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CHAPTER 1

Holomorphic (or Analytic) Functions

1. Definitions and elementary properties

In complex analysis we study functions f : S → C, where S ⊂ C. When
referring to open sets in C and continuity of functions f we will always consider C
(and its subsets) as a metric space with respect to the metric d(z1, z2) = |z1 − z2|,
where | · | denotes the complex modulus, i.e., |z| =

√
x2 + y2 whenever z = x+ iy

with x, y ∈ R. An open ball with respect this metric will be also referred to as an
open disc and denoted by

B(a,B(a, r) = {z ∈ C : |z − a| < r},
where a is the center and r > 0 is the radius of the open ball. The closed disc with
center a and radius r is denoted by B(a, r), so

B(a, r) = {z ∈ C : |z − a| ≤ r}.
Recall that G ⊂ C is called open if for all a ∈ G there exists r > 0 such that
B(a, r) ⊂ G.

If z = x+ iy, then the conjugate z of z is defined by z = x− iy. Now zz = |z|2,
so that 1

z
= z

|z|2 for z 6= 0. Elementary properties of complex numbers are given

by:

(1) The real part Re z of z satisfies Re z = 1
2 (z+ z), while the imaginary part

Im z of z is given by Im z = 1
2i (z − z).

(2) For all z1, z2 ∈ C we have z1 + z2 = z1 + z2 and z1z2 = z1 z2.
(3) For all z1, z2 ∈ C we have |z1z2| = |z1| |z2|.

2. Elementary transcendental functions

Recall also that if z = x+iy 6= 0, then, using polar coordinates, we can write z =
r cos θ+ ir sin θ. In this case we write arg z = {θ+ 2kπ : k ∈ Z}. By Arg z we will
denote the principal value of the argument of z 6= 0, i.e. θ = Arg z ∈ arg z if −π <
θ ≤ π. Note that if z1 = |z1|(cos θ1 + i sin θ1) and z2 = |z2|(cos θ2 + i sin θ2), then
we have z1z2 = |z1||z2|(cos θ1 cos θ2 − sin θ1 sin θ2 + i(sin θ1 cos θ2 + cos θ1 sin θ2)) =
|z1z2|(cos(θ1 + θ2) + i(sin(θ1 + θ2)). Hence we have arg (z1z2) = arg z1 + arg z2.
Define now ez = ex(cos y + i sin y). Then |ez| = ex and arg ez = y + 2kπ. In
particular e2πi = 1 and the function ez is 2πi-periodic, i.e., ez+2πi = eze2πi = ez

for all z ∈ C. We want now to define logw such that w = ez where z = logw,
but we can not define it as just the inverse of ez as ez is not one-to-one. Consider
therefore the equation w = ez for a given w. We must assume that w 6= 0 as ez 6= 0
(and thus log 0 is not defined). Then |w| = |ez| = ex and y = Arg w+2kπ (k ∈ Z).
Hence {log |w|+ i(Arg w+2kπ) : k ∈ Z} is the set of all solutions z of w = ez. We
write logw for any w in the set {log |w|+ i(Arg w + 2kπ) : k ∈ Z}.
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4 1. HOLOMORPHIC (OR ANALYTIC) FUNCTIONS

Definition 2.1. Let G ⊂ C be an open connected set and f : G → C a
continuous function such that z = ef(z) for all z ∈ G. Then f is called a branch of
the logarithm on G.

It is clear that if f is a branch of the logarithm on G, then 0 /∈ G and f(z) =
log |z| + i(Arg z + 2kπ) for some k ∈ Z, where k can depend on z. Also, if f is a
branch of the logarithm on G, then for fixed k also g(z) = f(z) + 2kπi is a branch
of the logarithm on G. The converse also holds.

Proposition 2.2. Let G ⊂ C be an open connected set and f : G → C a
branch of the logarithm on G. Then every other branch of the logarithm on G is of
the form f + 2kπi for some fixed k ∈ Z.

Proof. Suppose g is another branch of the logarithm on G. Then define
h = 1

2πi (f − g). Then h is continuous on G, h(G) ⊂ Z, and G connected implies
that h(G) = {k} for some k ∈ Z. �

To find a branch of log z for a given open and connected set G requires finding
(as log |z| is continuous on C\{0}) a continuous selection of arg z in {Arg z+2kπ}.
As G is connected, the range of this continuous selection has to be an interval of
length at most 2π, but such a selection does not always exist! This happens e.g.
in case G = C \ {0}, then G is open and connected, but there does not exist a
branch of log z on G, i.e., Arg z is discontinuous on the negative x-axis. in the next
examples we construct some branches of log z.

