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A partially ordered set P of length n is ranked if all maximal chains
between fixed endpoints have the same length; ranked orders admit
a partition P = | |7 P; where P; = min(P — U’ sP)).

Let r; = |Pi|, i=0,1,...,n, denote the rank numbers of P.

¢ P is rank-symmetric if r; = r,_; for all i
¢ Pis rank-unimodalif g < <---<r>rg1>--2>r,

& P is k-Sperner if no union of k antichains is larger than the
union of the k largest ranks, and P is strongly Sperner if it is
k-Sperner for k=1,2,...,.n+1

¢ P has the LYM property if for all antichains A C P,

YiolANP|/r<1

¢ P has a symmetric chain decomposition if P =| |!_, C; with
each C; a symmetric, saturated chain in P
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¢ Quotients and automorphisms of partially ordered sets

For a partially ordered set P and G < Aut(P), the quotient of P
by G, P/G, is the set of orbits of P under G, ordered by

x| <[y] < 3IX €[x], y €y] with X’ <y’ in P.

The Boolean lattice 2" of all subsets of [n] = {1,2,...,n} ordered
by C has
Aut(2") = S,

the symmetric group on [n].
More generally, for any finite chain C,
Aut(C") = S,
and for chains C; of distinct lengths and n; e N (i =1,2,...,m)

Aut(C' x G2 x -+ x CAIm) =2 S, X Sp, X -+ X S, .
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¢ Symmetry and quotients

Stanley [1980] proved that some interesting quotients are
¢ rank-symmetric, rank-unimodal, strongly Sperner

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and
Harper [1984] proved results from which these follow:

¢ forany G < S, 2"/G is rank-symmetric, rank-unimodal and
strongly Sperner;

¢ for any P that is a product of chains and G < Aut(P), P/G
is rank-symmetric, rank-unimodal and strongly Sperner.

Question: Do the quotients 2"/G always have SCDs?

Special cases of this were posed by Stanley but, in this generality,
the question was not asked until 20 years after these papers.
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¢ Symmetric chains

Let P be a rank-symmetric partially ordered set of length n:
P:Ll;’:OP" and r; = ‘P,’ (i:O’L_“,n)_

P is rank-unimodal and strongly Sperner iff for i = 0,1,...,|n/2]
3 rj pwd saturated chains x; < xjy1 <. < Xp—j, Xj € P;:
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Rank-symmetry, rank-unimodality and strongly Sperner guarantee
matchings
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so there is a partition of P into chains, but not necessarily
symmetric ones.



Rank-symmetry, rank-unimodality and strongly Sperner guarantee
matchings

¢I':Pf_>’Di+17 q;bi:Pnfl'_>Pn7(i+l)7 IZO,].,,L”/2J

so there is a partition of P into chains, but not necessarily
symmetric ones.

Example: [Griggs]
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¢ Questions and conjecture

Questions:
1980 Is the lattice L(m, n) of all partitions of an integer
into at most m parts of size at most n a symmetric

chain order (SCO) [Stanley]?

2004 Is 2"/Z, an SCO? [Griggs, Killian, Savage]
(Zn is generated by an n-cycle.)

Conjecture:

2006 For all G < S,, 2"/G is an SCO. [Canfield & Mason]
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4 Stanley's tableau example

L(m, n) is the
collection of all
downsets of an
m X n grid,
ordered by C.

n

Let G < S, be the group of all permutations constructed from
n independent permutations within the columns, followed by a
permutation of the columns: G = S,,1S,,. Each orbit under G
has a unique downset representative: thus, L(m,n) = 2™"/G.

Question: [Stanley 1980] Is L(m, n) an SCO?
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¢ What is known?

Let Z, < S, to be generated by the shift or n-cycle (1 2---n).

