<u>Def</u>. $f: G \setminus \{a\} \to \mathbb{C}$ has an <u>isolated singularity at a</u> provided $f \in H(G \setminus \{a\}) \& G$ open $\& a \in G$.

Thoughout this handout, $f: G \setminus \{a\} \to \mathbb{C}$ where G is an open subset of \mathbb{C} and $a \in G$ and $f \in H(G \setminus \{a\})$;

i.e., a is an isolated singularity of f.

 $\underline{\mathbf{Def}}$. Types of isolated singularities:

- (1) a is a <u>removable singularity</u> of f provided
 - (i) a is an isolated singularity of f
 - (ii) there exists $\tilde{f} \in H(G)$ such that $\tilde{f}\Big|_{G \setminus \{a\}} = f\Big|_{G \setminus \{a\}}$.
- (2) a is a <u>pole</u> of f provided
 - (i) a is an isolated singularity of f
 - (ii) $\lim_{z \to a} |f(z)| = \infty$.
- (3) a is an <u>essential singularity</u> of f provided
 - (i) a is an isolated singularity of f
 - (ii) a is neither a removable singularity nor a pole of f.

Summary. Let *a* be an isolated singularity of *f*. Let (a_i) be $f'a_i$ beyond Series Expansion Coefficients (

Let $\{c_n\}_{n\in\mathbb{Z}}$ be f's Laurent Series Expansion Coefficients (see (LSE)).

1. **TFAE** to a is a removable singularity of f.

(1a) Def:
$$\exists \tilde{f} \in H(G)$$
 such that $\tilde{f}\Big|_{G \setminus \{a\}} = f\Big|_{G \setminus \{a\}}$

- (1b) $\lim_{z\to a} f(z)$ exists.
- (1c) f is bounded on $B'_r(a)$ for some r > 0.
- (1d) $c_n = 0$ for each $n \leq -1$
- 2. **TFAE** to \underline{a} is a pole of \underline{f} .
 - (2a) Def: $\lim_{z\to a} |f(z)| = \infty$
 - (2b) $\exists ! m \in \mathbb{N} \& g \in H(G) \text{ with } g(a) \neq 0 \text{ s.t. } \forall z \in G \setminus \{a\}: f(z) = \frac{g(z)}{(z-a)^m} . \langle \operatorname{so} g(z) = (z-a)^m f(z) \rangle.$
 - (2c) $\exists ! m \in \mathbb{N} \text{ and } \{c_n\}_{n=-m}^{-1} \text{ from } \mathbb{C} \text{ with } c_{-m} \neq 0 \text{ s.t. } a \text{ is a removable singularity of } f(z) \sum_{n=-m}^{-1} c_n (z-a)^n$.

• The above *m* is the <u>order</u> of the pole and $\sum_{n=-m}^{-1} c_n (z-a)^n$ is the <u>principal part</u> of *f*. • Also, [*f* has a pole at *a* of order *m*] $\iff [c_k = 0 \text{ if } k < -m \text{ and } c_{-m} \neq 0]$.

- 3. **TFAE** to \underline{a} is an essential singularity of f.
 - (3a) Def: a is neither a removable singularity nor a pole of f.
 - (3b) $\forall r > 0 \text{ s.t. } B_r(a) \subset G, f(B'_r(a)) \text{ is dense in } \mathbb{C}, \text{ i.e., } \overline{f(B'_r(a))} = \mathbb{C}$ (Casorati-Weierstrass Thm.)
 - (3c) \exists sequences $\{z_n^1\}_{n\in\mathbb{N}} \& \{z_n^2\}_{n\in\mathbb{N}}$ in $G \setminus \{a\}$, each converging to a, s.t. $\{f(z_n^1)\}_n \& \{f(z_n^2)\}_n$ each converge but to different points in \mathbb{C} .
 - (3d) $c_n \neq 0$ for infinitly many n < 0.

Examples. of $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ with isolated singularity at z = 0.

(1)
$$f(z) = \frac{z^2}{z}$$
 (2) $f(z) = \frac{1}{z}$ (3) $f(z) = e^{1/z}$

<u>Thm. 2.8</u>. Laurent Series Expansion. Still have $f \in H(G \setminus \{a\})$.

