On the dimension of posets with cover graphs of treewidth 2

Gwenaël Joret Piotr Micek William T. Trotter

Ruidong Wang Veit Wiechert

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Cover graphs

Order diagram

Comparability graph

Incomparability graph

Cover graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Treewidth

Tree decompositions:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Treewidth

Tree decompositions:

Width = max. number of subtrees seen by a node -1

Treewidth = min. width of a tree decomposition

N.B. If tree required to be a path \rightarrow path decomposition / pathwidth

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (Trotter & Moore, 1977) Cover graph of P is a forest $\Rightarrow \dim(P) \leq 3$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Trotter & Moore, 1977) Cover graph of P is a forest $\Rightarrow \dim(P) \leq 3$

Restatement:

Theorem (Trotter & Moore, 1977) Cover graph of P has treewith $\leq 1 \Rightarrow \dim(P) \leq 3$

Can this be extended to graphs of bounded treewidth?

Theorem (Trotter & Moore, 1977) Cover graph of P is a forest $\Rightarrow \dim(P) \leq 3$

Restatement:

Theorem (Trotter & Moore, 1977) Cover graph of P has treewith $\leq 1 \Rightarrow \dim(P) \leq 3$

Can this be extended to graphs of bounded treewidth? No!

Standard examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Standard example S_n has dimension n

Kelly's construction (illustration for n = 6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ contains standard example $S_n \Rightarrow \dim(P) \ge n$
- treewidth = pathwidth = 3

Kelly's construction – path decomposition

E 996

Graphs of treewidth ≤ 2 have a simple structure:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- treewidth $\leqslant 2 \quad \Leftrightarrow \quad$ no K_4 -minor
- treewidth $\leqslant 2 \quad \Leftrightarrow \quad$ series-parallel
- ▶ ...

Two special cases: 1. Outerplanar cover graphs

ヘロン 人間 とくほと 人 ほとう

Theorem (Felsner, Trotter, Wiechert, 2014) Cover graph of P outerplanar $\Rightarrow \dim(P) \leq 4$ Two special cases: 2. Cover graphs of pathwidth ≤ 2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Theorem (Biró, Keller, Young, 2014) Cover graph of P has pathwidth $\leq 2 \Rightarrow \dim(P) \leq 17$

Theorem (Biró, Keller, Young, 2014) Cover graph of P has treewidth $\leq 2 \Rightarrow P$ does not contain S₅

 \rightarrow no hope of adapting Kelly's construction so that treewidth $\leqslant 2$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

"Every poset whose cover graph has treewidth $\leqslant 2$ has bounded dimension"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

"Every poset whose cover graph has treewidth $\leqslant 2$ has bounded dimension"

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (J., Micek, Trotter, Wang, Wiechert, 2014) Cover graph of P has treewidth $\leq 2 \Rightarrow \dim(P) \leq 2554$

About the proof

- Each incomparable pair (a, b) receives a signature σ(a, b) from a finite set Σ of signatures, encoding various properties of the pair
- Goal: Show that, for each σ ∈ Σ, the set of pairs receiving signature σ is reversible

Proof uses lots of "congestion strategies"

Toy example:

► say set under consideration not reversible because three pairs (a₁, b₁), (a₂, b₂), (a₃, b₃) form a strict alternating cycle:

say ∃ edge uv of T corresponding to a cutset {s, t} separating {a₁, a₂, a₃} from {b₁, b₂, b₃}:

▶ path witnessing $a_i \leq b_{i+1}$ meets $\{s, t\}$ for i = 1, 2, 3

 \Rightarrow two meet the same element, say s

 \Rightarrow $a_i \leq b_j$ for some i, j with $j \neq i + 1$, contradiction

What next?

<□ > < @ > < E > < E > E のQ @

Forbidding large standard examples

```
se(P) := largest n s.t. P contains S_n
```

Fix a class of graphs	
$\chi(G) \geqslant \omega(G) \forall G$	
class is χ -bounded if	
$\chi(G)\leqslant f(\omega(G)) orall G$	
for some function f	

```
Fix a class of posets

\dim(P) \ge \operatorname{se}(P) \quad \forall P

class is dim-bounded if

\dim(P) \le f(\operatorname{se}(P)) \quad \forall P

for some function f
```

- Are planar posets dim-bounded? (Trotter)
- ► Same question for posets with cover graphs of treewidth ≤ k → would generalize result for treewidth 2