Symmetric Chains in Quotients of Boolean Lattices

Dwight Duffus and Kyle Thayer

Mathematics & Computer Science, Emory University, Atlanta GA USA dwight@mathcs.emory.edu kyle.thayer@gmail.com

> SIAM DM Meeting Minneapolis / 16 - 19 June 2014

A partially ordered set *P* of length *n* is *ranked* if all maximal chains between fixed endpoints have the same length; ranked orders admit a partition $P = \bigsqcup_{i=0}^{n} P_i$ where $P_i = \min(P - \bigcup_{j=0}^{i-1} P_j)$. Let $r_i = |P_i|, i = 0, 1, ..., n$, denote the *rank numbers* of *P*.

A partially ordered set P of length n is *ranked* if all maximal chains between fixed endpoints have the same length; ranked orders admit a partition $P = \bigsqcup_{i=0}^{n} P_i$ where $P_i = \min(P - \bigcup_{j=0}^{i-1} P_j)$. Let $r_i = |P_i|, i = 0, 1, ..., n$, denote the *rank numbers* of P.

• *P* is rank-symmetric if $r_i = r_{n-i}$ for all *i*

A partially ordered set P of length n is ranked if all maximal chains between fixed endpoints have the same length; ranked orders admit a partition $P = \bigsqcup_{i=0}^{n} P_i$ where $P_i = \min(P - \bigcup_{j=0}^{i-1} P_j)$. Let $r_i = |P_i|, i = 0, 1, ..., n$, denote the rank numbers of P.

• *P* is rank-symmetric if $r_i = r_{n-i}$ for all *i*

• *P* is rank-unimodal if $r_0 \leq r_1 \leq \cdots \leq r_j \geq r_{j+1} \geq \cdots \geq r_n$

A partially ordered set P of length n is ranked if all maximal chains between fixed endpoints have the same length; ranked orders admit a partition $P = \bigsqcup_{i=0}^{n} P_i$ where $P_i = \min(P - \bigcup_{j=0}^{i-1} P_j)$. Let $r_i = |P_i|, i = 0, 1, ..., n$, denote the rank numbers of P.

- *P* is rank-symmetric if $r_i = r_{n-i}$ for all *i*
- *P* is rank-unimodal if $r_0 \leq r_1 \leq \cdots \leq r_j \geq r_{j+1} \geq \cdots \geq r_n$
- ♦ P is k-Sperner if no union of k antichains is larger than the union of the k largest ranks, and P is strongly Sperner if it is k-Sperner for k = 1, 2, ..., n + 1

A partially ordered set P of length n is ranked if all maximal chains between fixed endpoints have the same length; ranked orders admit a partition $P = \bigsqcup_{i=0}^{n} P_i$ where $P_i = \min(P - \bigcup_{j=0}^{i-1} P_j)$. Let $r_i = |P_i|, i = 0, 1, ..., n$, denote the rank numbers of P.

- *P* is rank-symmetric if $r_i = r_{n-i}$ for all *i*
- *P* is rank-unimodal if $r_0 \leq r_1 \leq \cdots \leq r_j \geq r_{j+1} \geq \cdots \geq r_n$
- ♦ P is k-Sperner if no union of k antichains is larger than the union of the k largest ranks, and P is strongly Sperner if it is k-Sperner for k = 1, 2, ..., n + 1

P has the LYM property if for all antichains
$$A \subseteq P$$
,

$$\sum_{i=0}^n |A \cap P_i|/r_i \leq 1$$

A partially ordered set P of length n is ranked if all maximal chains between fixed endpoints have the same length; ranked orders admit a partition $P = \bigsqcup_{i=0}^{n} P_i$ where $P_i = \min(P - \bigcup_{j=0}^{i-1} P_j)$. Let $r_i = |P_i|, i = 0, 1, ..., n$, denote the rank numbers of P.

