
Prof. Girardi Stone-Weierstrass Theorems

This Homework Set presents the Stone-Weierstrass theorems, which generalize the well-known

Weierstrass Approximation theorem, which says that a continuous f : [0, 1]→ R can be uniformly

approximated by polynomials.

A . . . . . . .metric space is a Hausdorff topological1 space. The Stone-Weierstrass theorems consider

continuous functions defined on a compact Hausdorff topological space. Results are stated for an

arbitrary compact Hausdorff topological space although you
:::::::
should just prove the results for an

arbitrary compact . . . . . .metric space. Once you take some topology, you will see that your proofs for a

metric space carry right over to a Hausdorff topological space. Let’s begin.

View Point. Let K be the field R or C. View the collection of all functions from a (nonempty)

set S into K as vector space (over K) where the vector space operations are given by the induced

pointwise operations over K.2 Thanks to the product being defined in K, we can even make sense

of the product of two functions by defining fg as (fg) (x) := [(f (x))] · [(g (x))].

Recall 1. Let K be a compact Hausdorff topological space and K be the field R or C.

Let C(K,K) be the vector space (over K) of all continuous functions from K into K.

Equip C(K,K) with the uniform3 norm ‖·‖∞, which generates the uniform metric d∞, where

‖f‖∞ := sup
x∈K
|f(x)| and d∞ (f, g) := ‖f − g‖∞

i.e.
= sup

x∈K
|f (x)− g (x)|

Also, (C (K,K) , d∞) is a
::::::::::
complete metric space. Since K is compact, C (K,K) ⊂ B (K,K) �

The Weierstrass Approximation Theorem can be phrased as:

Theorem 2 (Weierstrass Approximation Theorem). .

The collection of polynominal 4 is dense in (C ([0, 1] ,R) , d∞).

We now isolate some of the key properties of the collection of polynomial that help make approx-

imation possible.

Definition 3. Let G be a collection of functions from S into K, where S is a (nonempty) set

and K is the field R or C.

(1) G separates points (of S) provided for all x, y ∈ S with x 6= y there is a function g ∈ G
such that g(x) 6= g(y).

(2) G is an algebra (of functions over K) provided if f, g ∈ G and α ∈ K, then f + g, fg, and

αf belong to G. �

We can now state the Stone-Weierstrass theorems. The Weierstrass Approximation Thm.

(Thm. 2) follows directly from Thm. 4. In fact, we will prove Thm. 4 without using Thm. 2.

1Let X be a topological space. X is Hausdorff provided for all x, y ∈ X with x 6= y there exists disjoint open
sets Ux and Uy with x ∈ Ux and y ∈ Uy.

2so the function f + g is defined by (f + g)(·) := (f(·)) + (g(·)) and αf is defined by (αf)(·):=α (f (·)).
3The term uniform comes from: ‖fn − f‖∞ → 0 iff fn converges unformly to f on K.
4with real coefficients
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Theorem 4 (Stone-Weierstrass theorem, real version so K = R).

Let K be a compact Hausdorff topological space. Let G be a subalgebra of C(K,R) having the

following two properties.

(1) G separates points.

(2) G contains the constant function 1K (where 1K : K → R is defined by 1K(x) = 1 for each x ∈ K).

Then G is dense in C(K,R).

The complex version of the Stone-Weierstrass theorem requires an additional hypothesis, namely,

closure of G under complex conjugation.

Theorem 5 (Stone-Weierstrass theorem, complex version so K = C).

Let K be a compact Hausdorff topological space. Let G be a subalgebra of C(K,C) having the

following three properties.

(1) G separates points.

(2) 1K ∈ G.

(3) f belongs to G for each f ∈ G (where f is defined by f (x) :=f (x) for each x ∈ K).

Then G is dense in C(K,C).

Our proof of the Stone-Weierstrass theorems will relies on one simple approximation of the

square root function on the unit interval.

