Def. A branch of the logarithm on G is a continuous function $\log : G \rightarrow \mathbb{C}$, where G is an open connected subset of \mathbb{C}, such that

$$
e^{\log z}=z \quad, \text { for each } \quad z \in G
$$

\langle Note G cannot contain zero since for all $z \in \mathbb{C}$ we have $| e^{\log z} \mid=e^{\mathrm{Re}(\log z)} \neq 0$.〉
Thm. If $\log : G \rightarrow \mathbb{C}$ is a branch of the logarithm on (an open connected set) G, then $\log (\cdot) \in H(G)$ and

$$
[\log (\cdot)]^{\prime}(z)=\frac{1}{z} \quad, \text { for each } \quad z \in G
$$

The argument of $z \in \mathbb{C} \backslash\{0\}$, denoted $\arg z$, is the set

$$
\arg z:=\left\{\theta \in \mathbb{R}: z=|z| e^{i \theta}\right\}
$$

Thus, if $z=r e^{i \theta}$ with $r>0$, then

$$
\arg z=\{\theta+2 k \pi \in \mathbb{R}: k \in \mathbb{Z}\}
$$

When we want to think of $\arg z$ as the unique real number from the set $\arg z$ that is also in a clopen interval of length 2π, we (abusively) denote the desired unique real number as, e.g., " $\arg z$ where $17<\arg z \leq 17+2 \pi$ ".

The principle value of the argument of $z \in \mathbb{C} \backslash\{0\}$, denoted $\operatorname{Arg} z$, is the (unique) real number such that

$$
\operatorname{Arg} z \in \arg z \quad \text { and } \quad-\pi<\operatorname{Arg} z \leq \pi
$$

which gives rise to the function $\operatorname{Arg}: \mathbb{C} \backslash\{0\} \rightarrow(-\pi, \pi]$ defined by $\operatorname{Arg}(z)=\operatorname{Arg} z$.
The branch cut for the principle branch of the logarithm function is the ray

$$
B=\left\{r e^{i \pi}: r \geq 0\right\} \stackrel{\text { i.e. }}{=}\{z \in \mathbb{C}: \operatorname{Im} z=0, \operatorname{Re} z \leq 0\}
$$

The principal branch of the logarithm function is the function

$$
\log : \mathbb{C} \backslash B \rightarrow \mathbb{C} \quad \text { given by } \quad \log (z):=\ln |z|+i \operatorname{Arg} z
$$

where $\ln :(0, \infty) \rightarrow \mathbb{R}$ is the ususal (real) natural logarithm function.
Towards forming another branch of the logarithm function, fix $\alpha \in \mathbb{R}$. Form the branch cut

$$
B_{\alpha}=\left\{r e^{i \alpha}: r \geq 0\right\}
$$

Then another branch of the logarithm function is the function

$$
\log : \mathbb{C} \backslash B_{\alpha} \rightarrow \mathbb{C} \text { given by } \log (z):=\ln |z|+i \arg z \quad \text { where } \quad \alpha<\arg z<\alpha+2 \pi,
$$

which satisfies

$$
\log \left(e^{z}\right)=z \quad, \text { for each } \quad z \in \mathbb{C} \backslash B_{\alpha} \quad \text { such that } \quad \alpha<\operatorname{Im} z<\alpha+2 \pi
$$

\langle for $x+i y \in \mathbb{C} \backslash\{0\}$ note: $\ln | e^{x+i y} \mid=\ln \left(\left|e^{x}\right|\left|e^{i y}\right|\right)=\ln e^{x}=x$ and $\left.\arg \left(e^{x+i y}\right)=\arg \left(e^{x} e^{i y}\right)=\arg \left(e^{i y}\right)=\{y+2 \pi k: k \in \mathbb{Z}\}\right\rangle$.