Example 2.3. (i) Let G = C\{z ∈ R : z ≤ 0}. Then Arg z is continuous
on G, so f(z) = log |z|+ iArg z is a branch of log z on G. This branch is
called the principal branch of log z and denoted by Log z.

(ii) Let G = C \ {z ∈ R : z ≥ 0}. Let θ(z) denote the unique value of arg z
such that 0 < θ(z) < 2π. Then f(z) = log |z| + iθ(z) is a branch of log z
on G.

3. Differentiable functions

Definition 3.1. Let G ⊂ C be an open set and f : G → C. Then f is
differentiable at z ∈ G if

lim
h→0

f(z + h)− f(z)

h

exists. When this limit exists we denote it by f ′(z) and call it the (complex)
derivative of f at z. If f ′(z) exists at every point of G, then we call f analytic or
holomorphic on G.

Notation. H(G) = {f : g → C; f holomorphic in G}.

If S ⊂ C is any set, then we say that f is holomorphic in S if f ∈ H(G) for
some open set G ⊃ S.

Remarks 3.2.
1. The function f is differentiable at z ∈ G, if for |h| small enough we can write
f(z + h) = f(z) + f ′(z)h + ǫ(h)h, where ǫ(h) → 0 as h → 0. From this it follows
directly that if f is differentiable at z, then f is continuous at z.
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2. Note that f is differentiable at z0 ∈ G with derivative equal to f ′(z0) is equivalent
to saying that for all ǫ > 0 there exists a δ > 0 such that

∣∣∣∣
f(z + h)− f(z)

h
− f ′(z0)

∣∣∣∣ < ǫ

for all h ∈ C with 0 < |h| < δ. In particular we can take h = x with x real and
0 < |x| < δ or h = iy with y real and 0 < |y| < δ. This fact will be exploited in the
proof of the next theorem.

Theorem 3.3. (Cauchy–Riemann equations) Let G ⊂ C be an open set and
f : G → C be differentiable at z = x+ iy ∈ G. Let f(z) = u(x, y) + iv(x, y), where
u and v are real valued functions on G. Then the first order partials ∂u

∂x
, ∂u

∂y
, ∂v

∂x

and ∂v
∂y

exist at (x, y) and satisfy the Cauchy–Riemann equations

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x

at the point (x, y).

Proof. In the definition of the derivative we can restrict ourselves first to real
valued h → 0. We get then that

f ′(z) = lim
h→0,h∈R

{
u(x+ h, y)− u(x, y)

h
+ i

v(x+ h, y)− v(x, y)

h

}
=

∂u

∂x
+ i

∂v

∂x

exists at z = x + iy and similarly by restricting to h = ik with k real valued and
k → 0, we get

f ′(z) = lim
k→0,k∈R

{
u(x, y + k)− u(x, y)

ik
+ i

v(x, y + k)− v(x, y)

ik

}
= −i

∂u

∂y
+

∂v

∂y
.

Equating the two expressions for f ′(z) we get that

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x

at the point (x, y). �

Example 3.4.

(i) Let f(z) = zz = x2 + y2. Then ∂u
∂x

= 2x, ∂v
∂y

= 0, ∂u
∂y

= 2y and ∂v
∂x

= 0.

Hence the Cauchy–Riemann equations hold if and only if (x, y) = (0, 0).
At z = 0 we have

f(0 + h)− f(0)

h
= h → 0

as h → 0. Hence f is differentiable only at z = 0 and thus nowhere
holomorphic as there exists no open set G containing 0 on which f is
differentiable.

(ii) Let f(z) = c, where c ∈ C is a constant. Then f ′(z) = 0 for all z ∈ C, so
f ∈ H(C). Similarly if g(z) = z, then g′(z) = 1 for all z ∈ C, so g ∈ H(C)

(iii) Let f(z) = 1/z on C \ {0}. Then
f(z + h)− f(z)

h
=

−1

z(z + h)
→ −1

z2

for all z 6= 0, so that f is holomorphic on C \ {0}.
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Definition 3.5. A function f : C → C is called entire if f is holomorphic on
C.