Lemma 6. Let v : [0, 1] → R be given by v(·) =
√
·. There exists an increasing5 sequence {un}n

of polynomials6 that converges
::::::::::
uniformly (i.e., in (C([0, 1],R), d∞)) to v.

Proof. Define un : [0, 1]→ R inductively by u1 ≡ 0 (i.e., u1 (t) = 0 for each t ∈ [0, 1]) and

un+1 (t) := un (t) +
1

2

(
t− [un (t)]2

)
for each t ∈ [0, 1] and n ∈ N . (1)

Then

un (t) ≤
√
t for each t ∈ [0, 1] and n ∈ N (2)

follows by induction on n. Indeed, for a fixed t ∈ [0, 1], clearly u1 (t) ≤
√
t and the inductive step

follows from the observations that, for each n ∈ N with n ≥ 1, if un (t) ≤
√
t then

√
t+ un (t) ≤

√
t+
√
t ≤ 2 so

1

2

(√
t+ un (t)

)
≤ 1

and so
√
t− un+1 (t)

by (1)
=
√
t− un (t)− 1

2

(
t− u2n (t)

) by
=

algebra

(√
t− un (t)

)(
1− 1

2

(√
t+ un (t)

))
≥ 0.

Next note that (1) and (2) implies that, for each t ∈ [0, 1], the sequence {un (t)}n is increasing

(i.e., un (t) ≤ un+1 (t) for each n ∈ N) and bounded above; thus converges to some point v (t) ∈ R.

Equation (1) implies that 1
2

(
t− [v (t)]2

)
= 0, and as v (t) ≥ 0, we have that v (t) =

√
t.

The remainder of the proof is an exercise. �

5i.e., if t ∈ [0, 1], then un (t) ≤ un+1 (t) for each n ∈ N
6with real coefficients
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Stone-Weierstrass Exercises

In these exercises, let K be a compact Hausdorff topological space (or just a compact . . . . . . .metric space)

and let G be a subalgebra of C(K,R) having the following two properties.

(1) G separates points.

(2) G contains the constant function 1K .

Let G be the closure of G in the metric space (C (K,R) , d∞).

SW 1. Finish the proof of in Lemma 6.

〈Hint: you do not need to reprove any prior results from class provided that you give the full statement of the result used. 〉

SW 2. Show that if f ∈ G then |f | ∈ G (by using Lemma 6).

SW 3. Show G is an algebra that separated points of K and contains the constant function 1K

(by using the sequential characterization of closure).

SW 4. Show if f, g ∈ G, then inf (f, g) , sup (f, g) ∈ G. 〈Hint. If a, b ∈ R, then sup (a, b) = a+b
2

+ |a−b|
2

. 〉

SW 5. Let α, β ∈ R and x, y ∈ K with x 6= y. Show there is a f ∈ G with f(x) = α and f(y) = β.

SW 6. Let f ∈ C(K,R), x ∈ K, and ε > 0.

Show that there exists a function g in G such that for all y ∈ K

g(x) = f(x)

g(y) ≤ f(y) + ε

Hint. (
:::::::
Please follow the notation I set up in this hint so it’s not a nightmare to grade. Thanks!)

First show that for each z ∈ K there is a function hz ∈ G such that

hz (x) = f (x)

hz (z) ≤ f (z) +
ε

2
.

Next, for each z ∈ K, find an open set V (z) containing z that that is
::::::::::::
particularly

:::::
nice (you decide

what nice is). Note K ⊂
⋃

z∈K V (z).

SW 7. Show that G is dense in (C(K,R), d∞). I.e., show that G
d∞

= C (K,R).

SW 8. Show the C-version of the Stone-Weierstrass Theorem by reducing the C-version (Thm. 5)

to the R-version (Thm. 4). Hint. For aH ⊂ C (K,C), considerG:= {Reh : h ∈ H}∪{Imh : h ∈ H}.
Recall: Re z = z+z

2
and Im z = z−z

2i
.
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