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Overview

Extremal problems on Turan problems on
subsets (posets) (non-uniform)

hypergraphs
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Part |I: Posets

Notation:

m [n|: the set of first n positive integers.
m J: a family of subsets of [n].

The size of F is dented by |F].
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Part |I: Posets

Notation:

m [n|: the set of first n positive integers.
m J: a family of subsets of [n].

The size of F is dented by |F].
Example: 7 = {{{1},12},11,2}, 11,3}, {1,2,3}}}

{1,2,3}
/\
{1,3} {1,2}
VN
{1} {2}

The inclusion relations of F.

A diamond pattern
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- Sperner theorem -

Sperner theorem [1928]: Let F be an inclusion-free
family of subsets of [n]. Then |F| < (LZJ)'

Linyuan Lu, University of South Carolina — 4 / 32



- Sperner theorem -

Sperner theorem [1928]: Let F be an inclusion-free
family of subsets of [n]. Then |F| < (LZJ)'

This result is tight.
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- Sperner theorem -

Sperner theorem [1928]: Let F be an inclusion-free
family of subsets of [n]. Then |F| < (LZJ)’

This result is tight.

LYM inequality: > . - (}L) <1.
7|

It is discovered by Lubell, Yamamoto, Meshalkin, Bollobas
independently.
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- Sperner theorem -

Sperner theorem [1928]: Let F be an inclusion-free
family of subsets of [n]. Then |F| < (LZJ)’

This result is tight.

LYM inequality: > . - (}L) <1.
7|

It is discovered by Lubell, Yamamoto, Meshalkin, Bollobas
independently.

LYM = Sperner theorem
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- Posets -

A poset is a set P equipped with a partial-order <. A poset
(P, <) can be represented by Hasse Diagram.

C
b ®
'\/‘C \B
a o A
Poset V' Chain P
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- Posets -

A poset is a set P equipped with a partial-order <. A poset
(P, <) can be represented by Hasse Diagram.

C
b ®
'\/‘C \B
a o A
Poset V' Chain P

A poset P = (P, <1) is a (weak) subposet of a poset
P, = (P, < 2) if there exists an injection f from P; to P,
such that f(a) <, f(b) whenever a <; b.
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- Posets -

A poset is a set P equipped with a partial-order <. A poset
(P, <) can be represented by Hasse Diagram.

C
b ®
'\/‘C \B
a o A
Poset V' Chain P

A poset P = (P, <1) is a (weak) subposet of a poset
P, = (P, < 2) if there exists an injection f from P; to P,
such that f(a) <, f(b) whenever a <; b.

The poset V' is a (weak) sub-poset of the Chain P;.
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- Chain and anti-Chain '

A chain is a subset of a poset such that any two elements in
the subset are comparable.
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- Chain and anti-Chain '

A chain is a subset of a poset such that any two elements in
the subset are comparable.

An antichain is a subset of a poset such that any two
elements in the subset are incomparable.
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- Chain and anti-Chain '

A chain is a subset of a poset such that any two elements in
the subset are comparable.

An antichain is a subset of a poset such that any two
elements in the subset are incomparable.

{1 }
(12} (1,3 {23}
< R
{1y {2y {3}

Chain: § C {1} C {1,2} C {1,2,3}.
Anti-chain: {1,2},{1,3},{2,3}.
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- La(n, P) -

For any poset P, let

La(n, P) = max{|F|: F C 2", contains no subposet P}.
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- La(n, P) -

For any poset P, let

La(n, P) = max{|F|: F C 2", contains no subposet P}.

For £ > 1, let B(n, k) be the middle £ levels of B, and
Xi(n, k) = |B(n, k)|
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- La(n, P) -

For any poset P, let

La(n, P) = max{|F|: F C 2", contains no subposet P}.

For £ > 1, let B(n, k) be the middle £ levels of B, and
Xi(n, k) = |B(n, k)|

Sperner [1928]: La(n, P») = (ju).
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- La(n, P) -

For any poset P, let

La(n, P) = max{|F|: F C 2", contains no subposet P}.