The above example shows that f(z) = c and f(z) = z are entire functions. To
get additional examples of holomorphic and entire functions we first observe that
analogously to the rules of differentiation of real valued functions one can prove the
following proposition.

Proposition 3.6. Let G be a nonempty open subset of C. Then the following
holds.

(1) If f, g holomorphic on G and λ ∈ C, then so are f + g, λf , and fg.
(2) If f(G) ⊂ G1, where G1 is open and g ∈ H(G1), then h = g ◦ f is

holomorphic on G and h′(z) = g′(f(z))f ′(z) for all z ∈ G.

Proof. We will only prove 2. Let z ∈ G and put w = f(z). Then f being
holomorphic at z implies that we can write

f(z + h)− f(z) = [f ′(z) + ǫ1(h)]h,

where ǫ1(h) → 0 as h → 0. Similarly

g(w + k)− g(w) = [g′(w) + ǫ2(k)]k,

where ǫ2(k) → 0 as k → 0. Putting k = f(z + h)− f(z) we get

g(f(z + h))− g(f(z))

h
= (g′(f(z)) + ǫ2(f(z + h)− f(z)))(f ′(z) + ǫ1(h))

→ g′(f(z))f ′(z)

as h → 0. �

Corollary 3.7. (1) Any polynomial p(z) = a0+a1+. . .+anz
n is entire.

(2) Any rational function f(z) = p(z)
q(z) , where p and q are polynomials, is

holomorphic on C \ {z ∈ C : q(z) = 0}.
We will now compare complex differentiability of f = u + iv with the real

differentiability of the map (u, v) : R2 → R2. Recall first the definition of real
differentiability of a vector valued mapping.

Definition 3.8. Let G ⊂ Rm an open set and F : G → Rn. Then F is real
differentiable at c ∈ G if there exist a linear mapping DF (c) : Rm → Rn such that

lim
h→0

‖F (c+ h)− F (c)−DF (c)h‖
‖h‖ = 0.

Writing F = (F1, · · · , Fn), where Fi : Rm → R, then real differentiability of
F at c ∈ G is equivalent with the real differentiability of each Fi and DFi(c)h =
∇Fi(c) · h, where ∇Fi denotes the gradient of Fi and thus DF (c) is the linear map
given by the Jacobian matrix of F . We now take m = n = 2 to compare complex
differentiability of f = u+iv at z0 = x0+iy0 with real differentiability of F = (u, v)
at c = (x0, y0). We first deal with the special case of a linear map.

Lemma 3.9. Let A : R2 → R2 be a real linear map, given by the matrix [ai,j ].
Then A = (u, v) where f = u+ iv is a complex linear map from C to C if and only
if a1,1 = a2,2 and a1,2 = −a2,1.
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Proof. Assume first that f(z) = Cz for some C = c1 + ic2. Then u(x, y) =
(c1x − c2y) and v(x, y) = (c2x + c1y), which implies immediately that A = (u, v)
is a linear map with matrix [ai,j ], where a1,1 = a2,2 = c1 and a1,2 = −a2,1 = −c2.
Conversely, if a1,1 = a2,2 = c1 and a1,2 = −a2,1 = −c2, then it is straightforward
to check that f(z) = Cz with C = c1 + ic2. �

Remark 3.10. Note that the condition on the matrix A are the ones imposed
by the Cauchy-Riemann equations for f(z) = Cz = u + iv. As the real derivative
DF (c) of a linear map F : C → C is F (c) this says that a linear map from R2 → R2

corresponds to a complex differntiable map from C to C if and only if it is complex
linear.

An immediate consequence of of the Lemma is the following theorem.

Theorem 3.11. Let G ⊂ C be an open set and f : G → C, where f(z) =
u(x, y) + iv(x, y). Let z0 = x0 + iy0 ∈ G. then the following are equivalent.

(1) f is complex differentiable at z0.
(2) F = (u, v) is real differentiable at (x0, y0) and the derivative DF (x0, y0)

is complex linear.
(3) F = (u, v) is real differentiable at (x0, y0) and the Cauchy-Riemann equa-

tions hold at (x0, y0).

To prove a theorem about complex differentiability when the Cauchy-Riemann
equations hold, we need first a result from vector calculus.

