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CHAPTER 1

Holomorphic (or Analytic) Functions

1. Definitions and elementary properties

In complex analysis we study functions f : S — C, where S C C. When
referring to open sets in C and continuity of functions f we will always consider C
(and its subsets) as a metric space with respect to the metric d(z1,22) = |21 — 22/,
where | - | denotes the complex modulus, i.e., |z| = /22 + y? whenever z = = + iy
with z,y € R. An open ball with respect this metric will be also referred to as an
open disc and denoted by

B(a,B(a,r)={2€C:|z—a| <r},

where a is the center and r > 0 is the radius of the open ball. The closed disc with
center a and radius r is denoted by B(a,r), so

B(a,r)={z€C:|z—a|] <r}.
Recall that G C C is called open if for all a € G there exists » > 0 such that

B(a,r) C G.

If z = x + 1y, then the conjugate z of z is defined by z = x — iy. Now 2z = |z|?,
so that % = % for z # 0. Elementary properties of complex numbers are given
by:

(1) The real part Re z of z satisfies Re z = }(z+ %), while the imaginary part
Im z of z is given by Imz = 5. (2 — 2).
(2) For all 21,22 € C we have z1 + 22 = Z1 + %2 and z122 = 71 2.

(3) For all z1, 25 € C we have |z1 22| = |21] |22].

2. Elementary transcendental functions

Recall also that if z = x+iy # 0, then, using polar coordinates, we can write z =
rcosf +irsinf. In this case we write arg z = {6 + 2kn : k € Z}. By Arg z we will
denote the principal value of the argument of z # 0, i.e. § = Arg z € arg z if —7 <
6 < w. Note that if 23 = |21](cos 0y + isiné,) and 23 = |22|(cos s + isinfy), then
we have 2129 = |21||22|(cos 01 cos O — sin 6 sin O3 + i(sin 01 cos O3 + cos O sinbs)) =
|z122|(cos(61 + 62) + i(sin(fy + 02)). Hence we have arg (z122) = arg 21 + arg zs.
Define now e* = e*(cosy + isiny). Then |e*| = e” and arg ¢* = y + 2kw. In
particular e?™ = 1 and the function e® is 2mi-periodic, i.e., e*T2™ = e%e?™ = ¢*
for all z € C. We want now to define logw such that w = e* where z = logw,
but we can not define it as just the inverse of e* as e? is not one-to-one. Consider
therefore the equation w = e* for a given w. We must assume that w # 0 as e* # 0
(and thus log 0 is not defined). Then |w| = |e*| = e and y = Arg w+ 2kw (k € Z).
Hence {log |w| + i(Arg w+ 2kn) : k € Z} is the set of all solutions z of w = e*. We
write log w for any w in the set {log |w| + i(Arg w + 2kn) : k € Z}.

3



4 1. HOLOMORPHIC (OR ANALYTIC) FUNCTIONS

DEFINITION 2.1. Let G C C be an open connected set and f : G — C a
continuous function such that z = ef(*) for all z € G. Then f is called a branch of
the logarithm on G.

It is clear that if f is a branch of the logarithm on G, then 0 ¢ G and f(z) =
log |z| + i(Arg z + 2km) for some k € Z, where k can depend on z. Also, if f is a
branch of the logarithm on G, then for fixed k also g(z) = f(z) + 2kni is a branch
of the logarithm on G. The converse also holds.

PRrROPOSITION 2.2. Let G C C be an open connected set and f : G — C a
branch of the logarithm on G. Then every other branch of the logarithm on G is of
the form f + 2kmi for some fized k € Z.

PROOF. Suppose g is another branch of the logarithm on G. Then define
= 53 (f — g). Then h is continuous on G, h(G) C Z, and G connected implies

27i

that hA(G) = {k} for some k € Z. O

To find a branch of log z for a given open and connected set G requires finding
(as log |z| is continuous on C\ {0}) a continuous selection of arg z in {Arg z+ 2kn}.
As G is connected, the range of this continuous selection has to be an interval of
length at most 27, but such a selection does not always exist! This happens e.g.
in case G = C\ {0}, then G is open and connected, but there does not exist a
branch of log z on G, i.e., Arg z is discontinuous on the negative z-axis. in the next
examples we construct some branches of log z.

EXAMPLE 2.3. (i) Let G = C\{z € R: z < 0}. Then Arg z is continuous
on G, so f(z) =log|z| + iArg z is a branch of log z on G. This branch is
called the principal branch of log z and denoted by Log z.

(ii) Let G=C\ {z € R: z > 0}. Let 6(z) denote the unique value of arg z
such that 0 < 0(z) < 2w. Then f(z) = log|z| + i6(z) is a branch of log z
on G.

3. Differentiable functions

DEFINITION 3.1. Let G C C be an open set and f : G — C. Then f is
differentiable at z € G if
lim
h—0
exists. When this limit exists we denote it by f’(z) and call it the (complex)
derivative of f at z. If f/(z) exists at every point of G, then we call f analytic or
holomorphic on G.

fz+h) - f(2)
h

NotaTiON. H(G) = {f : g — C; f holomorphic in G}.

If S C C is any set, then we say that f is holomorphic in S if f € H(G) for
some open set G D S.

REMARKS 3.2.
1. The function f is differentiable at z € G, if for |h| small enough we can write
f(z+h) = f(2) + f'(z)h + e(h)h, where ¢(h) — 0 as h — 0. From this it follows
directly that if f is differentiable at z, then f is continuous at z.



3. DIFFERENTIABLE FUNCTIONS 5

2. Note that f is differentiable at zgp € G with derivative equal to f’(zo) is equivalent
to saying that for all € > 0 there exists a § > 0 such that

f(z+h}z*f(z)_f/(20) <€

for all h € C with 0 < |h| < §. In particular we can take h = z with = real and
0 < |z] < é or h =1y with y real and 0 < |y| < 6. This fact will be exploited in the
proof of the next theorem.

THEOREM 3.3. (Cauchy—Riemann equations) Let G C C be an open set and
f: G — C be differentiable at z = x + iy € G. Let f(z) = u(x,y) + tv(z,y), where
u and v are real valued functions on G. Then the first order partials %7 g—;, %

D)

and oy

exist at (x,y) and satisfy the Cauchy—Riemann equations

ou_ov L ou_ v
8x_8yan oy Oz

at the point (z,y).

PRrROOF. In the definition of the derivative we can restrict ourselves first to real
valued h — 0. We get then that

/ _ . u(x—l—h,y)—u(x,y) U($+h,y) _U(.’B,y) _ @ @
7'z = h—}%){%eR{ h T h oz 'ox

exists at z = x + iy and similarly by restricting to h = ik with k real valued and
k — 0, we get

U(w,y+k)U($,y)+.v(x,y+k)v(x,y)}: Jou O
' dy 9y

’ _ .
f@)_kiﬁkm{ ik ! ik
Equating the two expressions for f'(z) we get that
Ou _ Ov q ou v

or oy "oy om
at the point (z,y). O

EXAMPLE 3.4.
(i) Let f(z) = zz = 2 + y®. Then %% = 2z, g—; =0, g—; =2y and 22 = 0.
Hence the Cauchy—Riemann equations hold if and only if (z,y) = (0,0).
At z =0 we have
f(0+h) - f(0)
h
as h — 0. Hence f is differentiable only at z = 0 and thus nowhere
holomorphic as there exists no open set G containing 0 on which f is
differentiable.
(ii) Let f(z) = ¢, where ¢ € C is a constant. Then f'(z) =0 for all z € C, so
f € H(C). Similarly if g(z) = z, then ¢’(z) = 1 for all z € C, so g € H(C)
(iii) Let f(z) =1/z on C\ {0}. Then

fetm=f() -1 -1

h 2t h) 2
for all z # 0, so that f is holomorphic on C\ {0}.

=h—=0
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DEFINITION 3.5. A function f : C — C is called entire if f is holomorphic on
C.

The above example shows that f(z) = ¢ and f(z) = z are entire functions. To
get additional examples of holomorphic and entire functions we first observe that
analogously to the rules of differentiation of real valued functions one can prove the
following proposition.

PROPOSITION 3.6. Let G be a nonempty open subset of C. Then the following
holds.

(1) If f,g holomorphic on G and A € C, then so are f + g, \f, and fg.
(2) If f(G) C Gy, where Gy is open and g € H(Gy), then h = go f is
holomorphic on G and h'(z) = ¢'(f(2))f'(2) for all z € G.

ProoOF. We will only prove 2. Let z € G and put w = f(z). Then f being
holomorphic at z implies that we can write

fG+h) = f(2) =[f'(2) + a(W)]h,
where €1(h) — 0 as h — 0. Similarly
9w +k) = g(w) = [¢'(w) + e2(k)]k,
where e2(k) — 0 as k — 0. Putting k = f(z + h) — f(2) we get
9(f(z+h) —9(f(2))

N = (g'(f(2)) + e2(f(z + h) = f())(f'(2) + er(R))
=g (f()f'(2)
as h — 0. a
COROLLARY 3.7. (1) Any polynomial p(z) = ag+a1+...+a,z" is entire.
(2) Any rational function f(z) = 28, where p and q are polynomials, is

holomorphic on C\ {z € C: ¢(z) = 0}.

We will now compare complex differentiability of f = w + ‘v with the real
differentiability of the map (u,v) : R? — R2. Recall first the definition of real
differentiability of a vector valued mapping.

DEFINITION 3.8. Let G C R™ an open set and F' : G — R™. Then F is real
differentiable at ¢ € G if there exist a linear mapping DF(c) : R™ — R™ such that
oo e+ h) ~ F(e) = DF(h] _

Jimy 1l 0-

Writing F = (F1,- -+, F,), where F; : R™ — R, then real differentiability of
F at ¢ € G is equivalent with the real differentiability of each F; and DF;(c)h =
VF;(c) - h, where VF; denotes the gradient of F; and thus DF(c) is the linear map
given by the Jacobian matrix of F. We now take m = n = 2 to compare complex
differentiability of f = u+iv at zp = xo+iyo with real differentiability of F' = (u,v)
at ¢ = (xo,y0). We first deal with the special case of a linear map.