For £ > 1, let B(n, k) be the middle £ levels of B, and
Xi(n, k) = |B(n, k)|

[n]
Sperner [1928]: La(n, P») = (ju).
k
Erdés [1945]:
La(n, Pk) — Z(n, k — 1)
= (k—1+ 0(1))(L§J)
e &
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Summary of Results

™
La(n, P) for various posets
‘\/. Th, 1998
: DK, 2007
{ : L”J) k—2 GL, 2009
k - B n
: O ~ (k 1)< %D
- 3 ¢
E, 1945 A S
=3(n,k—1) r
Th, 1998 S .. Ng 522
mn
~(15))
S, 1928 DK, 2007
n
— S(n, 1) " NQ(L%J)
KT, 1983
D: De Bonis ~ (ng) DKSw, 2005 .
E: Erdds = 3(n, 2)
G: Griggs GL. 2009
K: Katona _ ' "
L GLiL, 32011 ~ (L%J)
n
S: Sperner < 257 (LnJ> k> 4 even
Sw: Swanepoel MKY, 2013 GK, 2008 -
T: Tarjan ' " L, 2014
Th: Thanh <23 (Lnj) ~ (L%J) k > 7, odd

MKY: Martin-Kramer-Young

Courtesy of Wei-Tian Li
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- A conjecture -

Conjecture [Griggs-Lu, 2009]:
The limit 7(P) := lim,, % exists and is an integer.

[ 5]
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- A conjecture -

Conjecture [Griggs-Lu, 2009]:

The limit 7(P) := lim,, LE‘(Z’S)) exists and is an integer.
3]

Given a poset P, let e(P) be the maximum integer m such
that for all n, B(n, m) does not contain P as a subposet.

We have

(P) > e(P).
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- A conjecture -

Conjecture [Griggs-Lu, 2009]:
The limit 7(P) := lim,, LE‘(”’S)) exists and is an integer.

[ 5]

Given a poset P, let e(P) be the maximum integer m such
that for all n, B(n, m) does not contain P as a subposet.

We have
w(P) > e(P).

Observation [Saks and Winkler]: All posets with 7 (P)
determined satisfied 7(P) = e(P).
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- A conjecture -

Conjecture [Griggs-Lu, 2009]:
The limit 7(P) := lim,, LE‘(”’S)) exists and is an integer.

[ 5]

Given a poset P, let e(P) be the maximum integer m such

that for all n, B(n, m) does not contain P as a subposet.
We have
w(P) > e(P).

Observation [Saks and Winkler]: All posets with 7 (P)
determined satisfied 7(P) = e(P).

Conjecture: 7(P) = ¢(P) for any poset P.
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- A conjecture -

Conjecture [Griggs-Lu, 2009]:
The limit 7(P) := lim,, LE‘(”’S)) exists and is an integer.

[ 5]

Given a poset P, let e(P) be the maximum integer m such
that for all n, B(n, m) does not contain P as a subposet.

We have
w(P) > e(P).

Observation [Saks and Winkler]: All posets with 7 (P)
determined satisfied 7(P) = e(P).
Conjecture: 7(P) = e¢(P) for any poset P.

What about we restrict F to e(P) 4+ 1 consecutive levels?
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- Lubell function

The Lubell function A, : 22" — R defined as

for any F C 20",
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- Lubell function

The Lubell function A, : 22" — R defined as

FeF \|F|
[n]
for any F C 20",
Let X be the number of elements
in F hit by a random full chain. .
Then
ha(F) = E(X)
lp
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- Uniform L-bounded posets '

A poset P is called a uniformly L-bounded poset if for all
n, all P-free families F C 2"l satisfying h,(F) < e(P).
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- Uniform L-bounded posets '

A poset P is called a uniformly L-bounded poset if for all
n, all P-free families F C 2"l satisfying h,(F) < e(P).

Example: Various uniformly L-bounded posets:

S A R T
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- Uniform L-bounded posets '

A poset P is called a uniformly L-bounded poset if for all
n, all P-free families F C 2"l satisfying h,(F) < e(P).

Example: Various uniformly L-bounded posets:

S A R T

Lemma [Griggs, Li, and Lu, 2011]: If P is a uniformly

| -bounded poset P, then the maximum P-free family must
be B(n,e(P)). In particular,

La(n, P) = Y(n, e(P)) for all n.
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- Trees and Crowns '

Bukh [2009]: For any height-k tree T, n(T) =k — 1.
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- Trees and Crowns '

Bukh [2009]: For any height-k tree T, n(T) =k — 1.

Kk

For t > 2, crown Oy is the height-2
poset whose Hasse diagram is cycle Cy;.
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- Trees and Crowns '

Bukh [2009]: For any height-k tree T, n(T) =k — 1.

Kk

For t > 2, crown Oy is the height-2
poset whose Hasse diagram is cycle Cy;.

m De Bonis-Katona-Swanepoel [2005]: 7(O,) = 2.
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- Trees and Crowns '

Bukh [2009]: For any height-k tree T, n(T) =k — 1.

