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Introduction

Consider a family of subsets of [n] := {1, 2, . . . , n} such that
A ⊂ B is not allowed for any distinct members A and B of this
family. Such a family is said to be inclusion-free.

Question: What is the maximum size of such a family?
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Theorem (Sperner, 1928)
Let F be an inclusion-free family of
subsets of [n]. Then

|F| ≤
(

n

⌊n2⌋

)
.

The upper bound is achieved by taking
all sets of size ⌊n2⌋.

q∅

q{1, . . . , n}
q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

(n
0

)...
( n
⌊ n
2
⌋
)...

(n
n

)

3 / 22



. . . . . .

Theorem (Erdős, 1945)

Let F be a family of subsets of [n] such that no k + 1 sets in F
satisfy A1 ⊂ · · · ⊂ Ak+1. Then

|F| ≤
k∑

i=1

(
n

⌊n−k
2 + i⌋

)
.

The upper bound is achieved by taking all sets of middle k sizes.
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Families Without a Subposet

A poset (partially ordered set) P = (P ,≤) is a set P with a binary
partial order relation ≤ satisfying

1. For all x ∈ P, x ≤ x . (reflexivity)

2. If x ≤ y and y ≤ x , then x = y . (antisymmetry)

3. If x ≤ y and y ≤ z , then x ≤ z . (transitivity)
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Figure: The Hasse diagrams of some small posets.
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The Boolean lattice Bn = (2[n],⊆) is the poset consisting of the
power set of [n] and the inclusion relation as the partial order.

A poset P1 = (P1,≤1) contains another poset P2 = (P2,≤2) as a
(weak) subposet if there exists an injection f from P2 to P1, which
preserves the order, that is f (a) ≤1 f (b) whenever a ≤2 b.

Example:

P2 = ({a, b, c}, {(a, b), (a, c)})

P1 = ({A,B,C}, {(A,B), (B,C), (A,C)})

rr r
rr
r
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P2 a 7−→ A

f : b 7−→ B

c 7−→ C
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A P-free family F is a collection of subsets of [n] such that it
does not contain P as a subsposet.
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q[n]
�

F ⊂ 2[n]qq qq
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The largest size of a P-free family of subsets of [n] for a given
poset P is denoted by La(n,P).
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The difficulty of solving the problem is to find an upper bound on
the size of families F .

Note that every poset P can be
extended as a chain on |P|
elements.
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Erdős’s Theorem implies

La(n,P) ≤ Σ(n, |P| − 1) ∼ (|P | − 1)

(
n

⌊n2⌋

)
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The height of a poset P , h(P), is the largest size of any chain in P .
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Theorem (Burcsi and Nagy, 2013)

For any poset P, La(n,P) ≤
(
|P|+ h(P)

2
− 1

)(
n

⌊n2⌋

)
.
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Double Counting Method

Given a family F ⊂ 2[n], consider some families G1, . . . ,Gk such
that F ⊂

∪k
i=1 Gi . We count the number of pairs (F ,Gi ) whenever

F ∈ F ∩ Gi . Then

∑
F∈F

(F ,Gi ) =
k∑

i=1

(F ,Gi ).

This helps us to deduce an upper bound on |F|.
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Theorem (Spener, 1928)

Let F be an inclusion-free family of subsets of [n]. Then

|F| ≤
( n
⌊ n
2
⌋
)
.

Proof.(Lubell, 1966)
Let Gi be a full chain: ∅ ⊂ {a1} ⊂ {a1, a2} ⊂ · · · ⊂ {a1, . . . , an}.
On the one hand, each set F is contained in |F |!(n − F )! Gi ’s.
On the other hand, since F is inclusion-free, |F ∩ Gi | ≤ 1.

∑
F∈F

|F |!(n − |F |)! =
∑
F∈F

(F ,Gi ) =
n!∑
i=1

(F ,Gi ) ≤ n!