LEMMA 3.9. Let A:R? — R? be a real linear map, given by the matriz [a; ;|.
Then A = (u,v) where f = u+1iv is a complex linear map from C to C if and only
Zf au = a2’2 and a1,2 = 7&2’1.
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PROOF. Assume first that f(z) = Cz for some C = ¢; +ico. Then u(z,y) =
(c1z — c2y) and v(x,y) = (c2x + c1y), which implies immediately that A = (u,v)

is a linear map with matrix [a; ;], where a1 = a22 = ¢; and a12 = —a21 = —ca.
Conversely, if a1,1 = az2 = ¢; and a12 = —as,1 = —ca, then it is straightforward
to check that f(z) = Cz with C = ¢ + ica. O

REMARK 3.10. Note that the condition on the matrix A are the ones imposed
by the Cauchy-Riemann equations for f(z) = Cz = u + iv. As the real derivative
DF(c) of alinear map F : C — C is F(c) this says that a linear map from R? — R?
corresponds to a complex differntiable map from C to C if and only if it is complex
linear.

An immediate consequence of of the Lemma is the following theorem.

THEOREM 3.11. Let G C C be an open set and f : G — C, where f(z) =
u(z,y) +iv(z,y). Let zo = o + iyo € G. then the following are equivalent.
(1) f is complex differentiable at zg.
(2) F = (u,v) is real differentiable at (xo,y0) and the derivative DF(xg,yo)
is complex linear.
(3) F = (u,v) is real differentiable at (zo,yo) and the Cauchy-Riemann equa-
tions hold at (zo,yo).

To prove a theorem about complex differentiability when the Cauchy-Riemann
equations hold, we need first a result from vector calculus.

LEMMA 3.12. Let G be an open subset of R? and u : G — R? a function which
has partial derivatives on G, which are continuous at (xg,yo) € G. Then there
exist €1(h), and ez(h) in a neighborhood of (0,0) with e1(h) — 0 and e2(h) — 0 as
h = (h1,h2) = (0,0) such that

ou ou
w(zo + h1, yo + he) = u(zo, yo) + %(*TO,yO)hl + %(Im Yo)ha + €1 (h)hy + ea(h)ha.

PROOF. Let » > 0 such that for h = (hy,hy) with ||h]] < r we have that
(o + h1,y0 + h2) € G. Let ||h|| < r. Then by the Mean Value theorem there exist
k1 between xg and xy + hy and ko between yo and yg + he such that

u(zo + h1,y0 + h2) — u(xo,y0) = w(wo + h1,yo + h2) — u(wo, yo + ha)
+ u(xo, yo + h2) — u(xo,yo)

du Ju
=_—(k ha)h1 + — (0, k2)ha.
895( 1,Y0 + h2)h1 + ay(ﬂﬁm 2)ha
The proof now follows if we put €;(h) = %(lﬁ,yo + hg) — %Z(wo,yo) and e3(h) =
F (w0, k) — G4 (20, 90)- 0

THEOREM 3.13. Let G C C be an open set and f : G — C. Let f(z) =
u(z,y) + iv(z,y), where u and v are real valued functions on G. Assume that the
first order partials %, g—Z, % and g—; exist on G, are continuous at (z,y) and

satisfy the Cauchy—Riemann equations
ou  Ov ou v

or oy "oy~ ow
at the point (z,y). Then f is complex differentiable at z = x + iy.
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PROOF. Identifying C with R? we can find by the above lemma ¢;(h) with
€j(h) = 0 as h = hy + ihy —>Of0rj: 1,---,4 such that

Feth = fE) _ou b du bbb
F ST+ G al) )
. 8v h1 61} hl hl
+1 (a(:my)h + a—y(m JY) = 5 +65(h)f +eq(h)—= >
_ Ou Ov hy ha
= 5 — (=, y)—i—za—(x y)—b—el(h)ﬁ +€2(h)z
h
—l—lQ(h) +ieq(h) h?
ou Ov
— %(‘T,y)‘i‘Z%(.’B,y)
as h — 0, since |%| <1 and [22| < 1. O

COROLLARY 3.14. Let f(z) = e*. Then f is entire and f'(z) = e* for all z € C.

PrROOF. If f = u + v, then u(x,y) = e*cosy and v(x,y) = e’siny. Now
%(%y) = e%cosy, %(w,y) = e%siny, g—;(x,y) = —e%siny, and g—;(my) =
e® cosy. Hence the Cauchy-Riemann equations hold for all (z,y) and, as the par-
tial are continuous, it follows from the above theorem that f is holomorphic at all
z € C. Moreover f'(z) = %(x,y) + Za: (z,y) =¢* O

PROPOSITION 3.15. Let G1,Go C C be open sets and let f : Gy — G, g
Gy — G1 be continuous mappings such that g(f(2)) = z for all z € Gy1. If g is
holomorphic on Gy and ¢'(z) # 0 for all z € Go, then f is holomorphic on Gy and

f'(z) =5 (f(z y for all z € Gy.

PrOOF. Let z € G;. Then for h # 0 but small enough we have z+ h € G; and
f(z+h) # f(2), since g(f(2)) =z # (z+ h) = g(f(z + h)). Now
9(f(z+h) —g(f(2)) f(z+h) — f(z)
fz+h) = f(2) h
implies that f is differentiable at z and 1 = ¢'(f(2))f'(2). O

1=

COROLLARY 3.16. Let G C C be an open connected set and f : G — C a branch
of the logarithm on G. Then f is holomorphic on G and f'(z) = % forall z € G.

PROOF. Take g(z) = e in the above proposition. O

We conclude this section with some remarks about harmonic functions. Recall
that if G C R2 is open and u : G — R satisfies the Laplace equation Au =
dmz(z y) + dyz(x y) =00n G. Let now f € H(G), let u=Re f and v = Im f.
Assume that u and v have continuous second order partials (an assumption which
we will show later on to be always true). Then Au = gi% (z,y) + gz” (z,y) =

azay Y (z,y) + 5 ayay Y(xz,y) = 0. Hence w is harmonic on G. Similarly v is harmonic
on G. Two harmonic functions u, and v are called conjugate harmonic functions,
when f = u+iv is holomorphic on G. Another consequence of the Cauchy-Riemann
equations is that the inner product of the gradients Vu and Vv satisfy Vu-Vv = 0,
i.e, the level curves u(z,y) = ¢1 and v(z,y) = c2 intersect orthogonally.
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4. Power series

In this section we will see how one can use power series to get a large class of
examples of holomorphic functions. In fact, in a later chapter we will see that locally
every holomorphic function can be so obtained. We start by recalling some basic
facts concerning series. Recall that if (a,),>0 is a sequence of complex numbers,
then the series ZZOZO an converges to s € Cif [s — s, — 0 as n — oo, where
Sp, = ag + ...+ a,. The number s is then called the sum of the series. The series
is said to diverge, if it does not converge to any s € C. As in the real variable case
we have:

(1) If >°7° , an converges, then a, — 0 as n — oco.

(2) It Y07 |an| converges, then > 7, a, converges.
A power series is a series of the form Y ¢, (z — a)”. Usually we will treat z as
a variable and the ¢,’s and a as constants in this expression.

EXAMPLE 4.1. Consider the geometric series Y.~ z". The partial sums s,
are in this case given by s, = 1+4+... 4+ 2" = % for all z # 1. Hence for |z] < 1
the series >~ 2™ converges and has sum equal to 1, while if [2| > 1 the series
diverges, since in that case it is not true that 2™ — 0 as n — oo.

The following simple result turns out to be a useful tool in studying the con-
vergence of power series.

THEOREM 4.2. (Weierstrass M-test) Let G C C and u,, : G — C such that
|un (2)] < M, on G, where 35" M,, < co. Then Y " un(z) converges uniformly on
G.

PROOF. For fixed z € G we have that Y " |un(2)| < > o° M, < oo. Hence the
series Y o u,(2) converges for all z € G. Let f(z) = Yo" un(z) for z € G denote
the sum of the series and let € > 0. Then there exists N such that Zzo:NH My, <e.
Then we have for all z € G and all n > N that

=S w@) = Y @] < Y )< Y Mi<e
k=0 k=n+1 k=n+1 k=n+1

for all n > N and all z € G and thus the series > ° u,(z) converges uniformly to
f(z) on G. O

For a given power series ZZOZO cn(z — a)™ we define the radius of convergence
R, 0 < R < oo, by  =lim {/[c,|. The circle {z € C: |z — a| = R} is called the
circle of convergence of the power series.

THEOREM 4.3. (Cauchy Root test) Let Y~ cn(z —a)™ be a power series with
radius of convergence R. Then the following holds.
(1) 30 o en(z —a)™ converges absolutely for |z — a| < R.
(2) >0 o en(z —a)™ diverges for |z — a| > R.
(3) If0 <7 < R, then Y,° cn(z — a)"™ converges uniformly on |z —a| < r.
1

PROOF. Let [z —a| < r < R. Then 1 > 4 implies that there exists N such

that |e,|7 < 1 for alln > N. It follows that |c,(z — a)"| < ('Zﬂ”) foralln > N.

r
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Since @ < 1, it follows that > ¢, (z —a)™ converges absolutely for |z —a| <
for any r < R and thus 1. holds. Let now |z —a| > r > R. Then there exist
n
infinitely many n such that |c,|* > 1. Hence |cp(2 —a)"| > (@) > 1 for
infinitely many n, i.e., the series Y ° ¢, (z — a)™ diverges for |z — a| > r for any
r > R and thus 2. holds. To prove 3. let 0 < r < s < R. Then as above there
exists N such that |e,[= < 1 for all n > N. It follows that |c,(z —a)"| < (Z)"

S

for all n > N and all [z — a| < r. Since £ < 1, it follows that > 7 ¢, (z — a)"

S
converges uniformly on |z — a| < r by the Weierstrass M—test. (|

In dealing with power series with coefficients involving factorials, it is often
easier to use the following result.

THEOREM 4.4. (Ratio test) Let Y > cn(z —a)™ be a power series with radius
of convergence R. Assume ¢, # 0 for all m. Then

. e 1 —ec
lim |2+t < — <lim ntl)
Cn R Cn
In particular, if lim,_, o 62:1 exists, then % =lim,, oo %
PRrOOF. Exercise O

A power series can converge or diverge at any point of its circle of convergence
as can be seen from the following examples.

EXAMPLE 4.5.

. . oo (z41)" _ T n 1 1
— 1 = 4, ntl — o-
(i) The series >~ 5 has R =2, as lim {/5 5. Note that the sum
L 11

1 1 _
1—z = 2—(2+1) — 21_72451 -

of series equals i for all |z 4+ 1| < 2, since

3 Xnto (341)" for B <1,

(ii) The series Y | fTZ has R = 1 (e.g. by the Ratio test), and the series
converges absolutely for any z on the circle of convergence as Y~ n—lz <
00.