There exists R > 0 and $\{c_n\}_{n \in \mathbb{Z}}$ from \mathbb{C} s.t. for each $z \in B'_R(a)$,

$$f(z) = \underbrace{\sum_{n=-\infty}^{-1} c_n (z-a)^n}_{\text{singular part}} + \underbrace{\sum_{n=0}^{\infty} c_n (z-a)^n}_{\text{analytic part}} \stackrel{\text{in short}}{=} \sum_{n=-\infty}^{\infty} c_n (z-a)^n \quad (\text{LSE})$$

where each series in (LSE) converge absolutely for each (fixed) $z \in B'_R(a)$.

For $k \in \mathbb{N}$, let

$$S_k(z) := \sum_{n=-k}^{-1} c_n (z-a)^n$$
 and $A_k(z) := \sum_{n=0}^k c_n (z-a)^n$

Let $0 < r_1 < r_2 < R$. Futhermore:

- (A1) $A_k \in H(\mathbb{C})$ for each $k \in N$
- (A2) $\{A_k\}_{k \in \mathbb{N}}$ converges uniformly to the analytic part on $\{z \in \mathbb{C} : |z a| \leq r_2\}$
- (A3) the analytic part is in $H(B_R(a))$
- (S1) $S_k \in H(\mathbb{C} \setminus \{a\})$ for each $k \in N$
- (S2) $\{S_k\}_{k\in\mathbb{N}}$ converges uniformly to the singular part on $\{z\in\mathbb{C}: r_1\leq |z-a|\}$
- (S3) the singular part is in $H(\mathbb{C} \setminus \{a\})$

Thus each series in (LSE) converges uniformly on each closed annulus $\{z \in \mathbb{C} : r_1 \le |z - a| \le r_2\}$.

Also, if 0 < r < R and $\gamma_r(t) = a + re^{it}$ with $0 \le t \le 2\pi$, then

$$c_n = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta .$$
 (LSC)

Any pointwise convergent expansion of f on $B'_{R}(a)$ of this form equals the Laurent expansion.

Lemma for (1)+(2)=(3). Let $\{h_n\}_{n\in\mathbb{N}}$ be a sequence from $H(B_{\varepsilon}(z_0))$ that convergences uniformly to a function h on each $\overline{B_{\varepsilon_0}(z_0)}$ with $0 < \varepsilon_0 < \varepsilon$. Then $h \in H(B_{\varepsilon}(z_0))$.

Proof. Let γ be a closed contour in $B_{\varepsilon}(z_0)$. Then

$$0 \xrightarrow[\text{Thm 2.12}]{\text{Cauchy Thm for } \star} \int_{\gamma} h_n(z) dz \xrightarrow[n \to \infty, \text{by uniform conv.}]{} \int_{\gamma} h(z) dz .$$

Note $h \in C(B_{\varepsilon}(z_0))$ since the uniform limit of continuous functions is continuous. So by Morea's theorem (Thm II.2.25), $h \in H(B_{\varepsilon}(z_0))$.

<u>Comment about uniqueness</u>. If, for some $\{c_n\}_{n\in\mathbb{Z}}$, f has an expansion of the form (LSE) that converges pointwise on $B'_R(a)$, then from the proof (A2) and (S2) hold, so we get <u>uniform</u> convergence on γ_r^* . For $n, k \in \mathbb{Z}$, $\int_{\gamma_r} \frac{(z-a)^k}{(z-a)^{n+1}} dz$ is $2\pi i$ if n = k and 0 otherwise. So for any $n \in \mathbb{Z}$

$$\int_{\gamma_r} \frac{f(z)}{(z-a)^{n+1}} dz = \int_{\gamma_r} \frac{\sum_{k=-\infty}^{\infty} c_k (z-a)^k}{(z-a)^{n+1}} dz \stackrel{\text{by unif. conv.}}{=} \sum_{k=-\infty}^{\infty} c_k \left[\int_{\gamma_r} \frac{(z-a)^k}{(z-a)^{n+1}} dz \right] = c_n [2\pi i] .$$
So (LSC) holds

So (LSC) holds.