- *P* is rank-symmetric if $r_i = r_{n-i}$ for all *i*
- *P* is rank-unimodal if $r_0 \leq r_1 \leq \cdots \leq r_j \geq r_{j+1} \geq \cdots \geq r_n$
- ♦ P is k-Sperner if no union of k antichains is larger than the union of the k largest ranks, and P is strongly Sperner if it is k-Sperner for k = 1, 2, ..., n + 1

• *P* has the *LYM property* if for all antichains
$$A \subseteq P$$
,
 $\sum_{i=0}^{n} |A \cap P_i| / r_i \le 1$

♦ P has a symmetric chain decomposition if P = □ⁿ_{i=0} C_i with each C_i a symmetric, saturated chain in P

For a partially ordered set P and $G \leq Aut(P)$, the quotient of P by G, P/G, is the set of orbits of P under G, ordered by

 $[x] \leq [y] \iff \exists x' \in [x], y' \in [y] \text{ with } x' \leq y' \text{ in } P.$

For a partially ordered set P and $G \leq Aut(P)$, the quotient of P by G, P/G, is the set of orbits of P under G, ordered by

$$[x] \leq [y] \iff \exists x' \in [x], y' \in [y] \text{ with } x' \leq y' \text{ in } P.$$

The Boolean lattice $\mathbf{2}^n$ of all subsets of $[n] = \{1, 2, \dots, n\}$ ordered by \subseteq has

$$\operatorname{Aut}(\mathbf{2}^n) \cong S_n$$

the symmetric group on [n].

For a partially ordered set P and $G \leq Aut(P)$, the quotient of P by G, P/G, is the set of orbits of P under G, ordered by

$$[x] \leq [y] \iff \exists x' \in [x], y' \in [y] \text{ with } x' \leq y' \text{ in } P.$$

The Boolean lattice $\mathbf{2}^n$ of all subsets of $[n] = \{1, 2, \dots, n\}$ ordered by \subseteq has

$$\operatorname{Aut}(\mathbf{2}^n) \cong S_n$$

the symmetric group on [n].

More generally, for any finite chain C,

$$\operatorname{Aut}(\mathbb{C}^n)\cong S_n$$

For a partially ordered set P and $G \leq Aut(P)$, the quotient of P by G, P/G, is the set of orbits of P under G, ordered by

$$[x] \leq [y] \iff \exists x' \in [x], y' \in [y] \text{ with } x' \leq y' \text{ in } P.$$

The Boolean lattice $\mathbf{2}^n$ of all subsets of $[n] = \{1, 2, ..., n\}$ ordered by \subseteq has

$$\operatorname{Aut}(\mathbf{2}^n) \cong S_n$$

the symmetric group on [n].

More generally, for any finite chain C,

$$\operatorname{Aut}(\mathbb{C}^n)\cong S_n$$

and for chains C_i of distinct lengths and $n_i \in \mathbb{N}$ (i = 1, 2, ..., m)

$$\operatorname{Aut}(C_1^{n_1} \times C_2^{n_2} \times \cdots \times C_m^{n_m}) \cong S_{n_1} \times S_{n_2} \times \cdots \times S_{n_m}.$$

♦ Example

• Symmetry and quotients

Symmetry and quotients

Stanley [1980] proved that some interesting quotients are

rank-symmetric, rank-unimodal, strongly Sperner

rank-symmetric, rank-unimodal, strongly Sperner

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and Harper [1984] proved results from which these follow:

rank-symmetric, rank-unimodal, strongly Sperner

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and Harper [1984] proved results from which these follow:

 ♦ for any G ≤ S_n, 2ⁿ/G is rank-symmetric, rank-unimodal and strongly Sperner;

rank-symmetric, rank-unimodal, strongly Sperner

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and Harper [1984] proved results from which these follow:

- ♦ for any G ≤ S_n, 2ⁿ/G is rank-symmetric, rank-unimodal and strongly Sperner;
- ♦ for any P that is a product of chains and G ≤ Aut(P), P/G is rank-symmetric, rank-unimodal and strongly Sperner.

rank-symmetric, rank-unimodal, strongly Sperner

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and Harper [1984] proved results from which these follow:

- ♦ for any G ≤ S_n, 2ⁿ/G is rank-symmetric, rank-unimodal and strongly Sperner;
- ♦ for any P that is a product of chains and G ≤ Aut(P), P/G is rank-symmetric, rank-unimodal and strongly Sperner.

Question: Do the quotients $2^n/G$ always have SCDs?

rank-symmetric, rank-unimodal, strongly Sperner

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and Harper [1984] proved results from which these follow:

- ♦ for any G ≤ S_n, 2ⁿ/G is rank-symmetric, rank-unimodal and strongly Sperner;
- ♦ for any P that is a product of chains and G ≤ Aut(P), P/G is rank-symmetric, rank-unimodal and strongly Sperner.