(iii) The series > ., % has R = 1 (e.g. by the Ratio test), but it does not
converge absolutely for any z on the circle of convergence as y - | % = 00.
In particular it diverges for z = 1. One can show however (but this is not
completely trivial) that it converges for any z # 1 with |z| =1 (for z = —1
this follows e.g. from the so-called alternating series test).

(iv) The series _0° ; 2+ has R = oo (e.g. by the Ratio test). We will see after
the next theorem that e* equals the sum of this series.

(v) The series Y .2 nlz™ has R = 0 (e.g. by the Ratio test). Hence it

converges only for z = 0.

PROPOSITION 4.6. Let R be the radius of convergence of y..~ ,cn(z — a)™.
Then R is also the radius of convergence of the power series Y - ney(z—a)" =

Z?:o(n + Dent1(z —a)".

PROOF. From calculus we know that lim, ., ¢/n = 1. Hence
n41
o 1

i /(0 + 1) Jenr] = (/0 Dleni]) = 5.
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Note, if we apply the above proposition twice, we get that > -, n(n —1)z"2
converges absolutely for |z — a|] < R.

The following theorem says that inside the circle of convergence the sum of the
power series is a holomorphic function.

THEOREM 4.7. Let >0 cn(z — a)™ have radius of convergence R # 0 and
define f(z) = > 0  gcn(z —a)" for |z —a| < R. Then f € H(B(a,R)) and f'(z) =
Yoo nen(z —a)"t for |z —al < R.

PrOOF. It follows from the above corollary that g(z) = Y07 ne,(z — a)"™!
also converges in B(a, R). Remains to show that f/(z) = g(z) on |z — a| < R.
W.lo.g. we can assume that ¢ = 0. In the argument below we will use that
(z+h)"—z"=hd>}_(z+h)* 12"k Let 2,2+ h € B(0,r), where 0 < r < R.
Then we have

fz+h) - f(2)

JZIE) ) = g{h—n 1
= ch {(z—|—h)k_1zn_k —Z"_l}
n=2 k=1

< Z len ] Z |z"*}c ((z+ R)F=1 — zkil)}
=2 k=2
oo n k—1
<0 len] (Z | 2" (Z |z + h|l_12|k_1_l>>
n=2 k=2 I=1

<RI lenl Y (k = 1) hek=
k=2

n=2
> 1

= |h| 22 len] in(n —1)r" % =0
n—=

as h — 0, since, by the above proposition, > -, |¢,| %n(n —1)r" 2 <ocasr < R.
Hence f'(z) = g(z) on |z| < r for any r < R and the proof is complete. O

COROLLARY 4.8. Let f(z) = > 0", cn(2—a)™ have radius of convergence R # 0.

Then f*)(2) ewists on B(a, R) for all k > 1 and thus f*) € H(B(a, R)) and
f®(z) = Z can(n—1)...(n—k+1)(z—a)" "
n=~k

for all k > 1 and all |z —a| < R. In particular klcy, = f*)(a) and thus the
coefficients cy, of the power series are unique.

EXAMPLE 4.9. Let f(z) = Y00 ; Z7. Then by the above theorem

0 n—1 0 n—1
=S N A

for all z € C. Let h(z) = e #f(z). Then h'(z) = —e *f(2) + e *f(z) = 0 for all
z € C. From the next proposition it follows that h(z) = h(0) = 1 for all z, i.e.,
f(z) = e* for all 2.
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PRrROPOSITION 4.10. Let G C C be an open and connected set. Assume f €
H(G) such that f'(z) =0 for all z € G. Then f is constant on G.

PROOF. Let zp € G and put A = {z € G : f(z) = f(20)}. Then the continuity
of f implies that A is closed. Let now a € A. Then there exists € > 0 such that
B(a,e) C G. Let z € B(a,e€) and put g(t) = f(tz+ (1 — t)a) for 0 < ¢ < 1. Then
by the chain rule ¢'(¢t) = f'(tz+ (1 —t)a)(z —a) = 0 for 0 < t < 1, so g is constant
on 0 <t <1. Hence f(z) =g(0) = g(1) = f(20), and thus B(a,e) C A. It follows
that A is nonempty open and closed subset of G, thus A = G. g



CHAPTER 2

Integration over contours

1. Curves and Contours

A curve is a continuous map 7 : [a,b] — C. We call y(a) the initial point and
~(b) the end point of the curve v, and [a,b] is called the parameter interval of ~.
If v(a) = ~(b), then + is called a closed curve. Denote by v* the range of 7. The
curve 7 induces an orientation of v*, namely the direction in which ~(t) traces v* as
t increases from a to b. Often we will specify a curve by its range together with an
orientation indicating how (and possibly how often) the range is traversed. Given
a curve vy we can find an oriented curve —v, with identical range, but with opposite
orientation, e.g.,

(—y)t) =7v(a+b—1t) wherea <t <b

as a parametrization of the curve —v. If yyand 7, are two curves with with param-
eter intervals [a1,b1], [as, ba] respectively such that v1(b1) = 72(az), then we can
join the two curves to get the curve v = 1 U~y by taking

) = 7(t) a; <t < by
7 Yot +az —b1) by <t <by+by—as.

A curve v is called smooth, if 7/ (t) exists and is continuous for all a < ¢ < b ( with
one-sided derivatives at a and b). Note if we write y(t) = x(t) + iy(t), then ~/(¢)
exists if and only if 2/(t) and y'(¢) exist. From multi-variable calculus we know that
~'(t) represents a tangent vector to the curve ~.

A path or contour v is a piecewise smooth curve, i.e., 7 : [a,b] — C such that
there exist a =ty < 1 < ... < t, = b where ~ restricted to [t;—1,¢;] is smooth for
it =1,...,n. Note that v can have corners at the points ~(¢;), i.e., the right and
left hand derivatives of y(t) at ¢; can differ.

A path ~ is called simple if v : [a,b] — C is such that y(s) # ~(t) for all
a < s <t < b, except possibly for s = a and t = b. The path v is closed if
v(a) = (b).

EXAMPLE 1.1.

(i) The directed line segment C from 27 to z9 is the range of a smooth curve. A
parametrization of C'is given v : [0, 1] — C defined by v(t) = (1—t)z1+t25.
We will denote this curve by [z1, 22].

(ii) A circular arc oriented counterclockwise is the range of an curve. Suppose
the arc is part of the circle with center 2o and radius r, then y(t) = zo+re't
with 61 <t < 0, will trace a circular arc counterclockwise. If 65 —0; = 27
the curve will be the complete circle. Note the curve is simple if and only
if 92 — 91 S 2.

13
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1.1. Conformal mappings. Let f be a holomorphic function on an open set
G C C. Let 29 € G be a fixed point and let «y : [a,b] — C be a smooth curve in
G passing through zy with non-zero tangent, i.e., y(tg) = zo for some ty € (a,b)
and 7/(to) # 0. Then v; = f o is a curve passing through f(z9) and ~i(tp) =
J'(20)7(to). If now f'(20) # 0, we sce that arg v;(to) = arg f'(z0) + arg 7'(to)
and |1 (to)| = |f'(20)||7 (to)|. Thus the tangent vector 7'(¢p) to the curve v at
20 is under the mapping f rotated over an angle 6 € arg f'(z9) and stretched
by a factor |f’(z0)|. Applying this to two curves passing through z; we see that
under the mapping f the angle between the two curves is preserved (including
the direction they are measured), while their tangent vectors are stretched by the
same amount. Mappings which preserve angles (including the direction they are
measured) between smooth curves are called conformal. Thus we have proved:

THEOREM 1.2. Let f be a holomorphic function on an open set G C C.Assume
f'(z) #£0 for all z € G. Then f is conformal on G.

We will now see that in fact the converse is true too, To do so we will introduce

some additional notation. Let f = u 4 iv as usual. Then we define % = % — ig—f
Y

and g—é = g—i + z% It is now a routine calculation to show that u and v satisfy
Yy

the Cauchy-Riemann equations if and only if % =

THEOREM 1.3. Let f = u + iv be a function on an open set G C C with

continuous partials. Assume f is conformal on G. Then f is holomorphic on G
and f'(z) #0 for all z € G.

PRrROOF. Let v be a smooth curve with non-zero tangent passing through zo €
G. Let m(t) = f(3(t)). Write y(t) = 2(t) +iy(t). Then 7] = §%a’ + §4y/ +i %0’ +
. F) Fo) F) of =7
zg—Zy’ = %x’ + a—iy’ = 8—£fy’ + a—gfy’. Let v(to) = 2z0. Then

Yilte) _ Of | 9f ' (to)

V(te) 9z 9Z+(to)
Now f conformal implies that the argument of the left hand side of this equation is
7 (to)
} 7' (to)
not constant modulo 27, when we take e.g. v(t) = 2o + te’®. Hence u and v satisfy
the Cauchy-Riemann equations at zo and thus f’(z) exists and f'(z0) = g—ﬁ(zo) =

71 (to)
7' (to) # 0.

is

constant modulo 27. This implies that %(zo) = 0, since the argument of

O

2. Contour integrals

DEFINITION 2.1. A curve v : [a,b] — C is called rectifiable if 7 is of bounded
variation, i.e., if

{(y) = sup {Zh(tz) —Y(tic1)|ra=ty < ... <tp,= b} < 00.

In this case the length of + is defined to be £(7y). Given a continuous v : [a,b] —
C we define fab'y(t) dt = f; Re ~v(¢) dt + zfab Im v(¢)dt. In case v is (piecewise)
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smooth we have by the Fundamental Theorem of Calculus for real integrals that
b
Jo 7' (t) dt = 5(b) —~(a).

LEMMA 2.2. Let f : [a,b] = C be a continuous function. Then

/ab £(t) dt

b
s/umw.

PROOF. Let a = fff(t) dt. If o = 0, then the inequality is trivial. Assume

a # 0. Then we can write o = re?, where r = | f: f(t)dt|. Now we have

b b
r = Re (e—%):/ Re (e‘“’f(t))dtg/ £ dt.

a

THEOREM 2.3. Let v : [a,b] — C be a piecewise smooth curve. Then ~y is
rectifiable and

b
()= [ Wl

Proor. Without loss of generality we can assume that v is smooth. Let a =
to < ... < t, = b be a partition of [a,b]. Then by the Fundamental Theorem of
Calculus and the above lemma we have

ti
/ ' (t) dt
ti—1

This implies that ~ is rectifiable and £(y) < fab |[v'(¢)| dt. For the reverse inequality,
let € > 0. Then 4/ is uniformly continuous on [a, b], so there exists § > 0 such that
|v/ () — v/ (s)| < € whenever |t — s| < §. Now there exists a partition a =g < ... <
t, = b with At; =t; —t;_1 < J such that

b n
[ e =>- 1 elas

For 1 < i < n we have now that

Iv(ti) —y(tio1)| =

<[ nole

ti—1

< €.

