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� Symmetry in ranked partially ordered sets

A partially ordered set P of length n is ranked if all maximal chains
between fixed endpoints have the same length; ranked orders admit
a partition P =

⊔n
i=0 Pi where Pi = min(P −⋃i−1

j=0 Pj).
Let ri = |Pi |, i = 0, 1, . . . , n, denote the rank numbers of P.

� P is rank-symmetric if ri = rn−i for all i

� P is rank-unimodal if r0 ≤ r1 ≤ · · · ≤ rj ≥ rj+1 ≥ · · · ≥ rn

� P is k-Sperner if no union of k antichains is larger than the
union of the k largest ranks, and P is strongly Sperner if it is
k-Sperner for k = 1, 2, . . . , n + 1

� P has the LYM property if for all antichains A ⊆ P,∑n
i=0 |A ∩ Pi |/ri ≤ 1

� P has a symmetric chain decomposition if P =
⊔n

i=0 Ci with
each Ci a symmetric, saturated chain in P
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� Quotients and automorphisms of partially ordered sets

For a partially ordered set P and G ≤ Aut(P), the quotient of P
by G, P/G , is the set of orbits of P under G , ordered by

[x ] ≤ [y ] ⇐⇒ ∃ x ′ ∈ [x ], y ′ ∈ [y ] with x ′ ≤ y ′ in P.

The Boolean lattice 2n of all subsets of [n] = {1, 2, . . . , n} ordered
by ⊆ has

Aut(2n) ∼= Sn

the symmetric group on [n].

More generally, for any finite chain C ,

Aut(Cn) ∼= Sn

and for chains Ci of distinct lengths and ni ∈ N (i = 1, 2, . . . ,m)

Aut(Cn1
1 × Cn2

2 × · · · × Cnm
m ) ∼= Sn1 × Sn2 × · · · × Snm .
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� Example
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Fig. 5. The Hasse diagram for N6.
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� Symmetry and quotients

Stanley [1980] proved that some interesting quotients are

� rank-symmetric, rank-unimodal, strongly Sperner

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and
Harper [1984] proved results from which these follow:

� for any G ≤ Sn, 2n/G is rank-symmetric, rank-unimodal and
strongly Sperner;

� for any P that is a product of chains and G ≤ Aut(P), P/G
is rank-symmetric, rank-unimodal and strongly Sperner.

Question: Do the quotients 2n/G always have SCDs?

Special cases of this were posed by Stanley but, in this generality,
the question was not asked until 20 years after these papers.
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� Symmetric chains

Let P be a rank-symmetric partially ordered set of length n:

P =
⊔n

i=0 Pi and ri = |Pi | (i = 0, 1, . . . , n).

P is rank-unimodal and strongly Sperner iff for i = 0, 1, . . . , bn/2c
∃ ri pwd saturated chains xi < xi+1 < · · · < xn−i , xj ∈ Pj :

P

P

P

P

Pi

i+1

n/2

n-(i+1)

n-i
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Rank-symmetry, rank-unimodality and strongly Sperner guarantee
matchings

φi : Pi → Pi+1, ψi : Pn−i → Pn−(i+1), i = 0, 1, . . . , bn/2c

so there is a partition of P into chains, but not necessarily
symmetric ones.

Example: [Griggs]
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� Questions and conjecture

Questions:

1980 Is the lattice L(m, n) of all partitions of an integer
into at most m parts of size at most n a symmetric
chain order (SCO) [Stanley]?

2004 Is 2n/Zn an SCO? [Griggs, Killian, Savage]
(Zn is generated by an n-cycle.)

Conjecture:

2006 For all G ≤ Sn, 2n/G is an SCO. [Canfield & Mason]
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� Stanley’s tableau example

L(m, n) is the
collection of all
downsets of an
m × n grid,
ordered by ⊆.

Some Background and Motivation:

Given an m × n grid,
L(m, n) is the collection
of all downsets, ordered
by containment.

m

n

Wednesday, September 21, 2011

Let G ≤ Smn be the group of all permutations constructed from
n independent permutations within the columns, followed by a
permutation of the columns: G ∼= Sm o Sn. Each orbit under G
has a unique downset representative: thus, L(m, n) ∼= 2mn/G .

Question: [Stanley 1980] Is L(m, n) an SCO?
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� What is known?

Let Zn ≤ Sn to be generated by the shift or n-cycle (1 2 · · · n).

1. for n prime, 2n/Zn is an SCO [Griggs, Killian, Savage 2004];

2. for all n, 2n/Zn is an SCO [Jordan 2010; Hersh and Schilling
2011];

3. for P a product of chains and K ≤ Aut(P) generated by
powers of disjoint cycles, P/K is an SCO [Duffus, McKibben-
Sanders and Thayer 2011];

4. for all n and all SCOs P, Pn/Zn is an SCO [Dhand 2011];
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Sanders and Thayer 2011];

4. for all n and all SCOs P, Pn/Zn is an SCO [Dhand 2011];



5. Let n = kt, G ≤ Sn, K ≤ Sk , T ≤ St , G = K o T via the
natural action of T on K t . If

(a) 2k/K is an SCO, and

(b) T is generated by powers of disjoint cycles

then 2n/G is an SCO.

