Def. $f: G \backslash\{a\} \rightarrow \mathbb{C}$ has an isolated singularity at a provided $f \in H(G \backslash\{a\}) \& G$ open $\& a \in G$.

Thoughout this handout, $f: G \backslash\{a\} \rightarrow \mathbb{C}$ where G is an open subset of \mathbb{C} and $a \in G$ and

$$
f \in H(G \backslash\{a\}) ;
$$

i.e., a is an isolated singularity of f.

Def. Types of isolated singularities:
(1) a is a removable singularity of f provided
(i) a is an isolated singularity of f
(ii) there exists $\tilde{f} \in H(G)$ such that $\left.\tilde{f}\right|_{G \backslash\{a\}}=\left.f\right|_{G \backslash\{a\}}$.
(2) a is a pole of f provided
(i) a is an isolated singularity of f
(ii) $\lim _{z \rightarrow a}|f(z)|=\infty$.
(3) a is an essential singularity of f provided
(i) a is an isolated singularity of f
(ii) a is neither a removable singularity nor a pole of f.

Summary. Let a be an isolated singularity of f.
Let $\left\{c_{n}\right\}_{n \in \mathbb{Z}}$ be f 's Laurent Series Expansion Coefficients (see (LSE)).

1. TFAE to a is a removable singularity of f.
(1a) Def: $\exists \tilde{f} \in H(G)$ such that $\left.\tilde{f}\right|_{G \backslash\{a\}}=\left.f\right|_{G \backslash\{a\}}$.
(1b) $\lim _{z \rightarrow a} f(z)$ exists.
(1c) f is bounded on $B_{r}^{\prime}(a)$ for some $r>0$.
(1d) $c_{n}=0$ for each $n \leq-1$
2. TFAE to a is a pole of f.
(2a) Def: $\lim _{z \rightarrow a}|f(z)|=\infty$
(2b) \exists ! $m \in \mathbb{N} \& g \in H(G)$ with $g(a) \neq 0$ s.t. $\forall z \in G \backslash\{a\}: f(z)=\frac{g(z)}{(z-a)^{m}} .\left\langle\right.$ so $\left.g(z)=(z-a)^{m} f(z)\right\rangle$.
(2c) $\exists!m \in \mathbb{N}$ and $\left\{c_{n}\right\}_{n=-m}^{-1}$ from \mathbb{C} with $c_{-m} \neq 0$ s.t. a is a removable singularity of $f(z)-\sum_{n=-m}^{-1} c_{n}(z-a)^{n}$.

- The above m is the order of the pole and $\sum_{n=-m}^{-1} c_{n}(z-a)^{n}$ is the principal part of f.
\circ Also, $[f$ has a pole at a of order $m] \Longleftrightarrow\left[c_{k}=0\right.$ if $k<-m$ and $\left.c_{-m} \neq 0\right]$.

3. TFAE to a is an essential singularity of f.
(3a) Def: a is neither a removable singularity nor a pole of f.
(3b) $\forall r>0$ s.t. $B_{r}(a) \subset G, f\left(B_{r}^{\prime}(a)\right)$ is dense in \mathbb{C}, i.e., $\overline{f\left(B_{r}^{\prime}(a)\right)}=\mathbb{C} \quad$ (Casorati-Weierstrass Thm.)
(3c) \exists sequences $\left\{z_{n}^{1}\right\}_{n \in \mathbb{N}} \&\left\{z_{n}^{2}\right\}_{n \in \mathbb{N}}$ in $G \backslash\{a\}$, each converging to a, s.t. $\left\{f\left(z_{n}^{1}\right)\right\}_{n} \&\left\{f\left(z_{n}^{2}\right)\right\}_{n}$ each converge but to different points in \mathbb{C}.
(3d) $c_{n} \neq 0$ for infinitly many $n<0$.
Examples. of $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ with isolated singularity at $z=0$.
(1) $f(z)=\frac{z^{2}}{z}$
(2) $f(z)=\frac{1}{z}$
(3) $f(z)=e^{1 / z}$

