This Homework Set presents the Stone-Weierstrass theorems, which generalize the well-known Weierstrass Approximation theorem, which says that a continuous $f: [0,1] \to \mathbb{R}$ can be uniformly approximated by polynomials.

A metric space is a Hausdorff topological¹ space. The Stone-Weierstrass theorems consider continuous functions defined on a compact Hausdorff topological space. Results are stated for an arbitrary compact Hausdorff topological space although you <u>should</u> just prove the results for an arbitrary compact metric space. Once you take some topology, you will see that your proofs for a metric space carry right over to a Hausdorff topological space. Let's begin.

View Point. Let \mathbb{K} be the field \mathbb{R} or \mathbb{C} . View the collection of all functions from a (nonempty) set S into \mathbb{K} as vector space (over \mathbb{K}) where the vector space operations are given by the induced pointwise operations over \mathbb{K} .² Thanks to the product being defined in \mathbb{K} , we can even make sense of the product of two functions by defining fg as $(fg)(x) := [(f(x))] \cdot [(g(x))]$.

Recall 1. Let K be a compact Hausdorff topological space and \mathbb{K} be the field \mathbb{R} or \mathbb{C} . Let $C(K, \mathbb{K})$ be the vector space (over \mathbb{K}) of all continuous functions from K into \mathbb{K} . Equip $C(K, \mathbb{K})$ with the uniform³ norm $\|\cdot\|_{\infty}$, which generates the uniform metric d_{∞} , where

$$\|f\|_{\infty} := \sup_{x \in K} |f(x)| \quad \text{and} \quad d_{\infty}(f,g) := \|f - g\|_{\infty} \stackrel{\text{i.e.}}{=} \sup_{x \in K} |f(x) - g(x)|$$

Also, $(C(K, \mathbb{K}), d_{\infty})$ is a <u>complete</u> metric space. Since K is compact, $C(K, \mathbb{K}) \subset B(K, \mathbb{K})$

The Weierstrass Approximation Theorem can be phrased as:

Theorem 2 (Weierstrass Approximation Theorem). . The collection of polynomial⁴ is dense in $(C([0,1],\mathbb{R}), d_{\infty})$.

We now isolate some of the key properties of the collection of polynomial that help make approximation possible.

Definition 3. Let G be a collection of functions from S into \mathbb{K} , where S is a (nonempty) set and \mathbb{K} is the field \mathbb{R} or \mathbb{C} .

- (1) G separates points (of S) provided for all $x, y \in S$ with $x \neq y$ there is a function $g \in G$ such that $g(x) \neq g(y)$.
- (2) G is an <u>algebra</u> (of functions over \mathbb{K}) provided if $f, g \in G$ and $\alpha \in \mathbb{K}$, then f + g, fg, and αf belong to G.

We can now state the Stone-Weierstrass theorems. The Weierstrass Approximation Thm. (Thm. 2) follows directly from Thm. 4. In fact, we will prove Thm. 4 with<u>out</u> using Thm. 2.

³The term *uniform* comes from: $||f_n - f||_{\infty} \to 0$ iff f_n converges unformly to f on K.

¹Let X be a topological space. X is <u>Hausdorff</u> provided for all $x, y \in X$ with $x \neq y$ there exists disjoint open sets U_x and U_y with $x \in U_x$ and $y \in U_y$.

²so the function f + g is defined by $(f + g)(\cdot) := (f(\cdot)) + (g(\cdot))$ and αf is defined by $(\alpha f)(\cdot) := \alpha (f(\cdot))$.

⁴with real coefficients

Theorem 4 (Stone-Weierstrass theorem, real version so $\mathbb{K} = \mathbb{R}$).

Let K be a compact Hausdorff topological space. Let G be a **subalgebra** of $C(K, \mathbb{R})$ having the following two properties.

- (1) G separates points.
- (2) G contains the constant function 1_K (where $1_K : K \to \mathbb{R}$ is defined by $1_K(x) = 1$ for each $x \in K$).

Then G is dense in $C(K, \mathbb{R})$.

The complex version of the Stone-Weierstrass theorem requires an additional hypothesis, namely, closure of G under complex conjugation.

Theorem 5 (Stone-Weierstrass theorem, complex version so $\mathbb{K} = \mathbb{C}$).

Let K be a compact Hausdorff topological space. Let G be a **subalgebra** of $C(K, \mathbb{C})$ having the following three properties.

- (1) G separates points.
- (2) $1_K \in G$.

(3) \overline{f} belongs to G for each $f \in G$ (where \overline{f} is defined by $\overline{f}(x) := \overline{f(x)}$ for each $x \in K$). Then G is dense in $C(K, \mathbb{C})$.

Our proof of the Stone-Weierstrass theorems will relies on one simple approximation of the square root function on the unit interval.

Lemma 6. Let $v: [0,1] \to \mathbb{R}$ be given by $v(\cdot) = \sqrt{\cdot}$. There exists an increasing⁵ sequence $\{u_n\}_n$ of polynomials⁶ that converges uniformly (i.e., in $(C([0,1],\mathbb{R}), d_{\infty}))$ to v.