Question: Do the quotients $2^n/G$ always have SCDs?

Special cases of this were posed by Stanley but, in this generality, the question was not asked until 20 years after these papers.

♦ Symmetric chains

♦ Symmetric chains

Let P be a rank-symmetric partially ordered set of length n:

 $P = \bigsqcup_{i=0}^{n} P_i$ and $r_i = |P_i|$ (i = 0, 1, ..., n).

Symmetric chains

Let *P* be a rank-symmetric partially ordered set of length *n*: $P = | |_{i=0}^{n} P_{i} \text{ and } r_{i} = |P_{i}| (i = 0, 1, ..., n).$

P is rank-unimodal and strongly Sperner iff for $i = 0, 1, ..., \lfloor n/2 \rfloor$ $\exists r_i \text{ pwd saturated chains } x_i < x_{i+1} < \cdots < x_{n-i}, x_j \in P_j :$

Symmetric chains

Let *P* be a rank-symmetric partially ordered set of length *n*: $P = | |_{i=0}^{n} P_{i} \text{ and } r_{i} = |P_{i}| (i = 0, 1, ..., n).$

P is rank-unimodal and strongly Sperner iff for $i = 0, 1, ..., \lfloor n/2 \rfloor$ \exists r_i pwd saturated chains $x_i < x_{i+1} < \cdots < x_{n-i}, x_i \in P_j$:

Rank-symmetry, rank-unimodality and strongly Sperner guarantee matchings

$$\phi_i: P_i \to P_{i+1}, \ \psi_i: P_{n-i} \to P_{n-(i+1)}, \ i = 0, 1, \dots, \lfloor n/2 \rfloor$$

so there is a partition of P into chains, but not necessarily symmetric ones.

Rank-symmetry, rank-unimodality and strongly Sperner guarantee matchings

$$\phi_i: P_i \to P_{i+1}, \ \psi_i: P_{n-i} \to P_{n-(i+1)}, \ i = 0, 1, \dots, \lfloor n/2 \rfloor$$

so there is a partition of P into chains, but not necessarily symmetric ones.

Example: [Griggs]

♦ Questions and conjecture

Questions:

1980 Is the lattice L(m, n) of all partitions of an integer into at most *m* parts of size at most *n* a symmetric chain order (SCO) [Stanley]?

Questions:

- 1980 Is the lattice L(m, n) of all partitions of an integer into at most *m* parts of size at most *n* a symmetric chain order (SCO) [Stanley]?
- 2004 Is $2^n/\mathbb{Z}_n$ an SCO? [Griggs, Killian, Savage] (\mathbb{Z}_n is generated by an *n*-cycle.)

Questions:

- 1980 Is the lattice L(m, n) of all partitions of an integer into at most m parts of size at most n a symmetric chain order (SCO) [Stanley]?
- 2004 Is $2^n/\mathbb{Z}_n$ an SCO? [Griggs, Killian, Savage] (\mathbb{Z}_n is generated by an *n*-cycle.)

Conjecture:

2006 For all $G \leq S_n$, $2^n/G$ is an SCO. [Canfield & Mason]

♦ Stanley's tableau example

L(m, n) is the collection of all downsets of an $m \times n$ grid, ordered by \subseteq .

L(m, n) is the collection of all downsets of an $m \times n$ grid, ordered by \subseteq .

n

L(m, n) is the collection of all downsets of an $m \times n$ grid, ordered by \subseteq .

n

Let $G \leq S_{mn}$ be the group of all permutations constructed from n independent permutations within the columns, followed by a permutation of the columns:
L(m, n) is the collection of all downsets of an $m \times n$ grid, ordered by \subseteq .

n

Let $G \leq S_{mn}$ be the group of all permutations constructed from n independent permutations within the columns, followed by a permutation of the columns: $G \cong S_m \wr S_n$. Each orbit under G has a unique downset representative: thus, $L(m, n) \cong 2^{mn}/G$.

L(m, n) is the collection of all downsets of an $m \times n$ grid, ordered by \subseteq .

n

Let $G \leq S_{mn}$ be the group of all permutations constructed from n independent permutations within the columns, followed by a permutation of the columns: $G \cong S_m \wr S_n$. Each orbit under G has a unique downset representative: thus, $L(m, n) \cong 2^{mn}/G$.