Thm. 2.8. Laurent Series Expansion. Still have $f \in H(G \backslash\{a\})$.
There exists $R>0$ and $\left\{c_{n}\right\}_{n \in \mathbb{Z}}$ from \mathbb{C} s.t. for each $z \in B_{R}^{\prime}(a)$,

$$
\begin{equation*}
f(z)=\underbrace{\sum_{n=-\infty}^{-1} c_{n}(z-a)^{n}}_{\text {singular part }}+\underbrace{\sum_{n=0}^{\infty} c_{n}(z-a)^{n}}_{\text {analytic part }} \stackrel{\text { in short }}{=} \sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n} \tag{LSE}
\end{equation*}
$$

where each series in (LSE) converge absolutely for each (fixed) $z \in B_{R}^{\prime}(a)$.
For $k \in \mathbb{N}$, let

$$
S_{k}(z):=\sum_{n=-k}^{-1} c_{n}(z-a)^{n} \quad \text { and } \quad A_{k}(z):=\sum_{n=0}^{k} c_{n}(z-a)^{n}
$$

Let $0<r_{1}<r_{2}<R$. Futhermore:
(A1) $A_{k} \in H(\mathbb{C})$ for each $k \in N$
(A2) $\left\{A_{k}\right\}_{k \in \mathbb{N}}$ converges uniformly to the analytic part on $\left\{z \in \mathbb{C}:|z-a| \leq r_{2}\right\}$
(A3) the analytic part is in $H\left(B_{R}(a)\right)$
(S1) $S_{k} \in H(\mathbb{C} \backslash\{a\})$ for each $k \in N$
(S2) $\left\{S_{k}\right\}_{k \in \mathbb{N}}$ converges uniformly to the singular part on $\left\{z \in \mathbb{C}: r_{1} \leq|z-a|\right\}$
(S3) the singular part is in $H(\mathbb{C} \backslash\{a\})$
Thus each series in (LSE) converges uniformly on each closed annulus $\left\{z \in \mathbb{C}: r_{1} \leq|z-a| \leq r_{2}\right\}$.
Also, if $0<r<R$ and $\gamma_{r}(t)=a+r e^{i t}$ with $0 \leq t \leq 2 \pi$, then

$$
\begin{equation*}
c_{n}=\frac{1}{2 \pi i} \int_{\gamma_{r}} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta \tag{LSC}
\end{equation*}
$$

Any pointwise convergent expansion of f on $B_{R}^{\prime}(a)$ of this form equals the Laurent expansion.
Lemma for $(\mathbf{1})+(\mathbf{2})=(\mathbf{3})$. Let $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ be a sequence from $H\left(B_{\varepsilon}\left(z_{0}\right)\right)$ that convergences uniformly to a function h on each $\overline{B_{\varepsilon_{0}}\left(z_{0}\right)}$ with $0<\varepsilon_{0}<\varepsilon$. Then $h \in H\left(B_{\varepsilon}\left(z_{0}\right)\right)$.
Proof. Let γ be a closed contour in $B_{\varepsilon}\left(z_{0}\right)$. Then

$$
0 \xrightarrow{\text { Thm } 2.12} \underset{\gamma}{\text { Cauchy }} \underset{ }{\text { Thm for } \star} \int_{\gamma} h_{n}(z) d z \xrightarrow{n \rightarrow \infty, \text { by uniform conv. }} \int_{\gamma} h(z) d z
$$

Note $h \in C\left(B_{\varepsilon}\left(z_{0}\right)\right)$ since the uniform limit of continuous functions is continuous. So by Morea's theorem $\left\langle\right.$ Thm II.2.25〉, $h \in H\left(B_{\varepsilon}\left(z_{0}\right)\right)$.

Comment about uniqueness. If, for some $\left\{c_{n}\right\}_{n \in \mathbb{Z}}, f$ has an expansion of the form (LSE) that converges pointwise on $B_{R}^{\prime}(a)$, then from the proof (A2) and (S2) hold, so we get uniform convergence on γ_{r}^{*}. For $n, k \in \mathbb{Z}, \int_{\gamma_{r}} \frac{(z-a)^{k}}{(z-a)^{n+1}} d z$ is $2 \pi i$ if $n=k$ and 0 otherwise. So for any $n \in \mathbb{Z}$
$\int_{\gamma_{r}} \frac{f(z)}{(z-a)^{n+1}} d z=\int_{\gamma_{r}} \frac{\sum_{k=-\infty}^{\infty} c_{k}(z-a)^{k}}{(z-a)^{n+1}} d z \stackrel{\text { by unif. conv. }}{=} \sum_{k=-\infty}^{\infty} c_{k}\left[\int_{\gamma_{r}} \frac{(z-a)^{k}}{(z-a)^{n+1}} d z\right]=c_{n}[2 \pi i]$.
So (LSC) holds.