Kk

For t > 2, crown Oy is the height-2
poset whose Hasse diagram is cycle Cy;.

m De Bonis-Katona-Swanepoel [2005]: 7(O,) = 2.
m Griggs-Lu [2009]: For even t > 4, 7(Oy) = 1.
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- Trees and Crowns '

Bukh [2009]: For any height-k tree T, n(T) =k — 1.

Kk

For t > 2, crown Oy is the height-2
poset whose Hasse diagram is cycle Cy;.

m De Bonis-Katona-Swanepoel [2005]: 7(O,) = 2.
m Griggs-Lu [2009]: For even t > 4, 7(Oy) = 1.
m Lu[2014]: Foroddt > 7, n(Oy) = 1.

m(Og) and 7(Oqp) are still open.
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- Diamond D, -

m Easy bound 7(Dy) < 2.5.
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- Diamond D, -

m Easy bound 7(Dy) < 2.5.
m Griggs-Li-Lu: 7(D;) < 2.296.
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- Diamond D,

Easy bound 7 (D) < 2.5.
Griggs-Li-Lu: 7(Ds) < 2.296.

Axenovich-Manske-Martin [2011]:
7(Dy) < 2.283261.
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- Diamond D,

Easy bound 7 (D) < 2.5.
Griggs-Li-Lu: 7(Ds) < 2.296.

Axenovich-Manske-Martin [2011]:
7(Dy) < 2.283261.

m  Griggs-Li-Lu [2011]: 7(D») < 232 =2.27.
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- Diamond D,

m Easy bound 7(Ds) < 2.5.

m Griggs-Li-Lu: 7(D;) < 2.296.

m Axenovich-Manske-Martin [2011]:
7(Dy) < 2.283261.

m  Griggs-Li-Lu [2011]: 7(D) < 22 =2.27.

m  Martin-Kramer-Young [2013]: 7r( 5) < 2
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- Diamond D,

Easy bound 7 (D) < 2.5.
Griggs-Li-Lu: 7(Ds) < 2.296.

Axenovich-Manske-Martin [2011]:
7(Dy) < 2.283261.

m  Griggs-Li-Lu [2011]: 7(D) < 22 =2.27.
m  Martin-Kramer-Young [2013]: 7r( 5) < 2

If F is contained in three consecutive layers, then the upper
bound can be further improved:

m  Axenovich-Manske-Martin [2009]: 7*(D,y) < 2.2071.
Manske-Shen [2012]: 7%(D;) < 2.1547.
Balogh-Hu-Lidicky-Liu [2014]: 7*(D;) < 2.15121.
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- A weaker conjecture '

A consective-level version: For any poset P, let

La.(n, P) = max{|F|: F C X(n,e(P)+ 1), P-free}.
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- A weaker conjecture '

A consective-level version: For any poset P, let

La.(n, P) = max{|F|: F C X(n,e(P)+ 1), P-free}.

m s the limit 7.(P) := lim,,_,
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- A weaker conjecture '

A consective-level version: For any poset P, let

La.(n, P) = max{|F|: F C X(n,e(P)+ 1), P-free}.

m s the limit 7.(P) := lim,,_,

m Is 7. (P) = e(P)?
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- Part |l: hypergraphs '

Hypergraph H = (V, E):
m V' the vertex set.

m E C2": the edge set.
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Part |l: hypergraphs -

Hypergraph H = (V, E):
m | the vertex set.

m E C2": the edge set.
The set of edge types: R(H) :={|F|: F € E}.
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- Part |l: hypergraphs '

Hypergraph H = (V, E):
m | the vertex set.

m E C2": the edge set.
The set of edge types: R(H) :={|F|: F € E}.

Example: H = (V, E) where

m V=1{1,223}
I — {{1}7{2}7{172}7{173}7
{1,2,3}}.

R(H) = {1,2,3}. 3

Extremal problems on posets and hypergraphs Linyuan Lu, University of South Carolina — 15 / 32



- From graphs to hypergraphs -

Let H be a hypergraph.
m R(H)=1{2}: H is a graph.

Extremal problems on posets and hypergraphs Linyuan Lu, University of South Carolina — 16 / 32



- From graphs to hypergraphs -

Let H be a hypergraph.
m R(H)={2}: Hisa graph.
m R(H)={r}: Hisan r-graph (r-uniform hypergraph).
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- From graphs to hypergraphs -

Let H be a hypergraph.

m R(H)={2}: Hisa graph.

m R(H)={r}: Hisan r-graph (r-uniform hypergraph).
m R(H)C R: Hisan R-graph (R-type hypergraph).