Iy (t:) = y(tia)| = |7 () |Ats] < |y(t:) = y(tior) — ' (t:i) At

/iyw—ﬂmw

ti—1

ti
< [ o=l < e

ti—1
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Combining the last two estimates we get

b n
[ e 31 e)lan e
@ i=1

< Z(W(fi) —(ti-1)| + €At;) + €
SEZ’}/)-Fe(b—a)—l—e

for all € > 0. Hence f; |y ()] dt < £(). O

Let 7 : [a,b] — C be a piecewise smooth curve and let f : v* — C be continuous.
Then we define f7 f(z)dz = f; Fy(@®)y (¢) dt.

EXAMPLE 2.4. Let v : [a,b] — C be a piecewise smooth curve. Then fv 1dz =
~v(b) — v(a). This is immediate from the definition and the Fundamental Theorem
of Calculus.

PROPOSITION 2.5. Let v : [a,b] — C be a piecewise smooth curve and let
f 7" — C be a continuous function. Then the following hold.

(i) f_ﬂ, f(z)dz = — fv f(2)dz, where —y(t) = v(a + b —t).
(ii) If v =71 Uz, then

/vf(z)dz_/% f(z)dz+/w £(2) dz.

(i) IF () < M on ", then | [, f(2)dz| < Me(3).
(iv) (“Independence of parametrization”) Let T : [a1,b1] — [a,b] be a smooth
onto function with 7" > 0. Then for v1 = v o7 we have

Ll f(z)dz—Lf(z) dz.

(v) If also g : v* — C continuous and o, 8 € C, then f,y af(z) + Bg(z)dz =
e f7 f(z)dz+ va g(z)dz.

PRrROOF. Let —v(t) = v(a +b—t). Then —v : [a,b] — C is piecewise smooth
and (—v)'(t) = —y'(a + b — t) except possibly finitely many points, from which (i)
follows directly. Part (ii) is an immediate consequence of the definition. Part (iii)
follows from

b b
/ f(z)de| < / PO (1) di < M / I/ (8)] dt = ME().

Part (iv) follows from the chain rule 4{(t) = +/'(7(¢))7'(¢t) and the change of
variable rules for real integrals

b1 b1
fRydz= [ fn@)m@)dt= [ f(7(®)y (r(t)7'(t)dt

Y1 a ay

7(b1)
= sNY'(s)ds = 2)dz.
/T o SO / 1)



2. CONTOUR INTEGRALS 17

Part (v) is immediate from the definition and the corresponding property of real
integrals.
a

COROLLARY 2.6. Let v : [a,b] — C be a piecewise smooth curve and let f, :
v* — C be continuous functions which converge uniformly to f on v*. Then

as n — o0.

PRrROOF. Note first that f is also continuous on +* as it is the uniform limit
of a sequence of continuous functions. Let M, = sup,c.- [fn(2) — f(2)|. Then by
assumption M, — 0 as n — oo. From (iii) and (v) above we have now

L falz)dz - / f(2)dz / fal2) = f(2) dz

as n — 0o. O

< Mpl(y) =0

The following example is important for the development of the theory.

EXAMPLE 2.7. Let v : [0,27] — C be given by ~(t) = a + rel, i.e., v is the
circle with center a and radius r traversed counterclockwise. We will show that

21 /(z—a)”dz:{o if nez\{-1}

2w ifn=-1

Since v is smooth we can write

21
/(z —a)"dz = / (re™)ire' dt
o 0
27
_ 7:,r,n+1/\ ei(n+1)t dt
0

= jyn+l (ii(nil)ei("“)t\ﬁ”) =0 ifneZ\{-1}
= 2mi ifn=-1,
which proves the formula. Note that this integral does not depend on 7.
The following Theorem will allow us to extend this example, in case n # —1,
to arbitrary closed contours v with a ¢ ~*.

THEOREM 2.8. Let v : [a,b] — C be a piecewise smooth curve and assume F is
holomorphic on (an open set containing) v* with F' continuous on v*. Then

/ F'(2) dz = F((b)) — F(1(a)).

In particular, if v is a closed contour, then fv F'(z)dz = 0.

PROOF. Assume first that v is smooth. Then by the chainrule (F o ~)'(t) =
F'(v(t)y'(t) for all a < ¢t < b. Hence f,y F'(z)dz = f: F'(v()y'(¢) dt = fﬂ{(F o
v) (t)dz = F(y(b)) — F(v(a)), which proves the theorem for the special case of a
smooth curve. In the general case, choose a = sop < s1 < --- < s, = b such that
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Vi = Vsi_1,5,) I8 smooth. Then [[ F'(z)dz =371, [ F'(z)dz =37 F(v(si)) —
F(y(si-1)) = F(v(b)) — F(v(a)). 0

COROLLARY 2.9. Let v be any closed contour. Then fv(z —a)"dz =0 for all
n >0 and if in addition a ¢ v*, then also fv(z —a)"dz =0 for alln < —2.

PROOF. Take F(z) = i5(z —a)"*! in the above theorem. O

Let now {a, b, ¢} be an ordered triple of complex numbers. Then A = A(a, b, ¢)
denotes the triangle with vertices a, b, and ¢. By A we denote curve obtained
by joining the line segments [a, b], [b, c] and [c, a], i.e., OA denotes the boundary of
A(a, b, ) traversed counterclockwise. Hence

f(z)dz = f(z)dz+ f(z)dz+ f(z)dz
OA la,b] [b,c] [e,a]
for any continuous f on OA*.
THEOREM 2.10. (Cauchy’s Theorem for a Triangle) Let G C C be an open

set and assume A = A(a,b,c) C G. Let p € G and f : G — C such that | is
continuous on G and holomorphic on G\ {p}. Then

f(z)dz=0.
oA

REMARK. If f satisfies the above hypotheses, then we shall see later that f is
actually holomorphic on G.

PROOF. Assume first that p ¢ A = A(a,b,c). Let {a1,b1,c1} be the midpoints
of [b,c], [¢,a], and [a,b] respectively. Consider the four triangles Ay, Ay, As, and
A, formed by the triples {a, c1,b1}, {c1,b,a1}, {a1,b1,c1} and {a1, ¢, b1} (see Figure
1). Put I = [, f(z)dz. Then

4
= dz.
I Jz::l oa, f(z)dz

Now | faAj f(z)dz| > %I for at least one j. By relabeling we can assume that

FIGURE 1. A = A1 UAUA3U A,
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I
74'

f(z)dz

224N

Dividing similarly A; into four triangles by means of the midpoints of the edges
and repeating this process, we get a sequence of triangles A D Ay D Ay D --- such

that £(0A,) = 5 L, where L = ((dA), and such that

il

(2.2) > o

f(z)dz

oA,

Since A is compact and {A,} has the finite intersection property, it follows that
there exists zp € N, An. As p ¢ A, we have that zg # p and thus f is differentiable
at zg. Let € > 0. Then there exists » > 0 such that

|f(2) = f(20) = f'(20)(2 — 20)| < €|z — 20
for all z with |z — zp| < r. Now £(0A,,) — 0 implies that there exists N such that
AN C B(zo,7). This implies that |z — zo| < {(0AN) = 5L for all z € Ay. By
Corollary 2.9 we know that

£ = [ 1) = ) = £ )z~ )
aAN 8AN
This implies that

f(2)dz| < (27NL) (27VL) =€ (27V) 12

OAN

From the inequality 2.2 it follows that |I| < eL? for all € > 0 and thus I = 0.
This completes the proof in case p ¢ A. Assume next that p is a vertex of the

FIGURE 2. The case a = p

triangle A(a, b, ¢), say p = a. Then pick x € [a,b] and y € [a, c]. Then by the above
fA(m’b,y) f(z)dz = fA(y,b,c) f(2)dz =0 and thus

(z)dz=/ f(z)dz—0
oA OA(a,z,y)

as x,y — a, since £(0A(a,z,y)) — 0 and f is bounded on A(a,z,y). Hence
Jon f(2)dz = 0 also in the case that p is a vertex of A. It remains the case that
p € A\ {a,b,c}. In that case apply the above to the triangles A(a,b,p), A(b,c,p)
and A(e,a,p) to get the desired result. O
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DEFINITION 2.11. A set S C C is called starlike if the exists a € S such that
the line segment [a, z] C S for all z € S. The point «a is called a star center of S in
this case.

Recall that a set S C C is called convez if for z1, 22 € S we have that [z1, 23] C
S, i.e., a convex set is a starlike set such that every point of S is a star center of S.

THEOREM 2.12. (Cauchy’s Theorem for starlike sets) Let G C C be an open
starlike set. Let p € G and f : G — C such that f is continuous on G and
holomorphic on G\ {p}. Then f = F' for some holomorphic F on G. In particular

(2.3) /f@ﬂz:o

for every closed contour v in G.

PROOF. Let a € G be a star center of G. Then the line segment [a, 2] C G for
all z € G. Now define

F(z)—/[ ]f(w)dw.

Let zp € G. Then there exists r > 0 such that B(z9,r) C G. Now for any
z € B(zp,r) the triangle A(a, z9,2) C G, so by Theorem 2.10 we have

[ swdu=o.
OA(a,z0,2)

and thus

F(z)— F(z) = f(w)dw—/ ]f(w)dw :/[ ]f(w)dw.