Proof. Define $u_n: [0,1] \to \mathbb{R}$ inductively by $u_1 \equiv 0$ (i.e., $u_1(t) = 0$ for each $t \in [0,1]$) and

$$u_{n+1}(t) := u_n(t) + \frac{1}{2} \left(t - \left[u_n(t) \right]^2 \right) \text{ for each } t \in [0,1] \text{ and } n \in N$$
. (1)

Then

 $u_n(t) < \sqrt{t}$ for each $t \in [0, 1]$ and $n \in N$ (2)

follows by induction on n. Indeed, for a fixed $t \in [0,1]$, clearly $u_1(t) \leq \sqrt{t}$ and the inductive step follows from the observations that, for each $n \in \mathbb{N}$ with $n \ge 1$, if $u_n(t) \le \sqrt{t}$ then

$$\sqrt{t} + u_n(t) \le \sqrt{t} + \sqrt{t} \le 2$$
 so $\frac{1}{2} \left(\sqrt{t} + u_n(t) \right) \le 1$

and so

$$\sqrt{t} - u_{n+1}(t) \stackrel{\text{by (1)}}{=} \sqrt{t} - u_n(t) - \frac{1}{2} \left(t - u_n^2(t) \right) \stackrel{\text{by}}{=} \left(\sqrt{t} - u_n(t) \right) \left(1 - \frac{1}{2} \left(\sqrt{t} + u_n(t) \right) \right) \ge 0.$$

Next note that (1) and (2) implies that, for each $t \in [0, 1]$, the sequence $\{u_n(t)\}_n$ is increasing (i.e., $u_n(t) \leq u_{n+1}(t)$ for each $n \in N$) and bounded above; thus converges to some point $v(t) \in \mathbb{R}$. Equation (1) implies that $\frac{1}{2}(t - [v(t)]^2) = 0$, and as $v(t) \ge 0$, we have that $v(t) = \sqrt{t}$.

The remainder of the proof is an exercise.

⁵i.e., if $t \in [0, 1]$, then $u_n(t) \le u_{n+1}(t)$ for each $n \in N$ ⁶with real coefficients

Stone-Weierstrass Exercises

In these exercises, let K be a compact Hausdorff topological space (or just a compact metric space) and let G be a **subalgebra** of $C(K, \mathbb{R})$ having the following two properties.

- (1) G separates points.
- (2) G contains the constant function 1_K .

Let \overline{G} be the closure of G in the metric space $(C(K,\mathbb{R}), d_{\infty})$.

SW 1. Finish the proof of in Lemma 6.

 \langle Hint: you do not need to reprove any prior results from class provided that you give the full statement of the result used. \rangle

SW 2. Show that if $f \in G$ then $|f| \in \overline{G}$ (by using Lemma 6).

SW 3. Show \overline{G} is an algebra that separated points of K and contains the constant function 1_K (by using the sequential characterization of closure).

SW 4. Show if $f, g \in \overline{G}$, then $\inf(f, g)$, $\sup(f, g) \in \overline{G}$. (Hint. If $a, b \in \mathbb{R}$, then $\sup(a, b) = \frac{a+b}{2} + \frac{|a-b|}{2}$.)

SW 5. Let $\alpha, \beta \in \mathbb{R}$ and $x, y \in K$ with $x \neq y$. Show there is a $f \in \overline{G}$ with $f(x) = \alpha$ and $f(y) = \beta$.

SW 6. Let $f \in C(K, \mathbb{R})$, $x \in K$, and $\epsilon > 0$. Show that there exists a function g in \overline{G} such that for all $y \in K$

$$g(x) = f(x)$$
$$g(y) \le f(y) + \epsilon$$

Hint. (<u>Please</u> follow the notation I set up in this hint so it's not a nightmare to grade. Thanks!) First show that for each $z \in K$ there is a function $h_z \in \overline{G}$ such that

$$h_{z}(x) = f(x)$$
$$h_{z}(z) \le f(z) + \frac{\varepsilon}{2}.$$

Next, for each $z \in K$, find an open set V(z) containing z that that is <u>particularly nice</u> (you decide what nice is). Note $K \subset \bigcup_{z \in K} V(z)$.

SW 7. Show that G is dense in $(C(K, \mathbb{R}), d_{\infty})$. I.e., show that $\overline{G}^{d_{\infty}} = C(K, \mathbb{R})$.

SW 8. Show the \mathbb{C} -version of the Stone-Weierstrass Theorem by reducing the \mathbb{C} -version (Thm. 5) to the \mathbb{R} -version (Thm. 4). Hint. For a $H \subset C(K, \mathbb{C})$, consider $G := \{\operatorname{Re} h : h \in H\} \cup \{\operatorname{Im} h : h \in H\}$. Recall: $\operatorname{Re} z = \frac{z+\overline{z}}{2}$ and $\operatorname{Im} z = \frac{z-\overline{z}}{2i}$.