Hence
∑
F∈F

1( n
|F |
) ≤ 1. This implies |F| ≤

( n
⌊ n
2
⌋
)
.
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Main Results

Theorem (Chen and Li, 2014)

For any poset P, when n is sufficiently large, the inequality

La(n,P) ≤ 1

m + 1

(
|P |+ 1

2
(m2 + 3m − 2)(h(P)− 1)− 1

)(
n

⌊n2⌋

)
holds for any fixed m with 1 ≤ m ≤ n

2 .
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Proof.
An m-linkage L(m) consists of
a main chain and m links.

The main chain is
{Si ,0 | 0 ≤ i ≤ n}, where
Si ,0 = {a1, . . . , ai}.

For 1 ≤ j ≤ m, the jth-link is
{Si ,j | m ≤ i ≤ n−m}, where
Si ,j = {a1, . . . , ai−1}∪ {ai+j}.
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Proof.
1st-link:{Si ,1 | m ≤ i ≤ n −m}
Si ,1 = {a1, . . . , ai−1} ∪ {ai+1}

rrrrr
r r{a1, . . . , am−1, am+1}

r r{a1, . . . , am, am+2}

r r{a1, . . . , an−m−3, an−m−1}
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Proof.
1st-link:{Si ,1 | m ≤ i ≤ n −m}
Si ,1 = {a1, . . . , ai−1} ∪ {ai+1}

2nd-link:{Si ,1 | m ≤ i ≤ n−m}
Si ,2 = {a1, . . . , ai−1} ∪ {ai+2}

...

For a fixed m, the number of
m-linkages is n!.
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We count the number of pairs
(F ,L(m)).

For a set F ⊆ [n], the number
of pairs (F ,L(m)) is equal to∑

F∈F
|F |<m or |F |>n−m

|F |!(n − |F |)!

+
∑
F∈F

m≤|F |≤n−m

(m+1)|F |!(n−|F |)!
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Let F ⊆ 2[n] be a P-free family.

For any m-linkage L(m),

|L(m) ∩ F| ≤ |P |+ 1

2
(M)(H)− 1 ,

where M = m2 + 3m − 2 and
H = h(P)− 1.
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Combine∑
F∈F

|F |<m or |F |>n−m

|F |!(n − |F |)! +
∑
F∈F

m≤|F |≤n−m

(m + 1)|F |!(n − |F |)!

and

|L(m) ∩ F|n! ≤ (|P |+ 1

2
(m2 + 3m − 2)(h(P)− 1)− 1)n!.

We obtain

|F| ≤ 1

m + 1

(
|P|+ 1

2
(m2 + 3m − 2)(h(P)− 1)− 1

)(
n

⌊n2⌋

)
when n is sufficiently large.
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Corollary (Chen and Li, 2014)

For any poset P and any sufficiently large n,

La(n,P) ≤
(
1

2
(|P |+ h(P))− 1

)(
n

⌊n2⌋

)
.

In particular, if |P| ≥ (5 + 2
√
2)(h(P)− 1) + 1, then we have a

better bound

La(n,P) ≤
(√

2(h(P)− 1)(|P| − 2h(P) + 1) + h(P)− 1
)(

n

⌊n2⌋

)
.

Proof. Find the value of m that minimizes

f (m) =
1

m + 1
(|P|+ 1

2
(m2 + 3m − 2)(h(P)− 1)− 1).
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)(
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)
.

In particular, if |P| ≥ (5 + 2
√
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better bound

La(n,P) ≤
(√

2(h(P)− 1)(|P| − 2h(P) + 1) + h(P)− 1
)(

n
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)
.

Remark It is not hard to see

La(n,P) = O(
√

h(P)|P |).

20 / 22



. . . . . .

Question: When m = 1,

La(n,P) ≤
(
|P |+ h(P)

2
− 1

)(
n

⌊n2⌋

)
.

Bursi and Nagy found many posets having

La(n,P) ∼
(
|P |+ h(P)

2
− 1

)(
n

⌊n2⌋

)
.

For m ≥ 2, does there exist P such that

La(n,P) ∼ 1

m + 1

(
|P |+ 1

2
(m2 + 3m − 2)(h(P)− 1)− 1

)(
n

⌊n2⌋

)
?
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Question: Can we use more parameters of a poset P, such as
width, dimension etc., to improve the upper bound of La(n,P)?

Thank you for your attention!!
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