[a,2] ;

Fixing zy we get for all z # 2 in G, since f[ 1dw = z — 2y, that

20,2]

Fe) = Flao) f(zo)‘ - / Flw) — f(z0) dw
z 20 z 20 [20,2]
< sup |f(w) = f(z0)| ) [z — 2ol
|Z ZOl wE|[zo,%2)

sup |f(w) = f(z0)| =0

we|[z0,2]

as z — zp, by the continuity of f at zg. This proves that f(z9) = F'(20)
for all zg € G and thus F' is holomorphic on G. Now equation 2.3 follows from
Theorem 2.8. |

DEFINITION 2.13. Let v be a closed piecewise smooth curve in C and let a €

G =C\ ~*. Then
1 d
Indv(a):—/ &
v

211 zZ—a

is called the index of v with respect to a or winding number of v around a.
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THEOREM 2.14. (Cauchy’s Integral Formula for starlike sets) Let G C C be an
open starlike set and let v be a closed contour in G. Let f be holomorphic on G
and zg € G\ v*. Then

Fe) - () = 5 [ L

211 zZ— 29

PROOF. Let z € G\ v* and define
) fel=flzo) if 2 e G\ {20}
z) =
g f'(20) if z = 2
Then g satisfies the hypotheses of Theorem 2.12, so

— dz = 0.
5w | 912
Hence
1 1
RNy RS N
2w Jy 2 — 20 2 Jy 2 — 20
1 1
= — d
f(zo)Qm' [Y zZ— 2y *
= f(20) - Ind, (20),
and thus the proof of the theorem is complete. O

REMARK 2.15. The above theorem is used most often for the case that Ind, (a) =
1. We will see e.g. that Ind,(z9) = 1, when ~ is a circle containing z, traversed
counter clockwise once.

THEOREM 2.16. (Fundamental Theorem of Algebra) Let p(z) be a polynomial
of degree m > 1. Then p has exactly m zeros in C, counting each zero according to
its multiplicity.

PROOF. Assume p(z) # 0 for all z € C. Then f(z) = -5 is an entire function.

p(2)
We can assume that p(z) = 2™ 4+ -+ a1z + ag. Now
aq ap
\a1| |CLO‘ 1 1
D O e > Z[z|™ > ZR™
> J¢f | o~ | 2 5" 2 5

for |z| > R for R large enough. Now applying Cauchy’s Integral formula to f(z)
and yg = Re® with 0 < t < 27, we get

f(z) ) 2mi
—~dz =2mif(0) = —= #0,
TR * p(0)
while
/ Mdz < 27 max \L\ < 27ri — 0,
I lzI=R p(z) Rm

as R — oo, which is a contradiction. Hence there exists z; € C such that p(z;) = 0.

Now factor p(z) = (z — 2z1)p1(2) and repeat the above argument.
O
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To apply the Cauchy’s Integral formula, we need to be able to compute the
index of a curve. We will derive a number of properties of the index, which will
facilitate this.

PROPOSITION 2.17. Let «y be a closed contour and let G = C\~*. Then Ind,(a)
is an integer for all a € G.

PROOF. Let v : [b,¢] — C be piecewise smooth such that v(b) = v(c). Then
1 dz 1 [° A'(s)

2i Wz—a_% y Y(s)—a

ot A(s) .
o= [ 5

Then ¢g(b) = 0 and ¢'(t) = ,1;)7(21, except possibly on the finite set .S where ~y is not

differentiable. Now e~9()(v(t) — a) is a continuous function such that

d

& e=90(3(1) — a) = =90/ (1) — g (DO 3(1) ~ )
= YO (1) — g () (1) —a)} =0,

except on the finite set S. This implies that e=9®)(y(t) — a) is constant on [b, c.
Evaluating this function at ¢ = b and t = ¢ gives then

e (4(b) @) =4(8) —a = ¢4 (3(c) — ),
which implies e=9(¢) = 1, since v(b) = y(c). Hence g(c) = 2mim for some integer

m, and thus ﬁ - Zd_—za = m which completes the proof of the theorem. g

ds.

Let

By the above proposition the index of a closed contour is an integer m. In-
tuitively this integer measures how many times the contour v winds around the
point @ and in what direction. From the properties of contour integrals we have
immediately that the following properties hold.

(1) Ind_(a) = —Ind,(a).
(2) If v is obtained by joining the closed contours v; and 72, then

Ind, (a) = Ind, (a) + Ind, (a).

We shall prove that the index of a closed contour depends continuously on the point
a and that therefore the index is constant on each connected component of C\ v*.
We recall first the relevant definitions. Let S C C. Then S; is called a (connected)
component of S, if Sy is a maximal connected subset of S. One can show that if S;
is a connected subset of S, then so is the relative closure of S;. Hence connected
components of a set S are always relatively closed.

PROPOSITION 2.18. Let G be an open set in C. Then every connected com-
ponent of G is also open and thus G is a countable disjoint union of open and
relatively closed components.

ProOF. Let C' denote a component of G and let zg € C. Let ¢ > 0 such that
B(zg,€) C G. Then CUB(zg, €) is a connected subset of G and thus C = CUB(zo, €),
i.e., B(zo,€) C C. Hence C is open. In each component we can pick a different
a + bi with a,b € Q, so there are countably many components. O
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REMARK 2.19. If G = C\ K, where K is a compact set, then G has exactly
one unbounded component. In particular, when G = C\ v* for a closed contour =,
then G has one unbounded component.

THEOREM 2.20. Let v be a closed contour and let G = C\ ~*. Then Ind,
is constant on each component of G and Ind,(a) = 0 for all a in the unbounded
component of G.

PRrROOF. Define f(w) = Ind,(w) for w € G. We first show that f : G — C is
continuous. Let w € G. Then r = dist(w,y*) > 0, since v* is compact. Let € > 0

2

and then take 0 < § < min{%, <.}, where L = {(v). Then for |w; — w| < § we

2 L
have
) = fln)| = o | | s a

For z € v* we have |z —w| > r and |z —w1| > [z — w| — |[w —wy| > §. Hence

F(w) — fw)| < %L <

It follows that f is continuous. If now C C G is a component, then f(C) is a
connected subset of C. On the other hand f(C) C Z and thus f(C) consists of a
single point. To see that Ind,(a) = 0 for all @ in the unbounded component of G,
let R > 0 such that {z : |z| > R} is contained in the unbounded component of G.
Then find a € C with |a| > R such that |z —a| > £ for all z € v*. Then

1 1

Ind <——L=-

ind (@) < 5= "L =,
and thus Ind,(a) = 0. As Ind,(a) is constant on the unbounded component it
follows that this holds for all ¢ in the unbounded component of G. O

EXAMPLE 2.21.

(i) Let v : [0,27] — C be defined by (t) = 2o + Re'*. Then v traces the
circle |z — zg| = R once counterclockwise. In this case Ind,(a) = 1 for
|a — 20| < R and Ind,(a) = 0 for |a — zo| > R, since Ind,(z9) = 0 and the
component of G \ v containing zg equals |z — zg| < R.

(ii) Let v : [0,4n] — C be defined by v(t) = zp + Re~". Then v traces
the circle |z — 29| = R twice clockwise. In this case Ind,(a) = —2 for
|a — 20| < R and Ind,(a) = 0 for |a — z| > R.

The following proposition provides the index for practically every curve en-
countered in applications.

PROPOSITION 2.22. Let v : [a,b] = C a closed curve. Assume there exists
zo € C\v*, to € (a,b) and € > 0 so that the rays Ry = {zo + s(7(t) — z0) : s > 0}
have the following properties.
(1) Renay*={~(t)} for allt € (tog — €, to +€)
(2) The part of Ry with s > 1 lies in the unbounded component of C\ v* and
the part with 0 < s < 1 lies in a bounded component of C\ ~v*.
(3) v traces v* N{y(t) : t € (to — €,t0 + €)} once counter clockwise.

Then Indy(z9) = 1.
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PROOF. Let f(z) =log|z — 20| +iarg*(z — 2z9) be a branch of log(z — z) with
domain C\ Ry,. Denote by ~. the part of the curve y in C\ R,, with initial point
~(to 4+ €) and terminal point y(tg — €). Then

/ Lz = [t — ) — F(3(to + €)) — 2mi

EZ—ZQ

as € — 0. On the other hand

1 1
/ dz—>/
zZ— Z0 'YZ_ZO

as € = 0 and thus Ind, (zp) = 1.

dz

€

O

THEOREM 2.23. (Power series expansion of holomorphic functions) Let G C C
and let f be holomorphic on G. Then for all a € G and all R > 0 such that
B(a,R) C G there exists (unique) ¢, such that

o0

flz)= ch(z —a)"

n=0

for all z € B(a, R).

PROOF. Let 0 < r < R and define v : [0,27] — B(a, R) by v(t) = a + re'.
Then Ind,(z) = 1 for all z € B(a,r). Hence by the Cauchy’s Integral formula
(applied to the open set B(a, R)) we have

1) =5 [ X ac

|z—

Now Z:Z = 7,“‘ < 1 for all z € B(a,r) and all ¢ € v*. Hence the geometric
series
i(z—a)”_ 1 { 1 }_ 1
_ g+l T _z—=a (T~ _
n=0 (C a‘) C a 1 C_a C z
converges uniformly in ¢ on v* for each z € B(a,r). Hence
1 = (z—a)”
= _— ——d
50 = gz [ HOX e ¢
n=0

-3 (e i) e

= Z en(z—a)”
n=0

1 f(©)
=5 | i e

The uniqueness follows from Corollary 4.8 in Chapterl, where it was shown that
_ M@ 0

n!

where

Cn
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COROLLARY 2.24. Let G C C be an open set and assume f : G — C is
holomorphic. Then f' is holomorphic on G and thus f exists for alln > 1 on
G. Moreover, if B(a,R) C G and |f(z)| < M on B(a, R), then

11 (a)

M
| < n—n(Cauchy Estimates).

ProOOF. The fact that f’ is holomorphic on G follows immediately from the
above theorem and Theorem 4.7. From Corollary 4.8 we get

@ =g [ %dc,

T 2mi

where v(t) = a + re’t,0 <t < 2m,0 <r < R and thus

! M n!M
(n) B L
[f'™(a)| < 2ﬂ_27rrrn+1 =
As this holds for all 0 < 7 < R the proof is complete. ]

THEOREM 2.25. (Morera’s Theorem) Let G C C be an open set and f : G — C
a continuous function such that

f(z)dz=0
A

for all triangles A C G. Then f is holomorphic on G.

PROOF. Let B(a,R) C G for a € G. Then as in the proof of Theorem 2.12 we
can find F holomorphic on B(a, R) such that F' = f on B(a, R). From the above
corollary we now conclude that f is holomorphic on B(a, R). As this holds for all
B(a, R) C G we conclude that f is holomorphic on G. O

THEOREM 2.26. (Liouville’s Theorem) Let f be an entire function. Assume
that f is bounded on C. Then f is constant.

PROOF. Let f(z) = > anz" be the power series expansion around z = 0.
Since f is entire, this series has radius of convergence equal to co. Let M be
such that |f(z)] < M for all z € C. Then for all R > 0 we have for n > 1 that
| (0)] < % — 0 as R — oo. Hence f(™(0) = 0 for all n > 1, and thus also
an = 0 for all n > 1. Therefore f(z) = ag for all z € C. O






CHAPTER 3

Zeros and singularities of holomorphic functions

1. Zeros of holomorphic functions

A subset G C C is called a region if G is open and connected. If f: G = G,
then zg € G is called a zero of f if f(z) = 0.