Question: [Stanley 1980] Is L(m, n) an SCO?

♦ What is known?

♦ What is known?

1. for *n* prime, $2^n/\mathbb{Z}_n$ is an SCO [Griggs, Killian, Savage 2004];

- 1. for *n* prime, $2^n/\mathbb{Z}_n$ is an SCO [Griggs, Killian, Savage 2004];
- 2. for all *n*, $2^n/\mathbb{Z}_n$ is an SCO [Jordan 2010; Hersh and Schilling 2011];

- 1. for *n* prime, $2^n/\mathbb{Z}_n$ is an SCO [Griggs, Killian, Savage 2004];
- 2. for all *n*, $2^n/\mathbb{Z}_n$ is an SCO [Jordan 2010; Hersh and Schilling 2011];
- for P a product of chains and K ≤ Aut(P) generated by powers of disjoint cycles, P/K is an SCO [Duffus, McKibben-Sanders and Thayer 2011];

- 1. for *n* prime, $2^n/\mathbb{Z}_n$ is an SCO [Griggs, Killian, Savage 2004];
- 2. for all *n*, $2^n/\mathbb{Z}_n$ is an SCO [Jordan 2010; Hersh and Schilling 2011];
- for P a product of chains and K ≤ Aut(P) generated by powers of disjoint cycles, P/K is an SCO [Duffus, McKibben-Sanders and Thayer 2011];
- 4. for all *n* and all SCOs *P*, P^n/\mathbb{Z}_n is an SCO [Dhand 2011];

5. Let n = kt, $G \leq S_n$, $K \leq S_k$, $T \leq S_t$, $G = K \wr T$ via the natural action of T on K^t . If

(a) $2^k/K$ is an SCO, and

(b) T is generated by powers of disjoint cycles

then $2^n/G$ is an SCO.

5. Let n = kt, $G \leq S_n$, $K \leq S_k$, $T \leq S_t$, $G = K \wr T$ via the natural action of T on K^t If (a) $2^k/K$ is an SCO, and (b) T is generated by powers of disjoint cycles then $2^n/G$ is an SCO. Base case for (a): K is generated by powers of disjoint cycles. [Duffus and Thayer(2014⁺)]

♦ Open Problems

Problem 1: For all $n \ge 1$, let D_{2n} denote the dihedral group of symmetries of a regular *n*-gon. Show that $2^n/D_{2n}$ is an SCO. [Griggs, Killian, Savage (2004)]

Problem 1: For all $n \ge 1$, let D_{2n} denote the dihedral group of symmetries of a regular *n*-gon. Show that $2^n/D_{2n}$ is an SCO. [Griggs, Killian, Savage (2004)]

Problem 2: Show that for all k, t, L(k, t) is an SCO. Equivalently, show that this quotient is an SCO:

$$\mathbf{2}^{kt}/(S_k \wr S_t) \cong (\mathbf{k}+\mathbf{1})^t/S_t.$$

[Stanley 1980]

Problem 1: For all $n \ge 1$, let D_{2n} denote the dihedral group of symmetries of a regular *n*-gon. Show that $2^n/D_{2n}$ is an SCO. [Griggs, Killian, Savage (2004)]

Problem 2: Show that for all k, t, L(k, t) is an SCO. Equivalently, show that this quotient is an SCO:

$$\mathbf{2}^{kt}/(S_k\wr S_t) \cong (\mathbf{k}+\mathbf{1})^t/S_t.$$

[Stanley 1980]

Problem 3: Determine if for every embedding ϕ of a finite abelian group A in S_n , $2^n/\phi(A)$ is an SCO.

Let $A = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5$.

Let $A = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5$. Then with

$$A_1 = \langle (1 \ 2), (3 \ 4), (5 \ 6 \ 7 \ 8 \ 9)
angle \leq S_9$$

 $\mathbf{2}^9/A_1$ is an SCO

Let $A = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5$. Then with $A_1 = \langle (1 \ 2), (3 \ 4), (5 \ 6 \ 7 \ 8 \ 9) \rangle \le S_9$ $2^9/A_1$ is an SCO

$$A_2 = \langle (1 \ 2), (3 \ 4 \ \cdots \ 12) \rangle \leq S_{12}$$

 $2^{12}/A_2$ is an SCO

Let $A = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5$. Then with $A_1 = \langle (1 \ 2), (3 \ 4), (5 \ 6 \ 7 \ 8 \ 9) \rangle \le S_9$ $\mathbf{2}^9 / A_1$ is an SCO $A_2 = \langle (1 \ 2), (3 \ 4 \ \cdots \ 12) \rangle \le S_{12}$ $\mathbf{2}^{12} / A_2$ is an SCO

Take A_3 to the regular representation of A in S_{20} . Is $2^{20}/A_3$ an SCO?