A good question for graphs should be asked for r-graphs,
and then R-graphs.
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- From graphs to hypergraphs -

Let H be a hypergraph.

m R(H)={2}: Hisa graph.

m R(H)={r}: Hisan r-graph (r-uniform hypergraph).
m R(H)C R: Hisan R-graph (R-type hypergraph).

A good question for graphs should be asked for r-graphs,
and then R-graphs.

Guideline: A good generalization

m should offer an insightful view of original problem.

Extremal problems on posets and hypergraphs Linyuan Lu, University of South Carolina — 16 / 32



- From graphs to hypergraphs -

Let H be a hypergraph.

m R(H)={2}: Hisa graph.

m R(H)={r}: Hisan r-graph (r-uniform hypergraph).
m R(H)C R: Hisan R-graph (R-type hypergraph).

A good question for graphs should be asked for r-graphs,
and then R-graphs.

Guideline: A good generalization
m should offer an insightful view of original problem.

m should be useful for problems in other areas.

Extremal problems on posets and hypergraphs Linyuan Lu, University of South Carolina — 16 / 32



- Edge density -

The edge density for r-graph H is w

3 3
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- Edge density

The edge density for r-graph H is |Eéf§))|.

The edge density for R-graph H is defined as

>
S
=
]
7
—_
—
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- Edge density

The edge density for r-graph H is |Eéf§))|.

The edge density for R-graph H is defined as

h(H) = Y (i).

FeE(H) \IF]|

This is the Lubell function widely used
in extremal poset problems.
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- Edge density

The edge density for r-graph H is |Eéf§))|.

The edge density for R-graph H is defined as

h(H) = Y (i).

FeE(H) \IF]|

This is the Lubell function widely used :
in extremal poset problems.

It is the expected number of edges hit ,
by a random full chain. ®
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- Turan problems for R-graphs -

An R-graph H; is a subgraph of another R-graph H, if there
exists an injective map f: V(H;) — V(H>) keeping edges.
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- Turan problems for R-graphs -

An R-graph H; is a subgraph of another R-graph H, if there
exists an injective map f: V(H;) — V(H>) keeping edges.

Given a family H of R-graphs, an R-graph G is H-free if G
contains no graph in ‘H as subgraph.
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- Turan problems for R-graphs -

An R-graph H; is a subgraph of another R-graph H, if there
exists an injective map f: V(H;) — V(H>) keeping edges.

Given a family H of R-graphs, an R-graph G is H-free if G
contains no graph in ‘H as subgraph.

Turan problems: Determine the maximum edge density
among all H-free R-graphs G,;:

T, (H) = max{h,(G,): G, is H-free.}.
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- Turan problems for R-graphs -

An R-graph H; is a subgraph of another R-graph H, if there
exists an injective map f: V(H;) — V(H>) keeping edges.

Given a family H of R-graphs, an R-graph G is H-free if G
contains no graph in ‘H as subgraph.

Turan problems: Determine the maximum edge density
among all H-free R-graphs G,;:

T, (H) = max{h,(G,): G, is H-free.}.
Turan density: 7(H) = lim, o T, (H).

Extremal problems on posets and hypergraphs Linyuan Lu, University of South Carolina — 18 / 32



- Turan problems for R-graphs -

An R-graph H; is a subgraph of another R-graph H, if there
exists an injective map f: V(H;) — V(H>) keeping edges.

Given a family H of R-graphs, an R-graph G is H-free if G
contains no graph in ‘H as subgraph.

Turan problems: Determine the maximum edge density
among all H-free R-graphs G,;:

To(H) = max{h,(G,): G, is H-free.}.
Turan density: 7(H) = lim, o T, (H).
Lemma [Johnston-Lu 2012+]: 7(H) is well-defined.

Extremal problems on posets and hypergraphs Linyuan Lu, University of South Carolina — 18 / 32



- Turan problems for R-graphs -

An R-graph H; is a subgraph of another R-graph H, if there
exists an injective map f: V(H;) — V(H>) keeping edges.

Given a family H of R-graphs, an R-graph G is H-free if G
contains no graph in ‘H as subgraph.

Turan problems: Determine the maximum edge density
among all H-free R-graphs G,;:

T, (H) = max{h,(G,): G, is H-free.}.

Turan density: 7(H) := lim,, o m,(H).