THEOREM 1.1. Let f be a holomorphic function on a region G. Then either
every zero of f is isolated or f is identically zero on G. For each isolated zero a € G
there exists a unique m € N such that f(z) = (z — a)™g(z), where g is holomorphic
on G and g(a) # 0. Moreover if f is not identically zero on G, then f has countably
many zeros in G.

PROOF. Let a € G such that f(a) = 0. Then there exists 7 > 0 such that
B(a,r) C G. Then by Theorem 2.23 we can expand f in a power series
@) =) ealz—a)"
n=0

on B(a,r). Note that ¢ = 0 as f(a) = 0. There are now two possibilities: either
¢n, = 0 for all n in which case f vanishes identically on B(a,r) and thus on G, or
there exists a smallest m > 1 such that ¢,,, # 0. In the latter case we define

o) = { LYs ifzeG\{a}

Cm ifz=a

Then clearly f(z) = g(z)(z — a)™ for all z € G and thus g is holomorphic on
G\ {a}. But the power series of f shows that g has a power series expansion on
B(a,r) and is thus holomorphic on B(a,r). This shows that g is holomorphic on
G and g(a) = ¢, # 0. Since g is continuous it follows that g(z) # 0 in a open disk
around a and thus a is an isolated zero of f in this case. We have thus shown that
a zero of f is either isolated or f is identically zero on a disk around the zero. We
show next that if f has a non-isolated zero, then f is identically zero on G. Assume
f has a non isolated zero on G. Then the interior U of f~1(0) ={z € G : f(2) =0
is non-empty. We next observe that U is relatively closed in G. Let z, € U such
that z, — zp. Then continuity of f implies that also f(z9) = 0. Since the z,’s
are non-isolated zeros, we can assume that z, # z,. Then zy is a non-isolated
zero of f and thus zy € U. It follows that U is open and closed in G and thus
U = G by connectedness of G. It remains to show that f~1(0) is countable, in
case f is not identically zero on G. In this case every a € f~1(0) is isolated, so
for every a € f~1(0) there exists » > 0 such that B(a,r) N f~1(0) = {a}. Hence
there exists a1 € Q 4 ¢Q and r, > 0 such that a € D, = B(a1,r,) C B(a,r). The
collection {D, : a € f~(0)} is countable and if a,b € f~1(0) with a # b, then

27
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D, # Dy. Hence the mapping a —+ D, is a one-to-one mapping and thus f~1(0) is
countable. O

REMARK 1.2. The number m associated with the zero a, as in the above the-
orem, is called the order of the zero a.

COROLLARY 1.3. Let f and g be a holomorphic functions on a region G and
assume there exists a subset S C G with limit point in G such that f(z) = g(z) on
S. Then f(z) = g(z) for all z € G.

PROOF. Let h = f —g. Then h has a non-isolated zero in G (namely the limit
point of S) and thus by the above theorem h is identically zero on G. O

EXAMPLE 1.4.
(i) Let f be an entire function such that f(1) = sin(%) for all n € N. Then

by the above corollary f(z) = sin z for all z € C. "
(ii) Let f be a holomorphic fuction on C\ {0} such that f(z) = sin(L) for

all z = %, n=12---,ie, f(#) =0 for all n > 1. It does not follow
in this case that f(z) = sinl for all z # 0, since f(z) = 0 also satisfies
f(Gz) =0

THEOREM 1.5. (Mazimum Modulus Theorem) Let G C C be open and connected
and f : G — G holomorphic. Assume |f| attains a mazimum at a point a € G,
i.e., |f(2)] < |f(a)| for all z € G. Then f is constant on G.

PROOF. Let a € G such that |f(z)| < |f(a)| for all z € G. Then there exists

R > 0 such that B(a, R) C G. Take 0 < r < Rand let y(t) = a+re’ for 0 < t < 27.
Then Cauchy’s Integral Formula 2.14, applied to B(a, R), gives

11 f()

= d
fla) 2 Jyz—a :
1 2 it )
= — 7“& +.Te )M’e” dt
2mi Jo rett
1 27 )
=2/, fla+re'™)dt.
Hence |f(a)| < 5= 027T |fla+re')|dt < 5= 027r|f(a)|dt = |f(a)|. Tt follows

that ,
/0 (@) = |f(a+ re)| dt = 0.

The integrand is non-negative and continuous, so it must be identically zero. Hence
|f(a)] = |f(a+reit)| for all 0 < r < R and it follows that |f| is constant on B(a, R).
It is now an an exercise to show, using the Cauchy-Riemann equations, that f is
constant on B(a, R). Hence f(z)— f(a) = 0 on B(a, R) and from the connectedness
of G it follows that f(z) — f(a) =0 on G. O

REMARK 1.6. If G is a bounded region and f is holomorphic on G and con-
tinuous on G, then by the above theorem |f| must attains its maximum on the
boundary 9G of G.
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A corollary of the maximum modulus theorem in the form of the remark is the
Minimum Modulus Theorem.

COROLLARY 1.7. (Minimum Modulus Theorem) Let G C C be a bounded region
and let f : G — C a non-constant continuous function which is holomorphic on G.
If there exists zo € G such that |f(z0)| < inf{|f(2)| : z € OG}, then f has a zero on
G.

PROOF. Assume f has no zero on G. Then g = % is holomorphic on G and

has an interior maximum on G. Hence g is constant, which contradicts that f is
non-constant. (|

We now note that if G is region and f : G — C is non-constant, then for a € C
there exists a closed disk B(a,r) such that f(z) # f(a) for all z € B(a,r) \ {a}.
This follows from the fact that z = a is an isolated zero of f(z) — f(a). Combined
withe minimum modulus theorem we can use this observation to prove the Open
Mapping Theorem. Recall first that a mapping f from a metroic space X into a
metric space Y is called open, if f(U) is open in Y for all open U C X.

THEOREM 1.8. (Open Mapping Theorem) Let f be a non-constant holomorphic
function on a region G. Then f is an open mapping

PROOF. Let U C G be open and a € U. We need to prove that f(a) is
an interior point of f(U). By the above remark there exists r > 0 such that
B(a,r) C U and f(z) # f(a) for all z with |z — a| = r. This implies that § =
S ming.._q=r |f(2) — f(a)| > 0. We claim that B(f(a),d) C f(U). To sce this
let w € B(f(a),d). Then |f(a) —w| < §. For z with |z — a| = r we have that

£(2) = w| > |£(2) = F(@)| - |F(a) —w| > 26— 6 = 6.

This implies that |f(a) —w| < ming.|;—q=r} |f(2) —w|. By the minimum modulus
theorem there exists z € B(a,r) such that f(z) —w = 0. This shows B(f(a),d) C
f(U) and the proof is complete. O

2. Singularities of holomorphic functions

Let G C C be an open set and let a € G. Assume f is holomorphic on G\ {a},
then we say that f has an isolated singularity at a. If we can define f(a) in such a
way that f becomes differentiable at a, then a is called a removable singularity of

1.

THEOREM 2.1. Let G C C be an open set and let a € G. Assume [ is holo-
morphic on G\ {a} and that [ is bounded on B(a,r)\ {a} for some r > 0. Then
f has a removable singularity at z = a.

PROOF. Define

0 zZ =a.

W) = {(z—a) f(z) z#a,2z€G



30 3. ZEROS AND SINGULARITIES OF HOLOMORPHIC FUNCTIONS

Then f bounded on B(a,r) \ {a} implies that h'(a) = 0. Hence h is holomorphic
on G. It follows that h has a power series expansion

h(z) = i cn(z—a)”
n=2
for all z € B(a,r). Now define f(a) = cg, then f has the power series expansion
)= enals —a)"
n=0

for all z € B(a,r), which implies that f is holomorphic on B(a,r). Thus f is

holomorphic on G.
O

REMARK 2.2. Note that if f is holomorphic on G\ {a} and if lim,_,, f(z) exists
in C, then f is bounded on B(a,r)\ {a} for some r > 0 and thus f has a removable
singularity at z = a in that case. In particular, if f is holomorphic on G\ {a} and if
f is continuous at a, then f is holomorphic on G. Conversely, if f has a removable
singularity at z = a, then lim,_,, f(z) exists in C.

EXAMPLE 2.3. Let f(z) = 22 on C\ {0}. For z # 0 we find by using the
power series of sin z that

Now the series on the right hand side converges for all z € C to a holomorphic
function g, which agrees with f on C\ {0}. Thus 0 is a removable singularity of f
and by defining f(0) = g(0) = 1 we extend f to an entire function.

An isolated singularity a of f is called a pole of f if lim,,,|f(z)] = co. An
isolated singularity a of f which is neither a removable singularity or a a pole is
called an essential singularity of f. We first characterize poles.

THEOREM 2.4. Let G C C be an open set and let a € G. Assume f is holo-
morphic on G\ {a}. Then the following are equivalent.
(i) f has a pole at a.
(ii) There ezist a uniqgue m € N and a holomorphic function g on G with
g(a) # 0 such that

9(2)
for all z € G\ {a}.
(iii) There exist a unique m € N and c_1,¢_9, -+ ,¢_ym € C with c_, # 0
such that .
C—k
f(2) kz_j_l G

has a removable singularity at a.

PROOF. Assume first that (i) holds, i.e., f has a pole at a. Then lim,_,, |f(z)| =
oo implies that there exists r > 0 such that f(z) # 0 on B(a,r) \ {a}. Then define
h(z) = ﬁz) for z € B(a,r) \ {a}. Then h is holomorphic on B(a,r) \ {a} and
lim,,, h(z) = 0, so a is a removable singularity of A and by defining h(a) = 0
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we have a holomorphic function on B(a,r) with its only zero zero at a. Hence by
Theorem 1.1 we know that there exist m € N and a holomorphic function g; on
B(a,r) with g1 (2) # 0 such that h(z) = (2 —a)™g1(z), so (ii) holds on B(a,r) with
g= g—ll. Now (z —a)™ f(z) is holomorphic on G\ {a} and agrees with g on B(a,r),
so we can extend ¢ to a holomorphic function on G so that (ii) holds. If (ii) holds
then there exists r > 0 such that g(z) = .07 an(z —a)" for all z € B(a,r) and

g(a) = ap # 0. Now

Am—k - k
f(z) = ];1 G-aF ;awm(z —a)
for all z € B(a,r) \ {a}, which shows that (iii) holds if we take c_p = ay— for
k=1,---,m. If (ili) holds, then (z — a)™f(z) defines a holomorphic function g
with g(a) # 0 on an open disk B(a,r) for some r > 0. Hence

lim |f(z)| = lim gGIl =00

z—a z—a ‘z — 0,|m ’

which completes the proof of the theorem. O

REMARK 2.5. If f has a pole at a, then the number m as in the above theorem

is called the order of the pole and }_,” ; ﬁ is called the principal part of f at

the pole a. Note also that (iii) above implies that if f has a pole of order m at a,
then there exist r > 0 and ¢_,,,,- -+ ,¢_1,¢p, C1, - - such that we have

Com c

2)=—"—"+--- = 0Oc z—a)k
I&=—am ™t +(Z_a)+;)k( )

for all z € B(a,r) \ {a}.
We now present a limit characterization of essential singularities.