Let $A = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5$. Then with $A_1 = \langle (1 \ 2), (3 \ 4), (5 \ 6 \ 7 \ 8 \ 9) \rangle \le S_9$ $\mathbf{2}^9 / A_1$ is an SCO $A_2 = \langle (1 \ 2), (3 \ 4 \ \cdots \ 12) \rangle \le S_{12}$ $\mathbf{2}^{12} / A_2$ is an SCO

Take A_3 to the regular representation of A in S_{20} . Is $2^{20}/A_3$ an SCO?

Problem 4: Determine if the regular representation of an abelian group A produces a quotient of $2^{|A|}$ with an SCD.

Example: Let A be an elementary abelian p-group, say $A \cong \mathbb{Z}_p^t$, and let H_i (i = 1, 2, ..., k) be the maximal subgroups of A.

Example: Let A be an elementary abelian p-group, say $A \cong \mathbb{Z}_p^t$, and let H_i (i = 1, 2, ..., k) be the maximal subgroups of A.

• the H_i 's are the hyperplanes of A, $k = (p^t - 1)/(p - 1)$

Example: Let A be an elementary abelian p-group, say $A \cong \mathbb{Z}_p^t$, and let H_i (i = 1, 2, ..., k) be the maximal subgroups of A.

• the H_i 's are the hyperplanes of A, $k = (p^t - 1)/(p - 1)$

• each quotient A/H_i is a cyclic group of order p

Example: Let A be an elementary abelian p-group, say $A \cong \mathbb{Z}_p^t$, and let H_i (i = 1, 2, ..., k) be the maximal subgroups of A.

• the H_i 's are the hyperplanes of A, $k = (p^t - 1)/(p - 1)$

each quotient A/H_i is a cyclic group of order p

$$igstarrow$$
 for each $a\in A$, $x\!+\!H_i\stackrel{\widehat{a}_i}{
ightarrow}a\!+\!x\!+\!H_i$ is in S_{A/H_i}

Example: Let A be an elementary abelian p-group, say $A \cong \mathbb{Z}_p^t$, and let H_i (i = 1, 2, ..., k) be the maximal subgroups of A.

• the H_i 's are the hyperplanes of A, $k = (p^t - 1)/(p - 1)$

each quotient A/H_i is a cyclic group of order p

$$igstarrow$$
 for each $a\in A$, $x\!+\!H_i\stackrel{\widehat{a}_i}{
ightarrow}a\!+\!x\!+\!H_i$ is in S_{A/H_i}

• for each i, $\widehat{A}_i := \{\widehat{a}_i \mid a \in A\} \cong \mathbb{Z}_p$

Example: Let A be an elementary abelian p-group, say $A \cong \mathbb{Z}_p^t$, and let H_i (i = 1, 2, ..., k) be the maximal subgroups of A.

• the H_i 's are the hyperplanes of A, $k = (p^t - 1)/(p - 1)$

• each quotient A/H_i is a cyclic group of order p

$$igstarrow$$
 for each $a\in A$, $x\!+\!H_i\stackrel{\widehat{a}_i}{
ightarrow}a+x\!+\!H_i$ is in S_{A/H_i}

• for each
$$i$$
, $\widehat{A}_i := \{\widehat{a}_i \mid a \in A\} \cong \mathbb{Z}_p$

• $a \to (\hat{a}_1, \hat{a}_2, \dots \hat{a}_k)$ is an embedding of A in S_N where $N = \bigcup N_i$, with $N_i := A/H_i$, and so $|N| = k \cdot p$

Example: Let A be an elementary abelian p-group, say $A \cong \mathbb{Z}_p^t$, and let H_i (i = 1, 2, ..., k) be the maximal subgroups of A.