Lemma [Johnston-Lu 2012+]: 7(H) is well-defined.
It generalizes Katona-Nemetz-Simonovits’ result
- for r-graphs.
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- Properties and examples '

For any family of R-graphs H, we have

m 0<7(H) <|R|
m IfH={H} then |R(H)|—1<=w(H)<|R(H)|.
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Properties and examples

For any family of R-graphs H, we have

m 0<7(H) <|R|
m IfH={H} then |R(H)|—1<n(H)<|R(H)|.

Examples:
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Properties and examples

For any family of R-graphs H, we have

m 0<7(H) <|R|
m IfH={H} then |R(H)|—1<n(H)<|R(H)|.

Examples:

ﬂ(l)
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Properties and examples

For any family of R-graphs H, we have

m 0<7(H) <|R|
m IfH={H} then |[R(H)| —1<n(H)<|R(H)|

Examples:

ﬂ(l) ()=
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Properties and examples

For any family of R-graphs H, we have

m 0<7(H) <|R|
m IfH={H} then |[R(H)| —1<n(H)<|R(H)|

R
()1 .
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Properties and examples

For any family of R-graphs H, we have

m 0<7(H) <|R|
m IfH={H} then |[R(H)| —1<n(H)<|R(H)|

Examples:
-
W(D B i — 12

2\/3
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- Supersaturation -

Supersaturation Lemma for r-graphs: For any r-graph
H and a > 0 there are b, ng > 0 so that if & is a r-graph on
n > ng vertices with |E(G)| > (n(H) + a)(") then G

contains at least b(ngH)') copies of H.
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- Supersaturation -

Supersaturation Lemma for r-graphs: For any r-graph
H and a > 0 there are b, ng > 0 so that if & is a r-graph on
n > ng vertices with |E(G)| > (n(H) + a)(") then G

contains at least b(ngH”) copies of H.

Supersaturation Lemma for R-graphs: For any R-graph
H and a > 0 there are b, ny > 0 so that if GG is an R-graph
on n > ng vertices and h,(G) > w(H) 4+ a then G contains
at least b(v(}])) copies of H.
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- Blowup for R-graphs '

For any hypergraph H,, and positive integers s, S9, ..., S,
the blowup of H is a new hypergraph (V, E), denoted by
H,(s1, S2,...,S,), satisfying

1. V:=UL,V;, where |V;| = s;.

2. FE=Upcgm |icr Vi

When s1 = s9 = --- = 5, = s, we simply write it as H(s).
1 V1.1
‘\Q (O3 (5 () U3
2
H U1’2 H(Qv 17 1)
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- Blowup for R-graphs '

For any hypergraph H,, and positive integers s, S9, ..., S,
the blowup of H is a new hypergraph (V, E), denoted by
H,(s1, S2,...,S,), satisfying

1. V:=UL,V;, where |V;| = s;.

2. FE=Upcgm |icr Vi

When s1 = s9 = --- = 5, = s, we simply write it as H(s).
1 V1.1
‘\Q 3 (5 () U3
2
H U1’2 H(Qv 17 1)

Blowup Lemma: 7(H(s)) = n(H).
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- Blowup for R-graphs '

For any hypergraph H,, and positive integers s, S9, ..., S,
the blowup of H is a new hypergraph (V, E), denoted by
H,(s1, S2,...,S,), satisfying

1. V:=UL,V;, where |V;| = s;.

2. FE=Upcgm |icr Vi

When s1 = s9 = --- = 5, = s, we simply write it as H(s).
1 V1.1
‘\Q 03 o0 s
2
H U1’2 H(Qv 17 1)

Blowup Lemma: 7(H(s)) = n(H).
7y Corollary: If Hy C Hy C Hi(s), then m(Hy) = w(Hy).
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- Turan density of {1,2}-graphs -
Theorem [Johnston-Lu 2012+]: For any {1,2}-graph H,

we have
(2 — —+— if x(H?) > 2;
X(H?)-1
> if Y(H?) and P, C H;
7(H) = 4 ) if H? is bipartite and

min{k : Po, C H} > 2;
if H? is bipartite and
\ Py, € H for any k > 1.

Here H? is the level-2 subgraph of H and Py is the
following closed even path.

*o— — - -—(—@

X1 X9 X3 Lok—2 Lok—1 L2k
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- Jump problem of R-graphs

A value o € [0, |R|) is a jump for R if
dec>0Ve>0Vt>max{r:r e R}
dng V GE withn > ng and h,(G?) > a+e
implies 3 H? C G with hy(H) > o+ c.
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- Jump problem of R-graphs

A value o € [0, |R|) is a jump for R if
dec>0Ve>0Vt>max{r:r e R}
dng V GE withn > ng and h,(G?) > a+e
implies 3 H? C G with hy(H) > o+ c.

