P.

• Whe have
$$\limsup_{n \to \infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} \leq \lim_{t \to \infty} \pi(S^t(H)).$$

• We can also show $\liminf_{n \to \infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} \ge \lim_{t \to \infty} \pi(S^t(H)).$

Theorem [Johnston-Lu 2014+]: For any poset P, limit $\pi_c(P) := \lim_{n \to \infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$ exists.

Sketch proof:

• There is a hypergraph H (of (e(P) + 1)-level) representing P.

• Whe have
$$\limsup_{n \to \infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} \leq \lim_{t \to \infty} \pi(S^t(H)).$$

- We can also show $\liminf_{n \to \infty} \frac{\operatorname{La}_c(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} \ge \lim_{t \to \infty} \pi(S^t(H)).$
- Thus, $\pi_c(P) = \lim_{t \to \infty} \pi(S^t(H)).$

Suspension conjecture

Conjecture: For any t and any hypergraph H,

$$\lim_{t \to \infty} \pi(S^t(H)) = |R(H)| - 1.$$

Suspension conjecture

Conjecture: For any t and any hypergraph H,

$$\lim_{t \to \infty} \pi(S^t(H)) = |R(H)| - 1.$$

The special case with $H = K_n$ was conjectured at the AIM workshop on "Hypergraph Turán problem" in 2011.

Suspension conjecture

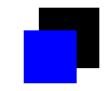
Conjecture: For any t and any hypergraph H,

$$\lim_{t \to \infty} \pi(S^t(H)) = |R(H)| - 1.$$

- The special case with $H = K_n$ was conjectured at the AIM workshop on "Hypergraph Turán problem" in 2011.
- This conjecture implies the consecutive-layer version of Griggs-Lu's conjecture:

For any poset
$$P$$
, $\pi_c(P) = e(P)$.

Partial result



Theorem [Johnston-Lu 2012+]: Suppose that H is a subgraph of the blowup of a chain. Let k_1 be the minimum number in R(H). Suppose $k_1 \ge 2$, and H' is a new hypergraph obtained by adding finitely many edges of type $k_1 - 1$ arbitrarily to H. Then

$$\lim_{t \to \infty} \pi(S^t(H')) = |R(H')| - 1.$$

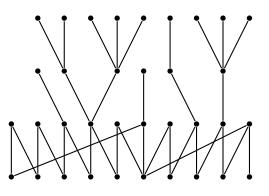
Partial result



Theorem [Johnston-Lu 2012+]: Suppose that H is a subgraph of the blowup of a chain. Let k_1 be the minimum number in R(H). Suppose $k_1 \ge 2$, and H' is a new hypergraph obtained by adding finitely many edges of type $k_1 - 1$ arbitrarily to H. Then

$$\lim_{t \to \infty} \pi(S^t(H')) = |R(H')| - 1.$$

Corollary: If a poset P has a representation of a hypergraph H described above, then the consecutive-layer version of Griggs-Lu's conjecture holds for P.



Open questions

General questions:

- For any finite poset P, is $\pi(P) = e(P)$?
- For any hypergraph H, is $\lim_{t\to\infty} \pi(S^t(H)) = |R(H)| - 1?$
- A hypergraph H is called **degenerated** if $\pi(H) = |R(H)| - 1$. What does the degenerated graph look like?

Open questions

General questions:

- For any finite poset P, is $\pi(P) = e(P)$?
- For any hypergraph H, is $\lim_{t\to\infty} \pi(S^t(H)) = |R(H)| - 1?$
- A hypergraph H is called **degenerated** if $\pi(H) = |R(H)| 1$. What does the degenerated graph look like?

Specific questions:

For posets, determine $\pi(\mathcal{D}_2)$, $\pi(\mathcal{O}_6)$, and $\pi(\mathcal{O}_{10})$. For non-uniform hypergraphs: Determine $\pi(S^2(K_2^{\{0,1,2\}}))$, $\pi(S(K_3^{\{1,2\}}))$, and $\pi(S(C_5^{\{1,2\}}))$.

Open questions

General questions:

- For any finite poset P, is $\pi(P) = e(P)$?
- For any hypergraph H, is $\lim_{t\to\infty} \pi(S^t(H)) = |R(H)| - 1?$
- A hypergraph H is called **degenerated** if $\pi(H) = |R(H)| - 1$. What does the degenerated graph look like?

Specific questions:

For posets, determine $\pi(\mathcal{D}_2)$, $\pi(\mathcal{O}_6)$, and $\pi(\mathcal{O}_{10})$. For non-uniform hypergraphs: Determine $\pi(S^2(K_2^{\{0,1,2\}}))$, $\pi(S(K_3^{\{1,2\}}))$, and $\pi(S(C_5^{\{1,2\}}))$. Thank You

