Throughout, X and Y are metric spaces and

$$X = U[+]V$$

denotes that X is the <u>disjoint</u> union of U and V. Also, $a, b \in \mathbb{R}$ with a < b and

 $S, C, D, P \subset X$.

<u>Def</u>. (U, V) is a <u>separation of X</u> provided

- (1) U and V are X-open subsets of X
- (2) $U \neq \emptyset$ and $V \neq \emptyset$
- (3) X = U[+]V.

Def. (U, V) is a <u>X-separation of D</u> provided

- (1) U and V are X-open subsets of X
- (2) $U \cap D \neq \emptyset$ and $V \cap D \neq \emptyset$
- $(3) \quad D \subset U \cup V$
- (4) $U \cap V \subset D^C$

Note that (4) is equivalent to (4') $U \cap V \cap D = \emptyset$. Def. 2.4.3/4.

X is <u>connected</u>	\Leftrightarrow	\nexists a separation of X .
X is <u>disconnected</u>	\Leftrightarrow	\exists a separation of X .
C a is <u>connected</u> set in (X, d)	\Leftrightarrow	$\begin{bmatrix} C = \emptyset \text{ or } (C, d _C) \text{ is connected } \end{bmatrix}$.
D a is <u>disconnected</u> set in X	\Leftrightarrow	D is not a connected set in \boldsymbol{X} .

<u>Thm. 2.4.5</u>. *D* a is <u>disconnected set in X</u> $\Leftrightarrow \exists a X$ -separation of *D*. **<u>Thm. 2.4.6</u>**. *D* a is <u>disconnected set in X</u> $\Leftrightarrow \exists a X$ -separation (U, V) of *D* with $U \cap V = \emptyset$. **<u>Thm. 2.4.2</u>**. TFAE.

(1) The only subsets of X with are both open and closed are \emptyset and X.

(2) X is connected.

<u>**Thm. 2.4.8**</u>. The connected subsets of \mathbb{R} are the intervals. (here, consider \emptyset as the degenerate interval) <u>**Example 2.4.7**</u>. Easy but useful comments.

(iv) If X has a separation (U, V) and C is a connected set in X, then either $C \subset U$ or $C \subset V$.

(v) X is connected $\Leftrightarrow \forall x, y \in X$ there is a connected subset C in X with $x, y \in C$.

<u>Def. 2.4.13</u>. A path in S is a function $\gamma : [a, b] \xrightarrow{\text{cont.}} X$ such that it's <u>track</u> $\gamma^* := \gamma ([a, b]) \subset S$.

 $\circ\,$ A path is simple provided "it does not cross itself expcept possibly at the endpoints".

- A path γ in \mathbb{R}^n is a <u>polygonal path</u> provided " γ^* is the finite union of line segments".
- A path γ in \mathbb{R}^n is a <u>p-path</u> provided " γ^* is the finite union of line segments \parallel to coord. axes".
- $\circ \ \langle \text{For a polygonal path } \gamma, \, \text{we can write:} \ \gamma^* = \cup_{j=1}^k [x^{(j-1)}, x^{(j)}] \, \rangle$

<u>Def. 2.4.16</u>. *P* is <u>path-connected</u> $\iff \forall x, y \in P$, there is a path in *P* from *x* to *y*. **Thm. 2.4.11/Exercise 2.4.33:6**. Let $f: X \xrightarrow{\text{cont.}} Y$.

 $[C \text{ connected in } X] \implies [f(C) \text{ connected in } Y]$

 $[P \text{ path connected in } X] \implies [f(P) \text{ path connected in } Y]$

<u>Thm. 2.4.20</u>. *P* path-connected set \implies *P* is connected. (converse is false, example 2.4.21ii) **<u>Exer. 2.4.30:5</u>**. If $P_1 \& P_2$ are path-connected and not disjoint, then $P_1 \cup P_2$ is path-connected.

<u>Connected and Path-Connected</u>. Let $C \subset C_0 \subset \overline{C}$.

[C connected]	\implies	$[C_0 \text{ connected}]$	(2.4.33:1)
[C connected]	\implies	$\left[\overline{C} \text{ connected} \right]$	
[P path-connected]	⇒	$\left[\overline{P} \text{ path-connected} \right]$	(2.4.21iii)
[S connected]	⇒	[S path-connected]	(2.4.21ii)
[S path-connected]	\implies	[S connected]	(Thm. 2.4.20)
$[x \in \mathbb{R}^n]$	\implies	$[B_{\varepsilon}(x) \text{ and } \mathbb{R}^{n} \text{ are path connected}]$	(2.4.21i)

<u>**Thm. 2.4.22**</u>. Let G be an <u>open</u> subset of \mathbb{R}^n . TFAE.

(1) G is connected.

(2) G is path-connected.

(3) G is p-path-connected (i.e., can even take the path to be a p-path).

Components

Def. 2.4.24/29. Let $S \neq \emptyset$. (maximal is in the sense of set containment)

 \circ C is a <u>component</u> of S provided C is a maximal connected subset of S.

(i.e., $C \subset S$ and C is connected and if $C \subset C_1 \subset S$ and C_1 is connected, then $C = C_1 \rangle$

 \circ P is a <u>path-component</u> of S provided P is a maximal path-connected subset of S.

Lemma 2.4.2⁺. Let $s \in S$. (One uses Exercise 2.3.33:5. to show (2).)

(1) The union of a non-empty family of connected subsets of S containing s is connected.

(2) The union of a non-empty family of path-connected subsets of S containing s is path-connected. **Thm. 2.4.26**⁺. Let $S \neq \emptyset$. For each $s \in S$, let

$$C_s := \bigcup \{ C \subset S \colon s \in C \text{ and } C \text{ is connected} \}$$
$$P_s := \bigcup \{ P \subset S \colon s \in P \text{ and } P \text{ is path-connected} \}$$

- (1) Each C_s is a component of S. Each P_s is a path-component of S.
- (2) Any two C_s 's are either equal or disjoint. Any two P_s 's are either equal or disjoint.
- (3) From (2) it follows that there exist $\Gamma_c, \Gamma_p \subset S$ such that

$$S = \biguplus_{s \in \Gamma_c} C_s$$
 and $S = \biguplus_{s \in \Gamma_p} P_s$. (3)

<u>**Thm. 2.4.27</u>**. If $\emptyset \neq G \subset \mathbb{R}^n$ and G is open, then each component of G is open and the Γ_c in (3) is countable. <u>**Remark**</u>. By taking S = X in Thm 2.4.26⁺ part (3), it follows that if each component (resp. path-component) of X is X-open, then each component (resp. path-component) of X is X-closed. <u>**Thm 2.4.30a**</u>. TFAE.</u>

- Each path-component of X is open in X.
- $\forall x \in X$ there is a path-connected neighborhood containing x.

Thm 2.4.30b. TFAE.

- X is path-connected of X.
- X is connected and $\forall x \in X$ there is a path-connected neighborhood containing x.
- X is connected and each path-component of X is open in X.

<u>**Thm 2.4.31</u>**. Let (X, d_X) and (Y, d_Y) be connected (resp. path-connected). Then $\left(X \times Y, \left[(d_x)^2 + (d_Y)^2\right]^{1/2}\right)$ is connected (resp. path-connected).</u>