Fact : Every a € [0,1) is a jump for 2 (graphs).
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- Jump problem of R-graphs -

A value o € [0, |R|) is a jump for R if
de>0Ve>0Vt>max{r:r € R}

dng V G withn > ng and ho(GY) > ate e

implies 3 H? C G with hy(H) > o+ c.

Fact : Every a € [0,1) is a jump for 2 (graphs).

|
0

o= —
WIN —
H~ [0
[—

Let £ be an integer so that a € [A =, k+1) Then by Erdos-
Simonovits-Stone Theorem, every graph G,, with denS|ty

o + € contains a subgraph Kj.1(s), which has density > k+1.
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- Jump problem of R-graphs -

A value o € [0, |R|) is a jump for R if
de>0Ve>0Vt>max{r:r € R}

0,
dng V G withn > ng and ho(GY) > ate e

implies 3 H? C G with hy(H) > o+ c.

Fact : Every a € [0,1) is a jump for 2 (graphs).

|
0

o= —
WIN —
H~ [0
[—

Let £ be an integer so that a € [A =, k+1) Then by Erdos-

Simonovits-Stone Theorem, every graph G,, with denS|ty

o + € contains a subgraph Kj.1(s), which has density > k+1.
Erdos asked “Do hypergraphs jump?”
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- Jump for r-graphs -

m  Erdés [1971]: Every « in [0,2) is a jump for r > 3.
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- Jump for r-graphs -

m  Erdés [1971]: Every « in [0,2) is a jump for r > 3.

m Frankl-Rodl [1984]: For every » > 3 and | > 2r,
1 — lrl_l Is not a jump for r.
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- Jump for r-graphs -

Erdés [1971]: Every v in [0, %) is a jump for r > 3.

m Frankl-Rodl [1984]: For every » > 3 and | > 2r,
1 — lrl_l Is not a jump for r.

m Frankl-Peng-Rédl-Talbot [2007]: 2 is a non-jump for

3-graph. (22 is a non-jump for every r > 3.)

2r"
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- Jump for r-graphs '

m  Erdés [1971]: Every « in [0,2) is a jump for r > 3.

m Frankl-Rodl [1984]: For every » > 3 and | > 2r,
1 — lrl_l Is not a jump for r.

m Frankl-Peng-Rédl-Talbot [2007]: 2 is a non-jump for
3-graph. (22 is a non-jump for every r > 3.)

27r"
m Peng [2008]: Let » > p > 3 and [ > 2 be integers. If

p [P 1 ! [P - :
£ < =R then (1 — lp—_l)}%(lw_p)r is a non-jump for

T.
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Jump for r-graphs '

Erdés [1971]: Every v in [0, %) is a jump for r > 3.

m Frankl-Rodl [1984]: For every » > 3 and | > 2r,
1 — lrl_l Is not a jump for r.

m Frankl-Peng-Rédl-Talbot [2007]: 2 is a non-jump for

3-graph. (22 is a non-jump for every r > 3.)

21"
m Peng [2008]: Let » > p > 3 and [ > 2 be integers. If
p p r! p : .
E < (l+?{—p)“ then (1 — lp%l)ﬁ(mf_p)r is a non-jump for
r.
m Baber-Talbot [2011] Every « in the interval

0.2299, 0.2316) and [0.2871, 3) is a jump for 3.
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Jump for r-graphs '

Erdés [1971]: Every v in [0, %) is a jump for r > 3.
m Frankl-Rodl [1984]: For every » > 3 and | > 2r,
1 — lrl_l Is not a jump for r.

m Frankl-Peng-Rédl-Talbot [2007]: 2 is a non-jump for

3-graph. (22 is a non-jump for every r > 3.)

21"
m Peng [2008]: Let » > p > 3 and [ > 2 be integers. If
p p r! p : .
E < (l+?{—p)“ then (1 — lp%l)ﬁ(mf_p)r is a non-jump for
r.
m Baber-Talbot [2011] Every « in the interval

0.2299, 0.2316) and [0.2871, 3) is a jump for 3.

