Throughout，X and Y are metric spaces and

$$
X=U \biguplus V
$$

denotes that X is the disjoint union of U and V ．Also，$a, b \in \mathbb{R}$ with $a<b$ and

$$
S, C, D, P \subset X
$$

Def．(U, V) is a separation of X provided
（1）U and V are X－open subsets of X
（2）$U \neq \emptyset$ and $V \neq \emptyset$
（3）$X=U \biguplus V$ ．
Def．(U, V) is a \underline{X}－separation of D provided

$$
\begin{aligned}
& \text { (1) } U \text { and } V \text { are } X \text {-open subsets of } X \\
& \text { (2) } U \cap D \neq \emptyset \text { and } V \cap D \neq \emptyset \\
& \text { (3) } D \subset U \cup V \\
& \text { (4) } U \cap V \subset D^{C}
\end{aligned}
$$

Note that（4）is equivalent to（4＇）$U \cap V \cap D=\emptyset$ ．
Def．2．4．3／4．

X is connected	\Leftrightarrow	\nexists a separation of X.
X is $\underline{\text { disconnected }}$	\Leftrightarrow	\exists a separation of X.
C a is $\underline{\text { connected set in }(X, d)}$	\Leftrightarrow	$\left[C=\emptyset\right.$ or $\left(C,\left.d\right\|_{C}\right)$ is connected $]$.
D a is $\underline{\text { disconnected set in } X}$	\Leftrightarrow	D is not a connected set in X.

Thm．2．4．5．D a is disconnected set in $X \Leftrightarrow \exists$ a X－separation of D ．
Thm．2．4．6．D a is disconnected set in $X \Leftrightarrow \exists$ a X－separation (U, V) of D with $U \cap V=\emptyset$ ．
Thm．2．4．2．TFAE．
（1）The only subsets of X with are both open and closed are \emptyset and X ．
（2）X is connected．
Thm．2．4．8．The connected subsets of \mathbb{R} are the intervals．〈here，consider \emptyset as the degenerate interval〉
Example 2．4．7．Easy but useful comments．
（iv）If X has a separation (U, V) and C is a connected set in X ，then either $C \subset U$ or $C \subset V$ ．
（v）X is connected $\Leftrightarrow \forall x, y \in X$ there is a connected subset C in X with $x, y \in C$ ．
Def．2．4．13．A path in S is a function $\gamma:[a, b] \xrightarrow{\text { cont．}} X$ such that it＇s track $\gamma^{*}:=\gamma([a, b]) \subset S$ ．
－A path is simple provided＂it does not cross itself expcept possibly at the endpoints＂．
－A path γ in \mathbb{R}^{n} is a polygonal path provided＂γ^{*} is the finite union of line segments＂．
－A path γ in \mathbb{R}^{n} is a p－path provided＂γ^{*} is the finite union of line segments $\|$ to coord．axes＂．
－〈For a polygonal path γ ，we can write：$\left.\gamma^{*}=\cup_{j=1}^{k}\left[x^{(j-1)}, x^{(j)}\right]\right\rangle$
Def．2．4．16．P is path－connected $\Longleftrightarrow \forall x, y \in P$ ，there is a path in P from x to y ．
$\xrightarrow{\text { Thm．2．4．11／Exercise 2．4．33：6．}}$ Let $f: X \xrightarrow{\text { cont．}} Y$ ．

$$
\begin{aligned}
{[C \text { connected in } X] } & \Longrightarrow[f(C) \text { connected in } Y] \\
{[P \text { path connected in } X] } & \Longrightarrow[f(P) \text { path connected in } Y]
\end{aligned}
$$

Thm．2．4．20．P path－connected set $\Longrightarrow P$ is connected．〈converse is false，example 2．4．21ii〉 Exer．2．4．30：5．If $P_{1} \& P_{2}$ are path－connected and not disjoint，then $P_{1} \cup P_{2}$ is path－connected．

Connected and Path－Connected．Let $C \subset C_{0} \subset \bar{C}$ ．

$[C$ connected $]$	\Longrightarrow	$\left[C_{0}\right.$ connected $]$
$[C$ connected $]$	\Longrightarrow	$[\bar{C}$ connected $]$
$[P$ path－connected $]$	\nRightarrow	$[\bar{P}$ path－connected $]$
$[S$ connected $]$	\nRightarrow	$[S$ path－connected $]$
$[S$ path－connected $]$	\Longrightarrow	$[S$ connected $]$
$\left[x \in \mathbb{R}^{n}\right]$	\Longrightarrow	$\left[B_{\varepsilon}(x)\right.$ and \mathbb{R}^{n} are path connected $]$

Thm．2．4．22．Let G be an open subset of \mathbb{R}^{n} ．TFAE．
（1）G is connected．
（2）G is path－connected．
（3）G is p－path－connected 〈i．e．，can even take the path to be a p－path〉．

Components

Def．2．4．24／29．Let $S \neq \emptyset . \quad\langle$ maximal is in the sense of set containment〉
－C is a component of S provided C is a maximal connected subset of S ．
〈i．e．，$C \subset S$ and C is connected and if $C \subset C_{1} \subset S$ and C_{1} is connected，then $C=C_{1}$ 〉
－P is a path－component of S provided P is a maximal path－connected subset of S ．

Lemma 2．4．2 ${ }^{+}$．Let $s \in S$ ．〈One uses Exercise 2．3．33：5．to show（2）．〉

（1）The union of a non－empty family of connected subsets of S containing s is connected．
（2）The union of a non－empty family of path－connected subsets of S containing s is path－connected．
Thm．2．4．26 ${ }^{+}$．Let $S \neq \emptyset$ ．For each $s \in S$ ，let

$$
\begin{aligned}
C_{s} & :=\bigcup\{C \subset S: s \in C \text { and } C \text { is connected }\} \\
P_{s} & :=\bigcup\{P \subset S: s \in P \text { and } P \text { is path-connected }\}
\end{aligned}
$$

（1）Each C_{s} is a component of S ．Each P_{s} is a path－component of S ．
（2）Any two C_{s}＇s are either equal or disjoint．Any two P_{s}＇s are either equal or disjoint．
（3）From（2）it follows that there exist $\Gamma_{c}, \Gamma_{p} \subset S$ such that

$$
\begin{equation*}
S=\biguplus_{s \in \Gamma_{c}} C_{s} \quad \text { and } \quad S=\biguplus_{s \in \Gamma_{p}} P_{s} \tag{3}
\end{equation*}
$$

Thm．2．4．27．If $\emptyset \neq G \subset \mathbb{R}^{n}$ and G is open，then each component of G is open and the Γ_{c} in（3）is countable． Remark．By taking $S=X$ in Thm 2．4．26 ${ }^{+}$part（3），it follows that if each component（resp． path－component）of X is X－open，then each component（resp．path－component）of X is X－closed． Thm 2．4．30a．TFAE．
－Each path－component of X is open in X ．
－$\forall x \in X$ there is a path－connected neighborhood containing x ．
Thm 2．4．30b．TFAE．
－X is path－connected of X ．
－X is connected and $\forall x \in X$ there is a path－connected neighborhood containing x ．
－X is connected and each path－component of X is open in X ．
Thm 2．4．31．Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be connected（resp．path－connected）． Then $\left(X \times Y,\left[\left(d_{x}\right)^{2}+\left(d_{Y}\right)^{2}\right]^{1 / 2}\right)$ is connected（resp．path－connected）．