1. for n prime, 2"/Z, is an SCO [Griggs, Killian, Savage 2004];

2. for all n, 2"/Zy is an SCO [Jordan 2010; Hersh and Schilling
2011];

3. for P a product of chains and K < Aut(P) generated by
powers of disjoint cycles, P/K is an SCO [Duffus, McKibben-
Sanders and Thayer 2011];

4. for all n and all SCOs P, P"/Zj, is an SCO [Dhand 2011];



5. Letn=kt, G<S,, K<S,, T<S5;, G=KT via the
natural action of T on Kt. If

(a) 2K/K is an SCO, and
(b) T is generated by powers of disjoint cycles
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5. Letn=kt, G<S,, K<S,, T<S5;, G=KT via the
natural action of T on Kt. If

(a) 2K/K is an SCO, and
(b) T is generated by powers of disjoint cycles
then 2"/G is an SCO.

Base case for (a): K is generated by powers of disjoint cycles.

[Duffus and Thayer(20147)]
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¢ Open Problems

Problem 1: For all n > 1, let D,, denote the dihedral group of
symmetries of a regular n-gon. Show that 2"/D5, is an SCO.
[Griggs, Killian, Savage (2004)]

Problem 2: Show that for all k, t, L(k, t) is an SCO. Equivalently,
show that this quotient is an SCO:

2K /(S 1S) = (k+1)t/S:.
[Stanley 1980]

Problem 3: Determine if for every embedding ¢ of a finite abelian
group Ain S, 2"/¢(A) is an SCO.
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A1 =1((12),(34),(56789)) <5y
29/A; is an SCO
Ar=((12),(34 --- 12)) < 51»

212 /A, is an SCO

Take A3 to the regular representation of A in Sx. Is 220/As3 an
SCO?

Problem 4: Determine if the regular representation of an abelian
group A produces a quotient of 2|4 with an SCD.
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Each embedding of an abelian group A in a symmetric group can
be obtained as a product of actions A on factor groups A/H. Here
is a test case.

Example: Let A be an elementary abelian p-group, say A= Zf,,
and let H; (i =1,2,..., k) be the maximal subgroups of A.

¢ the H;'s are the hyperplanes of A, k = (p* —1)/(p—1)

¢ each quotient A/H; is a cyclic group of order p
¢ for each a € A, x+H; E) a+x+Hisin Sp/p,
¢ foreach i, A;:={3; | ac A} =7Zp

¢ a2 — (31,32,...3) is an embedding of A in Sy where
N =JN;, with N; := A/H;, and so [N| =k -p

~

¢ Ais the diagonal subgroup of 21 X 22 X o X Ak
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Proposition: 2V/ A has an SCD.

We know that

¢ cach 2V /A; has an SCD, since each is isomorphic to 2P 7,
¢ 2N/(24\1 X o X /Zk) = 2N1/21 X oooe X 2Nk/24\k
¢ a product of SCOs is an SCO

¢ Ais a subgroup on41 X oo ng so the orbits of 2V under A
refine those under Ay x - -+ X Ag

Let C be a member of an SCD of 2M /A; x - x 2Nk /A, with its
rank j element &X; = ([X1,], [Xo ], ..., [Xkj]), j=rir+1,....n—r.
We may assume that representatives are chosen such that

X,',jgX;J+1,j:r,r+1,...,n—r—1.
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Each class X refines into p*~! members of 2V/ A as follows: let

7= (1,m,m3,...,mk), T € Lp, and
T(A) = Xy Uma(Xa ) Ums(Xa) U -+ U k(X )

Then the element [7(X;)] in 2N/ A is comprised of the p images of
7(X;) under A.

Since each X;; C Xjjy1,j=r,r+1,...,n—r—1,
77-(-/‘t‘r) - ﬁ(Xr—i-l) c.--C 7?(-X‘n—r)a SO

[F(X)] < [F(Xrg1)] < -+ < [F(Xa_p)] in 2V/ A,

Hence, there exist pX~1 symmetric chains partitioning all refined
classes of C in 2V/ A.
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A Final Problem

Let S, have its induced action on the k-element subsets of [n] and
let S,(,k) denote the resulting subgroup of 5([n]).Then
k

[n] k
2( K )/Sr(7 )
is the set of isomorphism types of uniform k-hypergraphs ordered

by embedding.

This is known to be rank-symmetric, rank-unimodal, strongly
Sperner . . .

Problem 5: Determine if the set of unlabelled k-graphs on [n],
ordered by subgraph, has an SCD.



