Def. A <u>branch of the logarithm on G is a continuous</u> function log: $G \to \mathbb{C}$, where G is an open Def connected subset of \mathbb{C} , such that

$$e^{\log z} = z$$
, for each $z \in G$.

 $\langle \operatorname{Note}\, G \text{ cannot contain zero since for all } z \in \mathbb{C} \text{ we have } \left| e^{\log z} \right| = e^{\operatorname{Re}\left(\log z\right)} \neq 0. \, \rangle$

Thm. If $\log: G \to \mathbb{C}$ is a branch of the logarithm on (an open connected set) G, then $\log(\cdot) \in H(G)$ and Cor I.3.16

$$\left[\log\left(\cdot\right)\right]'(z) = \frac{1}{z}$$
, for each $z \in G$

.....

The <u>argument</u> of $z \in \mathbb{C} \setminus \{0\}$, denoted arg z, is the set

$$\arg z := \left\{ \theta \in \mathbb{R} \colon z = |z| e^{i\theta} \right\}.$$

Thus, if $z = re^{i\theta}$ with r > 0, then

$$\arg z = \{\theta + 2k\pi \in \mathbb{R} \colon k \in \mathbb{Z}\}.$$

When we want to think of $\arg z$ as the unique real number from the set $\arg z$ that is also in a clopen interval of length 2π , we (abusively) denote the desired unique real number as, e.g., "arg z where $17 < \arg z \le 17 + 2\pi$ ".

The principle value of the argument of $z \in \mathbb{C} \setminus \{0\}$, denoted $\operatorname{Arg} z$, is the (unique) real number such that

 $\operatorname{Arg} z \in \operatorname{arg} z$ and $-\pi < \operatorname{Arg} z \le \pi$,

which gives rise to the function $\operatorname{Arg} : \mathbb{C} \setminus \{0\} \to (-\pi, \pi]$ defined by $\operatorname{Arg}(z) = \operatorname{Arg} z$.

The branch cut for the principle branch of the logarithm function is the ray

$$B = \left\{ re^{i\pi} \colon r \ge 0 \right\} \stackrel{\text{i.e.}}{=} \left\{ z \in \mathbb{C} \colon \operatorname{Im} z = 0, \operatorname{Re} z \le 0 \right\}.$$

The principal branch of the logarithm function is the function

Log:
$$\mathbb{C} \setminus B \to \mathbb{C}$$
 given by $\operatorname{Log}(z) := \ln |z| + i \operatorname{Arg} z$

where $\ln: (0, \infty) \to \mathbb{R}$ is the usual (real) natural logarithm function.

Towards forming another branch of the logarithm function, fix $\alpha \in \mathbb{R}$. Form the branch cut

$$B_{\alpha} = \left\{ r e^{i\alpha} \colon r \ge 0 \right\}.$$

Then another <u>branch of the logarithm function</u> is the function

$$\log: \mathbb{C} \setminus B_{\alpha} \to \mathbb{C}$$
 given by $\log(z) := \ln|z| + i \arg z$ where $\alpha < \arg z < \alpha + 2\pi$,

which satisfies

$$\log(e^z) = z$$
, for each $z \in \mathbb{C} \setminus B_\alpha$ such that $\alpha < \operatorname{Im} z < \alpha + 2\pi$

 $\langle \text{ for } x+iy \in \mathbb{C} \setminus \{0\} \text{ note: } \ln \left| e^{x+iy} \right| = \ln \left(\left| e^x \right| \left| e^{iy} \right| \right) = \ln e^x = x \text{ and } \arg \left(e^{x+iy} \right) = \arg \left(e^x e^{iy} \right) = \arg \left(e^{iy} \right) = \{y + 2\pi k \colon k \in \mathbb{Z} \} \rangle.$

Logarithm Functions

 $\mathbf{p8}$