Lemma 3.12. Let G be an open subset of R2 and u : G → R2 a function which
has partial derivatives on G, which are continuous at (x0, y0) ∈ G. Then there
exist ǫ1(h), and ǫ2(h) in a neighborhood of (0, 0) with ǫ1(h) → 0 and ǫ2(h) → 0 as
h = (h1, h2) → (0, 0) such that

u(x0 + h1, y0 + h2) = u(x0, y0) +
∂u

∂x
(x0, y0)h1 +

∂u

∂y
(x0, y0)h2 + ǫ1(h)h1 + ǫ2(h)h2.

Proof. Let r > 0 such that for h = (h1, h2) with ‖h‖ < r we have that
(x0 + h1, y0 + h2) ∈ G. Let ‖h‖ < r. Then by the Mean Value theorem there exist
k1 between x0 and x0 + h1 and k2 between y0 and y0 + h2 such that

u(x0 + h1, y0 + h2)− u(x0, y0) = u(x0 + h1, y0 + h2)− u(x0, y0 + h2)

+ u(x0, y0 + h2)− u(x0, y0)

=
∂u

∂x
(k1, y0 + h2)h1 +

∂u

∂y
(x0, k2)h2.

The proof now follows if we put ǫ1(h) =
∂u
∂x

(k1, y0 + h2) − ∂u
∂x

(x0, y0) and ǫ2(h) =
∂u
∂y

(x0, k2)− ∂u
∂y

(x0, y0). �

Theorem 3.13. Let G ⊂ C be an open set and f : G → C. Let f(z) =
u(x, y) + iv(x, y), where u and v are real valued functions on G. Assume that the
first order partials ∂u

∂x
, ∂u

∂y
, ∂v

∂x
and ∂v

∂y
exist on G, are continuous at (x, y) and

satisfy the Cauchy–Riemann equations

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x

at the point (x, y). Then f is complex differentiable at z = x+ iy.



8 1. HOLOMORPHIC (OR ANALYTIC) FUNCTIONS

Proof. Identifying C with R2 we can find by the above lemma ǫj(h) with
ǫj(h) → 0 as h = h1 + ih2 → 0 for j = 1, · · · , 4 such that

f(z + h)− f(z)

h
=
∂u

∂x
(x, y)

h1

h
+

∂u

∂y
(x, y)

h2

h
+ ǫ1(h)

h1

h
+ ǫ2(h)

h2

h

+ i

(
∂v

∂x
(x, y)

h1

h
+

∂v

∂y
(x, y)

h1

h
+ ǫ3(h)

h1

h
+ ǫ4(h)

h2

h

)

=
∂u

∂x
(x, y) + i

∂v

∂x
(x, y) + ǫ1(h)

h1

h
+ ǫ2(h)

h2

h

+ iǫ3(h)
h1

h
+ iǫ4(h)

h2

h

→ ∂u

∂x
(x, y) + i

∂v

∂x
(x, y)

as h → 0, since |h1

h
| ≤ 1 and |h2

h
| ≤ 1. �

Corollary 3.14. Let f(z) = ez. Then f is entire and f ′(z) = ez for all z ∈ C.

Proof. If f = u + iv, then u(x, y) = ex cos y and v(x, y) = ex sin y. Now
∂u
∂x

(x, y) = ex cos y, ∂v
∂x

(x, y) = ex sin y, ∂u
∂y

(x, y) = −ex sin y, and ∂v
∂y

(x, y) =

ex cos y. Hence the Cauchy-Riemann equations hold for all (x, y) and, as the par-
tial are continuous, it follows from the above theorem that f is holomorphic at all
z ∈ C. Moreover f ′(z) = ∂u

∂x
(x, y) + i ∂v

∂x
(x, y) = ez. �

Proposition 3.15. Let G1, G2 ⊂ C be open sets and let f : G1 → G2, g :
G2 → G1 be continuous mappings such that g(f(z)) = z for all z ∈ G1. If g is
holomorphic on G2 and g′(z) 6= 0 for all z ∈ G2, then f is holomorphic on G1 and
f ′(z) = 1

g′(f(z)) for all z ∈ G1.