Problem (Erdds, $500): Prove or disprove that £ is a
jump for 3.
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- Strong jump and weak jump

A value o € (0, |R|) is a strong jump for
Rifde¢>0Vt>max{r:r e R} dng
vV GE with n > ng and h,(GE) > a — ¢
implies 3 H? C G with hy(H) > o+ c.
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- Strong jump and weak jump '

A value o € (0, |R|) is a strong jump for
Rifde¢>0Vt>max{r:r e R} dng
vV GE with n > ng and h,(GE) > a — ¢
implies 3 H? C G with hy(H) > o+ c.

m Jump: de>0Ve>0 a+4+e€e— a+ec
m Strong jump: dJc >0 a—c— a+c.
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- Strong jump and weak jump -

m Jump: de>0Ve>0 a+4+e€e— a+ec

m Strong jump: 3¢ >0 a—c—> a+c. (Not same as
Peng-Zhao [2008]'s definition: 3¢ >0 o — a+c¢!)

A value o € (0, |R|) is a strong jump for
Rifdc>0Vt>max{r:r e R} dng
vV GE with n > ng and h,(GF) > a — ¢
implies 3 H ¢ G? with h,(H) > o+ c.

Properties:

m Strong jump implies jump.

m [he set of all strong jumps is open.

m If o; is not a strong jump for (disjoint) R;, then > .« is
not a strong jump for LIR;.

f 4 is a weak jump if it is a jump but not strong jump.

Extremal problems on posets and hypergraphs Linyuan Lu, University of South Carolina — 25 / 32



- Characterization of non-jump -

A property P is called hereditary if it is closed under taking
induced subgraphs. 7(P) := lim,, ,,o maxgep, h,(G) exists.
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- Characterization of non-jump -

A property P is called hereditary if it is closed under taking
induced subgraphs. 7(P) := lim,, ,,o maxgep, h,(G) exists.

Theorem [Johnston-Lu 2014+]:

1. Avalue a € |0, |R]] is not a strong jump for R iff there

exists a hereditary property P of R-graphs such that
m(P) = a.
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- Characterization of non-jump -

A property P is called hereditary if it is closed under taking
induced subgraphs. 7(P) := lim,, ,,o maxgep, h,(G) exists.

Theorem [Johnston-Lu 2014+]:

1. Avalue a € |0, |R]] is not a strong jump for R iff there

exists a hereditary property P of R-graphs such that
m(P) = a.

2. Avalue a € [0, |R]) is not a jump for R iff there exists a
sequence of values {«;} satisfying

(a) All o; are not strong jumps for R.

(b) The sequence {«a;} decreases and goes to the
limit a.
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- Strong jump for {1,2} '

Theorem [Johnston-Lu 2013+]: The non-strong-jumps
for {1,2} are precisely
k

All these values are Turan densities. For £ > 1,

2k + 1 (1,2}
k—l—l — T‘-(Kk—l—l )

—— = (K ).

k (1.2} 742
14 — K77 K .
4(]€ n 1) ﬂ-({ 2 k+2 )
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- Strong jump for {1,2} '

Theorem [Johnston-Lu 2013+]: The non-strong-jumps
for {1,2} are precisely

g 12 k 9T ok 5
72737 7]€—|—1’ y 78767 9 |4(]€—|—1)7 747
3 D 2k + 1
PPN y ’ '72'
2 3 k—+1
All these values are Turan densities. For £ > 1,
k 2k +1 11,2}
A = m(Kiyy), E 1 =7 (K1)
k {1,2} y
1A — K> K .
4(]€—|—1) ﬂ-({ 2 k+2)

For any finite family H of {1, 2}-graphs, w(#) must be
one of the values listed above.
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- Suspension

VR

H):

V(H) U{*},
(F{*}: F € BE(H))}.

Suspension S

m V(5(H))
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- Suspension -

H):

V(H)U{*},
(F{*}: F € BE(H))}.

Suspension S

m V(5(H))
m E(5(H))

VR

Lemma [Johnston-Lu 2012+]: For any hypergraph H we
have that 7(S(H)) < w(H).
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- Suspension -

Suspension S(H):
m V(S(H))=V(H) Ui},

Lemma [Johnston-Lu 2012+]: For any hypergraph H we
have that 7(S(H)) < w(H).

Corollary: Let S'(H) := S(S(---S(H))): iterating ¢ times.
Then the limit lim,_,,, 7(S*(H)) always exists.
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- Connection to 7.(P) '

Theorem [Johnston-Lu 2014+]: For any poset P, limit
La.(n,P)

(1)

exIsts.

Te(P) = limy, o
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- Connection to 7.(P) '

Theorem [Johnston-Lu 2014+]: For any poset P, limit
La.(n,P)

(1)

exIsts.