• the H_i 's are the hyperplanes of A, $k = (p^t - 1)/(p - 1)$

• each quotient A/H_i is a cyclic group of order p

$$igstarrow$$
 for each $a\in A$, $x\!+\!H_i\stackrel{\widehat{a}_i}{
ightarrow}a+x\!+\!H_i$ is in S_{A/H_i}

- for each *i*, $\widehat{A}_i := \{\widehat{a}_i \mid a \in A\} \cong \mathbb{Z}_p$
- $a \to (\hat{a}_1, \hat{a}_2, \dots \hat{a}_k)$ is an embedding of A in S_N where $N = \bigcup N_i$, with $N_i := A/H_i$, and so $|N| = k \cdot p$

igtheta \widehat{A} is the diagonal subgroup of $\widehat{A}_1 imes \widehat{A}_2 imes \cdots imes \widehat{A}_k$

Proposition: $\mathbf{2}^N / \widehat{A}$ has an SCD.

We know that

• each $\mathbf{2}^{N_i}/\widehat{A}_i$ has an SCD, since each is isomorphic to $\mathbf{2}^p/\mathbb{Z}_p$

Proposition: $\mathbf{2}^N / \widehat{A}$ has an SCD.

We know that

 \blacklozenge each $\mathbf{2}^{N_i}/\widehat{A}_i$ has an SCD, since each is isomorphic to $\mathbf{2}^p/\mathbb{Z}_p$

$$\blacklozenge \ \mathbf{2}^{N}/(\widehat{A}_{1}\times\cdots\times\widehat{A}_{k}) \ = \ \mathbf{2}^{N_{1}}/\widehat{A}_{1}\times\cdots\times\mathbf{2}^{N_{k}}/\widehat{A}_{k}$$

We know that

 \blacklozenge each $\mathbf{2}^{N_i}/\widehat{A}_i$ has an SCD, since each is isomorphic to $\mathbf{2}^p/\mathbb{Z}_p$

$$\blacklozenge \ \mathbf{2}^{N}/(\widehat{A}_{1}\times\cdots\times\widehat{A}_{k}) \ = \ \mathbf{2}^{N_{1}}/\widehat{A}_{1}\times\cdots\times\mathbf{2}^{N_{k}}/\widehat{A}_{k}$$

a product of SCOs is an SCO

We know that

 \blacklozenge each $\mathbf{2}^{N_i}/\widehat{A}_i$ has an SCD, since each is isomorphic to $\mathbf{2}^p/\mathbb{Z}_p$

$$\blacklozenge \ \mathbf{2}^{N}/(\widehat{A}_{1}\times\cdots\times\widehat{A}_{k}) \ = \ \mathbf{2}^{N_{1}}/\widehat{A}_{1}\times\cdots\times\mathbf{2}^{N_{k}}/\widehat{A}_{k}$$

a product of SCOs is an SCO

• \widehat{A} is a subgroup of $\widehat{A}_1 \times \cdots \times \widehat{A}_k$ so the orbits of $\mathbf{2}^N$ under \widehat{A} refine those under $\widehat{A}_1 \times \cdots \times \widehat{A}_k$

We know that

 \blacklozenge each $\mathbf{2}^{N_i}/\widehat{A}_i$ has an SCD, since each is isomorphic to $\mathbf{2}^p/\mathbb{Z}_p$

$$\blacklozenge \ \mathbf{2}^{N}/(\widehat{A}_{1}\times\cdots\times\widehat{A}_{k}) \ = \ \mathbf{2}^{N_{1}}/\widehat{A}_{1}\times\cdots\times\mathbf{2}^{N_{k}}/\widehat{A}_{k}$$

a product of SCOs is an SCO

• \widehat{A} is a subgroup of $\widehat{A}_1 \times \cdots \times \widehat{A}_k$ so the orbits of $\mathbf{2}^N$ under \widehat{A} refine those under $\widehat{A}_1 \times \cdots \times \widehat{A}_k$