THEOREM 2.6. (Casorati- Weierstrass Theorem) Let G C C be an open set and
let a € G. Assume f is holomorphic on G\ {a}. Then the following are equivalent.

(i) f has an essential singularity at a.
(ii) If r > 0 such that B(a,r) C G, then f(B(a,r)) is dense in C, i.e., for all
w € C there exist z, € G\ {a} with z, — a such that lim, o f(2,) = w.
(iii) There exist z, — a and z, — a in G\ {a} such that lim,_, f(z,) and
lim,, o0 f(2],) exist, but are unequal.

PROOF. Assume a is an essential singularity of f. If (ii) does not hold, then
there exist a w € C such that

1
9(z) = o —w

is bounded in a neighborhood of a. Hence g has a removable singularity at a. This
implies that f has either a removable singularity at a (in case g(a) # 0) or a pole
at a, which contradicts our assumption. hence (ii) holds. Clearly (ii) implies (iii).
If (iii) holds, then a can not be a removable singularity of f by Remark 2.2 and a
can not a pole either, so it must be an essential singularity of f. (]

EXAMPLE 2.7. Let f(z) = ez on G = C\ {0}. Then z = 0 is an essential
singularity of f, since lim,,_ f(—%) =0 and lim,,_, f(ﬁ) =1.



32 3. ZEROS AND SINGULARITIES OF HOLOMORPHIC FUNCTIONS

THEOREM 2.8. (Laurent Series expansion) Let G C C be an open set and let
a € G. Assume f is holomorphic on G\ {a}. Then there exists R > 0 and c,
(n=0,%£1,42,...) such that for all z € B(a, R) \ {a} we have

o]

f(Z) = Z Ck(z - a’)ka

k=—o00

1 f(©)

= [ RN

2mi )., (¢ —a)k+l
and v, (t) = a + re’,0 <t < 2m with 0 < r < R. Moreover the series converges
uniformly on any annulus 0 < r < |z —a| <rs < R.

where

PRrROOF. Let R > 0 such that B(a,R) C G and let 0 <7 < |z —a|] <72 < R.
Define 7, (t) = a + rre*,0 < t < 27 for k = 1,2. Now write 7,, U~,, as a join
of two curves, each one lying in a starlike open set contained in 0 < |z —a| < R
and such that z is inside exactly one of the two curves (see figure 1 below). Than

g9(¢) = g(_o is holomorphic inside the other curve. We see by Theorems 2.12 and

z

FIGURE 1. —7,,u7, as a join of two curves.

2.14 that

(3.1) / Cf(—oz d(—/ Cf(fode:%rif(z).

T2

Now we have

ciz: <<—a>i<zfa> =<1a§(22>"

for ¢ € v, for all |z —a| <73 = | —a| and

ciz: <c—a>i<zfa> :‘zlaicz)n
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for ¢ € vy, for all [z —a| > 71 = |( — al. Inserting these expansions in 3.1 we get

(32) =Y ae-at+ S -,
k=0

k=—o0

where

ak:;/ 1O 4

omi J,,, (C— a)F+1

and

1
R (R
m Yy (C - a)

1
¢~z
r1 < r; and 75 < r9. Thus the series (3.2) converges uniformly on 7] < |z —
a| < rh. Similarly to how we established the equation (3.1), we can see that

Ccp = f% % d¢ does not depend on 7, so that ¢ = ax for kK > 0 and ¢ = by

The two series for converge uniformly in z — a for r; < |z — a| < 7}, where

for k£ < —1, which completes the proof of the theorem. O

The following corollary follows now immediately from the previous characteri-
zations of removable singularities and poles.

COROLLARY 2.9. Let G C C be an open set and let a € G. Assume f is
holomorphic on G \ {a}. Let f(z) = Y pe_. ck(z — a)* be the Laurent series
expansion of f around a. Then the following hold.

(i) f has a removable singularity at z = a if and only if c, = 0 for all k < —1.
(ii) f has a pole at z = a of order m if and only if ¢, = 0 for all k < —(m+1)
and c_p, # 0.

(iii) f has an essential singularity at a if and only ¢, # 0 for infinitely many

k<O.

REMARK 2.10. Let f be holomorphic on G \ {a} and let

[e.°]

f&= Y ak-o

k=—o0

be the Laurent series expansion of f around a. Then the coefficient ¢_; is called the
residue of f at a and denoted by Res(f,a). Its importance derives from the fact that
if v(t) = a + re®* with 0 <t < 27 is a curve in G, then fv f(z)dz = 2mwiRes(f, a).
This follows immediately from the uniform convergence of the series, which allows
us to integrate the series term by term. In case f has a pole of order m at a, we
can compute Res(f, a) without using the Laurent series as follows:

Res(f, a) = i 1 dm—1
es(f,a) = lim ——— ——
’ z=a (m — 1)l dzm—1

[(z = a)" f(2)].

3. The Residue Theorem and Applications

We start with an application of the Laurent expansion.
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THEOREM 3.1. (Residue Theorem) Let G be a starlike region. Let p1,--+ ,pn
in G and f: G\ {p1, -+ ,pn} — C be holomorphic. Let y be a piecewise smooth
closed curve in G\ {p1,--- ,pn}. Then

n

/ f(z)dz =2mi Z[Res(f,pk)]fndw(pk).

k=1

PROOF. For each py there exists Ry > 0 such that B(pg, Rr) C G. Then for
z € B(pk, Ri) \ {pr} we have a Laurent expansion f(z) = Y07 ¢n(z — pp)™

Denote by Si(z) the singular part Z;iioo ¢n(z — pr)™. Then there exist € > 0
such that Sy converges uniformly on |z — pr| > € and such that v* is a subset of
each |z — pi| > €. In particular each Sy is holomorphic on C\ {px}. Define g(z) =

F(z)=>"1_; Sk(z) on G\{p1,--- ,pn}. Clearly g is holomorphic on G\ {p1,--- ,pn}.
We claim that each py is a removable singularity of g. To see this, note that on

B(pg, Ry) we have that

n oo
g(z) = — ZSj(z) + Z em(z —pr)™.
i#k m=0

Both terms on the right hand side are holomorphic on B(py, R) so that z = py, is
a removable singularity for g. Hence we can extend g to a holomorphic function on
G. Tt follows now from Cauchy’s theorem 2.12 that fv f(z)dz = 0. Hence

Lf(z)dz—g/vsk(z)dz.

Now each Sj converges uniformly on v*, so that

[SuGraz= 3 e [z = p ds = 2milRests, polind, ()

m=—0oQ

from which the conclusion follows. O

To apply the above theorem to the evaluation of improper teal integrals, we first
recall some definitions. Assume f : R — R is function which is Riemann integrable
over [—Ry, Ry for all Ry, Ry > 0 (this holds e.g. when f is continuous). Then f

is (improper) Riemann integrable over R if both limits limp, oo fERl f(z)dz and

limp, 00 fORQ f(z)dx exist and [*_ f(x)dx is by definition the sum of these two
limits. One can also define the Cauchy principal value integral of f by

(PV) /_ o; fla)dz = lim /_ Z (@) da.

It is easy to see that if f is improper Riemann integrable, then the Cauchy principal
value of the integral of f exists and equals ffooo f(x)dz, but that the converse is
false in general (take e.g. f(x) = x). There are two cases, where the two integrals
coincide. The first case is when f is an even function, i.e. f(—z) = f(x) for all .

In this case we have
R 1 (R
/ flx)de = f/ f(z)dx.
0 2/ r
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The other case is when the integral of |f(x)| has a finite Cauchy principal value.
We present now some examples of applications of the residue theorem.

EXAMPLE 3.2. Let f(z) = (1+12)2 We want to compute fo (z) dz. Observe
first that f is an even function, so that by the above

/Ooof(x)d %hm/ f(z)dz.

First extend f to C\ {i,—i} by f(z) = m. Now define vg(t) = Re® for
0 <t <7 and define the closed curve Cr = vg U [—R, R]. Then for R > 1 we have
Indey, (2) = 1 and Indey, (—i) = 0. By the residue theorem we have for R > 1 that

f(2)dz = 2mi Res(f(z),1).
Cr

Now z = i is a pole of order 2, so Res(f(z),i) = %(ﬁﬂz:i = L. It follows
that for R > 1

Rf(z)dz—27ri~412_;r,
Now fcR f(z)dz = ‘[’YR f(z)dz + ffR f(z) dz and
1 ™R
/m f(2)dz <7rRZHéE}Y§ S < EEE 50

as R — oo. It follows that

°
/0 (e QF}I_IP/ f(@)dr =

EXAMPLE 3.3. Suppose we want to compute [,

o
2

l\DM—l

T + —— dz. We first observe that

flx) = ﬁ is even, so that

< 1
/ == hm/ f(z
0 1—|—$4 QRA)OO

Let f(2) = ﬁ Then f is holomorphic on C\ {z1, 22, 23, 24}, where z; are the
solutions of z* = —1, i.e., z; = T = %ﬂJr %ﬂ, 29 = f%\/inL %ﬂ, z3 = —21,
and 24 = —25. Let T'r = yg U [—R, R], where yg(t) = Re® with 0 <t < 7. Then
for R > 1 we have
f(z)dz = 2mi (Res(f, z1) + Res(f, z2)) .
T'r
As the pole at z; is simple we compute the residue by

Res(f, 1) = lim (= — 2)/(z) = : .

= 2(-vV2-iv2).

