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Notation: [n] = {1, 2, . . . , n}.

A family F ⊂ 2[n] is intersecting if F ∩G 6= ∅ holds for every pair F,G ∈ F .
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Observation (Erdős – Ko – Rado, 1961) If F ⊂ 2[n] is intersecting then

|F| ≤ 2n−1.
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Observation (Erdős – Ko – Rado, 1961) If F ⊂ 2[n] is intersecting then

|F| ≤ 2n−1 = 2n/2.
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Observation (Erdős – Ko – Rado, 1961) If F ⊂ 2[n] is intersecting then

|F| ≤ 2n−1.
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Observation (Erdős – Ko – Rado, 1961) If F ⊂ 2[n] is intersecting then

|F| ≤ 2n−1.
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Theorem (Erdős – Ko – Rado, 1961) If F ⊂
(
[n]
k

)
is intersecting where

k ≤ n
2 then

|F| ≤
(
n− 1

k − 1

)
.
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A family F ⊂ 2[n] is t-intersecting if |F ∩G| ≥ t holds
for every pair F,G ∈ F .
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A family F ⊂ 2[n] is t-intersecting if |F ∩G| ≥ t holds
for every pair F,G ∈ F .

Theorem (K, 1964) If F ⊂ 2[n] is t-intersecting then

|F| ≤

{∑n
i=n+t

2

(
n
i

)
if n + t is even∑n

i=n+t+1
2

(
n
i

)
+
( n−1
n+t−1

2

)
if n + t is odd .
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A problem of Körner.

Let F ⊂ 2[n] and suppose that if F1, F2, G1, G2 ∈ F , F1 6= F2, G1 6= G2 holds
then

(F1 ∪ F2) ∩ (G1 ∪G2) 6= ∅.
What is the maximum size of such a union-intersecting family?
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Theorem (Katona-D.T. Nagy 2014+) Suppose that the family F ⊂ 2[n] is a
union–intersecting family then

|F| ≤

{∑n
i=n−1

2

(
n
i

)
if n + 1 is odd∑n

i=n
2

(
n
i

)
+
(
n−1
n
2−1

)
if n + 1 is even .

holds.
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A family F ⊂ 2[n] is called a (u, v)-union-intersecting
if for different members F1, . . . , Fu, G1, . . . , Gv the following holds:

(∪ui=1Fi) ∩
(
∪vj=1Gj

)
6= ∅.
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The maximum size of a (u, v)-union-intersecting family on n elements
is denoted by f(n, u, v).
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(∪ui=1Fi) ∩
(
∪vj=1Gj
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The maximum size of a (u, v)-union-intersecting family on n elements
is denoted by f(n, u, v).

f(n, 1, 1) = 2n−1 is trivial.
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A family F ⊂ 2[n] is called a (u, v)-union-intersecting
if for different members F1, . . . , Fu, G1, . . . , Gv the following holds:

(∪ui=1Fi) ∩
(
∪vj=1Gj

)
6= ∅.

The maximum size of a (u, v)-union-intersecting family on n elements
is denoted by f(n, u, v).

f(n, 1, 1) = 2n−1 is trivial.

f(n, 2, 2) is the previous theorem.

18



Theorem (Katona-D.T. Nagy 2014+)

f(n, 1, 2) =

{∑n
i=n

2

(
n
i

)
if n is even∑n

i=n+1
2

(
n
i

)
+
(n−1

n−3
2

)
if n is odd .
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Theorem (Katona-D.T. Nagy 2014+)

f(n, 1, 2) =

{∑n
i=n

2

(
n
i

)
if n is even∑n

i=n+1
2

(
n
i

)
+
(n−1

n−3
2

)
if n is odd .

f(n, 1, 3) =

{∑n
i=n

2

(
n
i

)
if n is even∑n

i=n+1
2

(
n
i

)
+
(n−1

n−1
2

)
if n is odd .
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Theorem (Katona-D.T. Nagy 2014+)

f(n, 1, 2) =

{∑n
i=n

2

(
n
i

)
if n is even∑n

i=n+1
2

(
n
i

)
+
(n−1

n−3
2

)
if n is odd .

f(n, 1, 3) =

{∑n
i=n

2

(
n
i

)
if n is even∑n

i=n+1
2

(
n
i

)
+
(n−1

n−1
2

)
if n is odd .