Let **C** be a member of an SCD of $2^{N_1}/\widehat{A}_1 \times \cdots \times 2^{N_k}/\widehat{A}_k$ with its rank *j* element $\mathcal{X}_j = ([X_{1,j}], [X_{2,j}], \ldots, [X_{k,j}])$, $j = r, r+1, \ldots, n-r$. We may assume that representatives are chosen such that

$$X_{i,j} \subseteq X_{i,j+1}, j=r,r+1,\ldots,n-r-1.$$

Each class \mathcal{X}_j refines into p^{k-1} members of $\mathbf{2}^N/|\widehat{A}|$ as follows: let

$$ar{\pi}=(1,\pi_2,\pi_3,\ldots,\pi_k),\ \pi_i\in\mathbb{Z}_p,\ ext{and}$$

 $\bar{\pi}(\mathcal{X}_j) = X_{1,j} \cup \pi_2(X_{2,j}) \cup \pi_3(X_{3,j}) \cup \cdots \cup \pi_k(X_{k,j}).$

Each class \mathcal{X}_j refines into p^{k-1} members of $\mathbf{2}^N/|\widehat{A}|$ as follows: let

$$ar{\pi}=(1,\pi_2,\pi_3,\ldots,\pi_k),\ \pi_i\in\mathbb{Z}_p,\ ext{and}$$

$$ar{\pi}(\mathcal{X}_j) = X_{1,j} \cup \pi_2(X_{2,j}) \cup \pi_3(X_{3,j}) \cup \cdots \cup \pi_k(X_{k,j}).$$

Then the element $[\bar{\pi}(\mathcal{X}_j)]$ in $\mathbf{2}^N / \widehat{A}$ is comprised of the *p* images of $\bar{\pi}(\mathcal{X}_j)$ under \widehat{A} .

Each class \mathcal{X}_j refines into p^{k-1} members of $\mathbf{2}^N/|\widehat{A}|$ as follows: let

$$ar{\pi}=(1,\pi_2,\pi_3,\ldots,\pi_k),\ \pi_i\in\mathbb{Z}_p,\ ext{and}$$

$$\bar{\pi}(\mathcal{X}_j) = X_{1,j} \cup \pi_2(X_{2,j}) \cup \pi_3(X_{3,j}) \cup \cdots \cup \pi_k(X_{k,j}).$$

Then the element $[\bar{\pi}(\mathcal{X}_j)]$ in $\mathbf{2}^N / \widehat{A}$ is comprised of the *p* images of $\bar{\pi}(\mathcal{X}_j)$ under \widehat{A} .

Since each $X_{i,j} \subseteq X_{i,j+1}$, $j = r, r+1, \ldots, n-r-1$,

$$ar{\pi}(\mathcal{X}_r)\subseteqar{\pi}(\mathcal{X}_{r+1})\subseteq\cdots\subseteqar{\pi}(\mathcal{X}_{n-r}),$$
 so

$$[\bar{\pi}(\mathcal{X}_r)] < [\bar{\pi}(\mathcal{X}_{r+1})] < \cdots < [\bar{\pi}(\mathcal{X}_{n-r})] \text{ in } \mathbf{2}^N / \widehat{A}.$$

Hence, there exist p^{k-1} symmetric chains partitioning all refined classes of **C** in $2^N / \hat{A}$.

Let S_n have its induced action on the *k*-element subsets of [n] and let $S_n^{(k)}$ denote the resulting subgroup of $S_{\binom{[n]}{\nu}}$.
Let S_n have its induced action on the *k*-element subsets of [n] and let $S_n^{(k)}$ denote the resulting subgroup of $S_{\binom{[n]}{k}}$. Then

$$2^{\binom{[n]}{k}}/S_n^{(k)}$$

is the set of isomorphism types of uniform k-hypergraphs ordered by embedding.

Let S_n have its induced action on the *k*-element subsets of [n] and let $S_n^{(k)}$ denote the resulting subgroup of $S_{\binom{[n]}{k}}$. Then

$$2^{\binom{[n]}{k}}/S_n^{(k)}$$

is the set of isomorphism types of uniform k-hypergraphs ordered by embedding.

This is known to be rank-symmetric, rank-unimodal, strongly Sperner . . .

Let S_n have its induced action on the *k*-element subsets of [n] and let $S_n^{(k)}$ denote the resulting subgroup of $S_{\binom{[n]}{k}}$. Then

$$2^{\binom{[n]}{k}}/S_n^{(k)}$$

is the set of isomorphism types of uniform k-hypergraphs ordered by embedding.

This is known to be rank-symmetric, rank-unimodal, strongly Sperner . . .

Problem 5: Determine if the set of unlabelled k-graphs on [n], ordered by subgraph, has an SCD.