Te(P) = limy, o

Sketch proof:

m  There is a hypergraph H (of (e(P) + 1)-level)
representing P.
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- Connection to 7.(P) '

Theorem [Johnston-Lu 2014+]: For any poset P, limit
La.(n,P)

(1)

Te(P) = limy, o exists.

Sketch proof:

m  There is a hypergraph H (of (e(P) + 1)-level)
representing P.

m  Whe have limsup, . 200 < lim, . 7(SY(H)).

(1)
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- Connection to 7.(P) '

Theorem [Johnston-Lu 2014+]: For any poset P, limit
La.(n,P)

(1)

exIsts.

Te(P) = limy, o

Sketch proof:

m  There is a hypergraph H (of (e(P) + 1)-level)
representing P.

m  Whe have limsup, . 200 < lim, . 7(SY(H)).

(1)

m \We can also show
lim inf,, .. 2Pl > q5y, m(S'(H)).

(1)
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- Connection to 7.(P) '

Theorem [Johnston-Lu 2014+]: For any poset P, limit
La.(n,P)

(1)

exIsts.

Te(P) = limy, o

Sketch proof:

m  There is a hypergraph H (of (e(P) + 1)-level)
representing P.

m  Whe have limsup, . 200 < lim, . 7(SY(H)).

(1)

m \We can also show
lim inf,, .. 2Pl > q5y, m(S'(H)).

(15)
Thus, 7.(P) = limy_,o 7(S*(H)).
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- Suspension conjecture

Conjecture: For any ¢t and any hypergraph H,

lim w(SY(H)) = |R(H)| — 1.

t—00
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- Suspension conjecture -

Conjecture: For any ¢t and any hypergraph H,

lim 7(S*(H)) = |R(H)| — 1.

1—00

m [he special case with H = K,, was conjectured at the
AIM workshop on “Hypergraph Turan problem” in 2011.
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- Suspension conjecture -

Conjecture: For any ¢t and any hypergraph H,

lim 7(S*(H)) = |R(H)| — 1.

1—00

m [he special case with H = K,, was conjectured at the
AIM workshop on “Hypergraph Turan problem” in 2011.

m [his conjecture implies the consecutive-layer version of
Griggs-Lu's conjecture:

For any poset P, 7.(P) = e(P).
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- Partial result -

Theorem [Johnston-Lu 2012+]: Suppose that H is a
subgraph of the blowup of a chain. Let k; be the minimum
number in R(H). Suppose k1 > 2, and H' is a new
hypergraph obtained by adding finitely many edges of type
ki1 — 1 arbitrarily to H. Then

lim 7(SY(H')) = |R(H")| — 1.

1—00
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- Partial result -

Theorem [Johnston-Lu 2012+]: Suppose that H is a
subgraph of the blowup of a chain. Let k; be the minimum
number in R(H). Suppose k1 > 2, and H' is a new
hypergraph obtained by adding finitely many edges of type
ki1 — 1 arbitrarily to H. Then

lim 7(SY(H')) = |R(H")| — 1.

1—00

Corollary: If a poset P has a repre- \‘ \‘/ ‘ \‘/
sentation of a hypergraph H described \\/

above, then the consecutive-layer version NNNNKT /] AA7]

of Griggs-Lu's conjecture holds for P. ‘MW/‘
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Open questions

General questions:

m For any finite poset P, is w(P) = e(P)?

m For any hypergraph H, is

limy oo m(SY(H)) = |R(H)| — 17

m A hypergraph H is called degenerated if
m(H) = |R(H)| — 1. What does the degenerated graph
look like?
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- Open questions '

General questions:

m For any finite poset P, is w(P) = e(P)?

m For any hypergraph H, is

limy oo m(SY(H)) = |R(H)| — 17

m A hypergraph H is called degenerated if
m(H) = |R(H)| — 1. What does the degenerated graph
look like?

Specific questions:

m For posets, determine w(Dy), m(Og), and 7(Oyp).
m For non-uniform hypergraphs:
Determine m(S2(K\""?)), 7(S(K*), and
1,2
m(S(C57 ).
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- Open questions '

General questions:

m For any finite poset P, is w(P) = e(P)?

m For any hypergraph H, is

limy oo m(SY(H)) = |R(H)| — 17

m A hypergraph H is called degenerated if
m(H) = |R(H)| — 1. What does the degenerated graph
look like?

Specific questions:

m For posets, determine w(Dy), m(Og), and 7(Oyp).
m For non-uniform hypergraphs:

Determine m(S2(K\""?)), 7(S(K*), and

m(S(C5)).
Thank You
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