(21 — 22)(21 — 23) (21 — 24) 8

Similarly Res(f,z) = £(vV2 —iv/2). Thus Jr, [(2)dz= ”Tﬁ Now

TR
<7R |rzr|12}1(%|f(z)‘ < Ri_1

lim/ flz =7“f

—0

f(z)dz

TR

as R — o0o. Hence

R—o0
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which implies that

< 1 2
/ dr = ﬂ-\f.
0

14 24 4

We now apply the residue theorem to location and counting of zeros and poles
of a holomorphic function.

THEOREM 3.4. (Principle of the Argument) Let G C C be a starlike region and
v a closed contour in G. Let f be holomorphic on G, except for poles of order 1y, at
z=pr € G\v" (1 <k <m). Assume f has zeros of order m; at z =a; € G\ v*
(1<j<mn). Then

Ind,, (0) = - [ £ @) 4,

2mi )., f(z)
= " mjnd,(a;) = > lxInd, (px)
j=1 k=1

where y1 = fo7.

PROOF. Let h(z) = £ Then h is holomorphic at all z € G where f(z) # 0
and has a pole at the zeros of f. If z = a; is a zero of order m;, then f(z) =
(z — aj)™ig(z), where g is holomorphic on G \ {p;,--- ,pm} and g(a) # 0. Then
there exists r > 0 such that h(z) = ffl((;)) = ZTZJ, _'_gq'((;)) on B(a,r)\{a}, where ggl((zz)) is
holomorphic on B(a,r). Hence h has a simple poie at z = a; and Res(h, a;) = m;.
Similarly at the point z = p; we can write f(z) = (2 — px) '*g(z), where g is
holomorphic near pi and g(p) # 0. As above this implies that h has a simple pole
at z = py and Res(h, pr) = —lx. Hence we have by the residue theorem that

1 / f'(2) - -
— dz = m;Ind, (a;) — I Ind (pr).
2 N f(Z) ; J "/( J) ; "/( )
Let 7 : [a,b] — C. Then
b
Indwl(O)—L/ ldz:i‘/ 71(8) ds
Y1 a

“omi ). omi

L [Ea0) 4, L[

omi J, fOv(s) Y
O

THEOREM 3.5. (General Rouché’s Theorem) Let G C C be a starlike region and
v a closed contour in G. Let f,g be holomorphic on G, except for poles of order I
at z=pr € G\v* (1 <k <m) for f and poles of order n; at z = q; € G\ v* for
g (1 <j<r). Let f have zeros of order mj at z =a; € G (1 <j <n) and g have
zeros of order sj at z =b; € G (1 < j <t). Assume |f(z) + g(2)| < |f(2)] + |9(2)]
on v*. Then

> mjlnd,(a;) =Y lInd,(pr) = > sjIndy(b;) = Y leInd,(qx).
j=1 k=1 j=1 k=1
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PROOF. Observe first that the strict 1nequahty lf(2) + g9(2)] < |f(z)] + |g(2)]
implies that f and g can’t have zeros on v*. By hypothesis

f(z) f(2)
9(2)
on v*. Observe that the strict inequality prevents that AC ((Z; is a non-negative real

number for z € v*. Hence 5 maps v* into C\ [0,00). Let 1 = (5) 07, then 0 is in

the unbounded component of C \ ~;. Hence Ind,: (0) = 0. Hence by the lefthand
part of the equality in the above theorem we have

!/ / ! /
= /ﬁ)f Loy L [ Je/gd@
i ~ omi O 2mi ), f 2mi )y g
and the conclusion now follows from the righthand part of the equality in the above
theorem. (]

REMARK 3.6. Note most often the above theorems are applied to curves v with
C\ v* having exactly two components, namely the “exterior” of 'y where Ind, =0

and the “interior” with Ind, = 1. In that case 5 fﬁ/ J;c((j)) dz = — Py, where
Ny is the number of zeros of f inside v (counting with their orders) and Py is
the number of poles of f inside v (also counted according to their order). With
this notation and with these hypotheses we have then as conclusion in the above

theorem that Ny — Py = N, — P,.

The following corollary is the classical Rouché’s Theorem, which has a slightly
stronger hypothesis than the above theorem.

COROLLARY 3.7. (Rouché’s Theorem) Assume [ and g are holomorphic in a
neighborhood of B(a, R). Assume also that |f(2)+g(2)| < |f(2)| on{z : |z—a|] = R}.
Let Ny, N4 denote the number of zeros of f, respectively g inside y (with orders).
Then Ny = N,.

EXAMPLE 3.8. Let g(2) = 2° —122%+14. Let first R = 1. Then with the choice
of f(2) = —14 we get |g(z) + f(2)| < |2]° +12]z|> = 13 < |f(2)| on |z| = 1. Hence
g has the same number of zeros on B(0,1) as f, namely zero. Now take R = 2.
Now take f(z) =1223. Then |g(z) + f(2)] < 2°+ 14 =46 < 96 = |f(z)| on |z| = 2.
Hence g has three zeros inside |z| = 2, since f has three zeros inside |z| = 2. For
R = 4 we can take f(z) = —z° and see that all five zeros of g lie in the disk B(0,4).

4. The Global Cauchy Theorem

The goal of this section is to obtain versions of Theorems 2.12 and 2.14 of
chapter 2 without starlike assumptions.

PROPOSITION 4.1. Let G C C be an open set, f be a holomorphic function on
G, and let g : G x G — C be defined by

$O-12)
S (Fz

= (=2
(€2) {f@) (==

Then for fizred ¢ € G, the function g((,-) is holomorphic on G and if v is a contour
in G, the function h defined by h(z) = f 9(¢, 2) d¢ is holomorphic on G.
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PrROOF. For fixed ¢ € G, the function g(¢, z) is holomorphic on G \ {¢} and
continuous at ¢, and thus by Remark 2.2 we see that g((, z) is holomorphic on G.
We claim now that ¢(, z) is continuous on G X G. To prove continuity of g we only
need to consider points (a,a) € G x G. Let a € G and € > 0. Then there exists
r > 0 such that B(a:7) C G and |f'(w) — f'(a)] < € for all w € B(a,r). Let now
¢,z € B(a,r). Then

FO) = 12) — F(@)(¢ - =) = / f(w) — f(a) dw

implies that |g(¢, 2)—g(a, a)| < max,e..q | f'(w)— f (a)] < e Henceg is continuous
at (a,a) for all a € G. Next we prove that h(z f 9(¢, z) d¢ is continuous on
G, let z, — z in G. Then ¢((,z,) — 9(¢, 2) umformly on v*. This implies that
h(zn) — h(z). Now let A C G be a triangle. Then

/Mh(z)dZZ/v</aAg(C,Z)dZ> d¢ = 0.

Hence h is holomorphic on G by Morera’s Theorem. O

THEOREM 4.2. (Global Cauchy’s Theorem) Let G C C be an open set and let
fbea holomorphic function on G. If v1,...,vm are closed contours in G such that
Ind,, (2)+---+1Ind,,, (2) = 0 for all z € C\ G, then for all z € G\ U} ,~; we have
Cauchy’s Integml Formula

IR SYTNERNS Sy CP
k=1

k=1"7k

and Cauchy’s Theorem

fj/%f(c ac = 0.

k=1

PROOF. Let g be as in the previous proposition and let h be defined as h(z) =
%Z. 1 f% 9(¢, 2) d¢. Then h is holomorphic on G and Cauchy’s Integral Formula
is equivalent to proving that h(z) = 0 for all z € G\ U} ,~;. Define H = {z €
C\U™ 7+ > i, Ind,, (2) = 0}. Then H is open (since the index is a continuous
integer valued function) and C = G U H. Now define h; on H by

m

1 f((
hi(z) = T; «,kC—Z

If z € GN H, then hi(z) = h(z) by the definition of h and H. As in the
proof of Theorem 2.23 we can expand each integral fw f(fz) d(¢ in a power series
around each point z € H and thus h; is holomorphic on H. Therefore we can
extend h to an entire function by defining h = h; on H. Now lim|,|_, |h(2)| <
1Mz o0 5 Sy | [ L2 dC] < 2 ST () limn s o0 maxc ey I|§(<Z>|| —0. It
follows from Liouville’s Theorem that h(z) = 0 for all z. For z € G\ U~} we get

m

- Z) 1 f(©)
z).;lnd% 2mz %C Q—MZ/ C?dg.

=177k
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To prove Cauchy’s Theorem, take a € G\ Uy ;5. Then

> [ rac=y [ L0 (Zlndw ) @)(a—a) =0.

k=1"Y7k k=1"7k
([l

COROLLARY 4.3. Let G C C be an open set and let f be a holomorphic function

on G. If y1,...,vm and o1,...,0, are closed contours in G such that Ind,, (z) +
-+ Ind,,, (2) = Ind,, (2) + - - - + Ind,, (%) for all z € C\ G, then

> [ roa=3
k=1Y"7k

k=1"7k

PrOOF. Apply Cauchy’s Theorem to the closed contours vy, ..., Y, =01, ..., —On.

Next we prove a theorem generalizing Theorem 3.1.

THEOREM 4.4. (General Residue Theorem) Let G C C be an open set and let f
be a holomorphic function on G except for a subset A of G of isolated singularities.
If v1,...,%m are closed contours in G\ A such that Ind,,(z) +---+ Ind,,, (2) =0
for all z € C\ G, then

Z f Q) d(z?m’Z {Res(f,a)Z[nd.Yk(a)} .
k=1

k=1"7k a€A

PROOF. Let B ={a € A: ;" ,Ind,,(a) # 0}. The unbounded component
of C\ Uy; and G are both contained in the set {z € C : Y7 Ind,, (2) = 0}
and thus B is the intersection of A with a compact subset of G. This implies
that B is finite, as every point of A is isolated. Let B = {a1,...,a,} and define
l; = >, Ind,,(a;) for 1 < j < n. Then pick 7; > 0 for j = 1,...,n such that
B(aj,r;) are mutually disjoint, none of them intersects any ~;, and are contained
in G\ (A\ B). Then define o; to be the boundary of B(a;,r;) traversed {; times
(clockwise when [; < 0). Let G1 = (G\ A) U B. Then f is holomorphic on G \ B
and 37" Ind,, (2) = 0 on C\ G;. We also have > 7 Ind,,(2) = 0 on C\ Gy
as A\ B is outside each disk B(a;,r;) for j = 1,...,n. For a; € B we have
Z?zl Ind,, (a;) = l; = Y., Ind,, (a;). Hence by Corollary 4.3 applied to Gy \ B
we have

> [ o= Z OIS

k=1""k

= 2mi Z Res(f,a;);

= 2mi Z {Res f.a) ZIndW a)}

a€A