Base case for (a): K is generated by powers of disjoint cycles.

[Duffus and Thayer(2014+)]
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� Open Problems

Problem 1: For all n ≥ 1, let D2n denote the dihedral group of
symmetries of a regular n-gon. Show that 2n/D2n is an SCO.

[Griggs, Killian, Savage (2004)]

Problem 2: Show that for all k, t, L(k , t) is an SCO. Equivalently,
show that this quotient is an SCO:

2kt/(Sk o St) ∼= (k + 1)t/St .

[Stanley 1980]

Problem 3: Determine if for every embedding φ of a finite abelian
group A in Sn, 2n/φ(A) is an SCO.
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Let A = Z2 × Z2 × Z5.

Then with

A1 = 〈(1 2), (3 4), (5 6 7 8 9)〉 ≤ S9

29/A1 is an SCO

A2 = 〈(1 2), (3 4 · · · 12)〉 ≤ S12

212/A2 is an SCO

Take A3 to the regular representation of A in S20. Is 220/A3 an
SCO?

Problem 4: Determine if the regular representation of an abelian
group A produces a quotient of 2|A| with an SCD.
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Each embedding of an abelian group A in a symmetric group can
be obtained as a product of actions A on factor groups A/H. Here
is a test case.

Example: Let A be an elementary abelian p-group, say A ∼= Zt
p,

and let Hi (i = 1, 2, . . . , k) be the maximal subgroups of A.

� the Hi ’s are the hyperplanes of A, k = (pt − 1)/(p − 1)

� each quotient A/Hi is a cyclic group of order p

� for each a ∈ A, x+Hi
âi→ a + x+Hi is in SA/Hi

� for each i , Âi := {âi | a ∈ A} ∼= Zp

� a→ (â1, â2, . . . âk) is an embedding of A in SN where
N =

⋃
Ni , with Ni := A/Hi , and so |N| = k · p

� Â is the diagonal subgroup of Â1 × Â2 × · · · × Âk



Each embedding of an abelian group A in a symmetric group can
be obtained as a product of actions A on factor groups A/H. Here
is a test case.

Example: Let A be an elementary abelian p-group, say A ∼= Zt
p,

and let Hi (i = 1, 2, . . . , k) be the maximal subgroups of A.

� the Hi ’s are the hyperplanes of A, k = (pt − 1)/(p − 1)

� each quotient A/Hi is a cyclic group of order p

� for each a ∈ A, x+Hi
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Proposition: 2N/ Â has an SCD.

We know that

� each 2Ni/Âi has an SCD, since each is isomorphic to 2p/Zp

� 2N/(Â1 × · · · × Âk) = 2N1/Â1 × · · · × 2Nk/Âk

� a product of SCOs is an SCO

� Â is a subgroup of Â1 × · · · × Âk so the orbits of 2N under Â
refine those under Â1 × · · · × Âk

Let C be a member of an SCD of 2N1/Â1 × · · · × 2Nk/Âk with its
rank j element Xj = ([X1,j ], [X2,j ], . . . , [Xk,j ]), j = r , r + 1, . . . , n − r .
We may assume that representatives are chosen such that

Xi ,j ⊆ Xi ,j+1, j = r , r + 1, . . . , n − r − 1.
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We know that
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rank j element Xj = ([X1,j ], [X2,j ], . . . , [Xk,j ]), j = r , r + 1, . . . , n − r .
We may assume that representatives are chosen such that

Xi ,j ⊆ Xi ,j+1, j = r , r + 1, . . . , n − r − 1.



Proposition: 2N/ Â has an SCD.
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Each class Xj refines into pk−1 members of 2N/ Â as follows: let

π̄ = (1, π2, π3, . . . , πk), πi ∈ Zp, and

π̄(Xj) = X1,j ∪ π2(X2,j) ∪ π3(X3,j) ∪ · · · ∪ πk(Xk,j).

Then the element [π̄(Xj)] in 2N/ Â is comprised of the p images of

π̄(Xj) under Â.

Since each Xi ,j ⊆ Xi ,j+1, j = r , r + 1, . . . , n − r − 1,

π̄(Xr ) ⊆ π̄(Xr+1) ⊆ · · · ⊆ π̄(Xn−r ), so

[π̄(Xr )] < [π̄(Xr+1)] < · · · < [π̄(Xn−r )] in 2N/ Â.

Hence, there exist pk−1 symmetric chains partitioning all refined
classes of C in 2N/ Â.
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Hence, there exist pk−1 symmetric chains partitioning all refined
classes of C in 2N/ Â.
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Then the element [π̄(Xj)] in 2N/ Â is comprised of the p images of

π̄(Xj) under Â.
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Hence, there exist pk−1 symmetric chains partitioning all refined
classes of C in 2N/ Â.



A Final Problem

Let Sn have its induced action on the k-element subsets of [n] and

let S
(k)
n denote the resulting subgroup of S([n]k ).

Then

2([n]
k )/S (k)

n

is the set of isomorphism types of uniform k-hypergraphs ordered
by embedding.

This is known to be rank-symmetric, rank-unimodal, strongly
Sperner . . .

Problem 5: Determine if the set of unlabelled k-graphs on [n],
ordered by subgraph, has an SCD.
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