Proof
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Standardization of mathematical lectures
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Standardization of mathematical lectures

§345, ¶59. Every lecture should contain one proof and one joke
but they must not be the same.

23



Theorem (Katona-D.T. Nagy 2014+)

f(n, 1, 3) =

{∑n
i=n

2

(
n
i

)
if n is even∑n

i=n+1
2

(
n
i

)
+
(n−1

n−1
2

)
if n is odd .

Proof

F− = {F : F ∈ F}
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Theorem (Katona-D.T. Nagy 2014+)

f(n, 1, 3) =

{∑n
i=n

2

(
n
i

)
if n is even∑n

i=n+1
2

(
n
i

)
+
(n−1

n−1
2

)
if n is odd .

Proof

F− = {F : F ∈ F}

G = F ∩ F−
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Theorem (Katona-D.T. Nagy 2014+)

f(n, 1, 3) =

{∑n
i=n

2

(
n
i

)
if n is even∑n

i=n+1
2

(
n
i

)
+
(n−1

n−1
2

)
if n is odd .

Proof

F− = {F : F ∈ F}

G = F ∩ F−

2|F| ≤ 2n + |G| → |F| ≤ 2n−1 +
1

2
|G|
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Claim G contains no three distinct members A,B,C

such that A ⊂ B,A ⊂ C.
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Claim G contains no three distinct members A,B,C

such that A ⊂ B,A ⊂ C.

Proof A ⊂ B,A ⊂ C implies A ⊃ B,A ⊃ C and A ⊃ B ∪ C
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Claim G contains no three distinct members A,B,C

such that A ⊂ B,A ⊂ C.

Proof A ⊂ B,A ⊂ C implies A ⊃ B,A ⊃ C and A ⊃ B ∪ C

A ∩ (A ∪B ∪ C) = A ∩A = ∅

a contradiction.
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That is the poset V is forbidden in G.
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That is the poset V is forbidden in G.

By symmetry, the poset Λ is also forbidden in G.
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That is the poset V is forbidden in G.

By symmetry, the poset Λ is also forbidden in G.

Theorem (K-Tarján, 1981)

La(n, V,Λ) = 2

(
n− 1⌊
n−1
2

⌋)
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That is the poset V is forbidden in G.

By symmetry, the poset Λ is also forbidden in G.

Theorem (K-Tarján, 1981)

La(n, V,Λ) = 2

(
n− 1⌊
n−1
2

⌋)
Hence

|F| ≤ 2n−1 +
1

2
|G| ≤ 2n−1 +

(
n− 1⌊
n−1
2

⌋)
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Theorem (Katona-D.T. Nagy 2014+) If v ≥ 4 then

2n−1 +
1

2

(
n⌊
n
2

⌋) ≤ f(n, 1, v) ≤ 2n−1 +
1

2

(
n⌊
n
2

⌋)+
v − 2

n
+ O

(
1

n2

)
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Theorem (Katona-D.T. Nagy 2014+) If v ≥ 4 then

2n−1 +
1

2

(
n⌊
n
2

⌋) ≤ f(n, 1, v) ≤ 2n−1 +
1

2

(
n⌊
n
2

⌋)+
v − 2

n
+ O

(
1

n2

)

Proof uses forbidden
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Theorem (Katona-D.T. Nagy 2014+) If v ≥ u ≥ 2, v ≥ 3 then

2n−1 +

(
n⌊
n
2

⌋)(1− 2

n
+ O

(
1

n2

))
≤ f(n, u, v) ≤

2n−1 +

(
n⌊
n
2

⌋)(1 +
u + v − 3

n
+ O

(
1

n2

))
Proof uses forbidden
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Theorem (Katona-D.T. Nagy 2014+) Let 1 ≤ u ≤ v and suppose that the
family F ⊂

(
[n]
k

)
is a (u, v)-union–intersecting family then

|F| ≤
(
n− 1

k − 1

)
+ u− 1

holds if n > n(k, v).
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Theorem (Katona-D.T. Nagy 2014+) Let 1 ≤ u ≤ v and suppose that the
family F ⊂

(
[n]
k

)
is a (u, v)-union–intersecting family then

|F| ≤
(
n− 1

k − 1

)
+ u− 1

holds if n > n(k, v).

Is there an Ahlswede-Khachatrian theorem also here?
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