Proof. Let z ∈ G1. Then for h 6= 0 but small enough we have z+h ∈ G1 and
f(z + h) 6= f(z), since g(f(z)) = z 6= (z + h) = g(f(z + h)). Now

1 =
g(f(z + h))− g(f(z))

f(z + h)− f(z)

f(z + h)− f(z)

h

implies that f is differentiable at z and 1 = g′(f(z))f ′(z). �

Corollary 3.16. Let G ⊂ C be an open connected set and f : G → C a branch
of the logarithm on G. Then f is holomorphic on G and f ′(z) = 1

z
for all z ∈ G.

Proof. Take g(z) = ez in the above proposition. �

We conclude this section with some remarks about harmonic functions. Recall
that if G ⊂ R2 is open and u : G → R satisfies the Laplace equation ∆u =
∂2u
∂ x2 (x, y) +

∂2v
∂ y2 (x, y) = 0 0n G. Let now f ∈ H(G), let u = Re f and v = Im f .

Assume that u and v have continuous second order partials (an assumption which

we will show later on to be always true). Then ∆u = ∂2u
∂ x2 (x, y) +

∂2v
∂ y2 (x, y) =

∂2v
∂x∂y

(x, y) + −∂2v
∂y∂x

(x, y) = 0. Hence u is harmonic on G. Similarly v is harmonic

on G. Two harmonic functions u, and v are called conjugate harmonic functions,
when f = u+iv is holomorphic on G. Another consequence of the Cauchy-Riemann
equations is that the inner product of the gradients ∇u and ∇v satisfy ∇u ·∇v = 0,
i.e, the level curves u(x, y) = c1 and v(x, y) = c2 intersect orthogonally.
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4. Power series

In this section we will see how one can use power series to get a large class of
examples of holomorphic functions. In fact, in a later chapter we will see that locally
every holomorphic function can be so obtained. We start by recalling some basic
facts concerning series. Recall that if 〈an〉n≥0 is a sequence of complex numbers,
then the series

∑∞
n=0 an converges to s ∈ C if |s − sn| → 0 as n → ∞, where

sn = a0 + . . . + an. The number s is then called the sum of the series. The series
is said to diverge, if it does not converge to any s ∈ C. As in the real variable case
we have:

(1) If
∑∞

n=0 an converges, then an → 0 as n → ∞.
(2) If

∑∞
n=0 |an| converges, then

∑∞
n=0 an converges.

A power series is a series of the form
∑∞

n=0 cn(z − a)n. Usually we will treat z as
a variable and the cn’s and a as constants in this expression.

Example 4.1. Consider the geometric series
∑∞

n=0 z
n. The partial sums sn

are in this case given by sn = 1+ . . .+ zn = 1−zn+1

1−z
for all z 6= 1. Hence for |z| < 1

the series
∑∞

n=0 z
n converges and has sum equal to 1

1−z
, while if |z| ≥ 1 the series

diverges, since in that case it is not true that zn → 0 as n → ∞.

The following simple result turns out to be a useful tool in studying the con-
vergence of power series.

Theorem 4.2. (Weierstrass M–test) Let G ⊂ C and un : G → C such that
|un(z)| ≤ Mn on G, where

∑∞
0 Mn < ∞. Then

∑∞
0 un(z) converges uniformly on

G.

Proof. For fixed z ∈ G we have that
∑∞

0 |un(z)| ≤
∑∞

0 Mn < ∞. Hence the
series

∑∞
0 un(z) converges for all z ∈ G. Let f(z) =

∑∞
0 un(z) for z ∈ G denote

the sum of the series and let ǫ > 0. Then there exists N such that
∑∞

k=N+1 Mk < ǫ.
Then we have for all z ∈ G and all n ≥ N that

∣∣∣∣∣f(z)−
n∑

k=0

un(z)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑

k=n+1

un(z)

∣∣∣∣∣ ≤
∞∑

k=n+1

|un(z)| ≤
∞∑

k=n+1

Mk < ǫ

for all n ≥ N and all z ∈ G and thus the series
∑∞

0 un(z) converges uniformly to
f(z) on G. �

For a given power series
∑∞

n=0 cn(z − a)n we define the radius of convergence

R, 0 ≤ R ≤ ∞, by 1
R

= lim n
√
|cn|. The circle {z ∈ C : |z − a| = R} is called the

circle of convergence of the power series.

Theorem 4.3. (Cauchy Root test) Let
∑∞

n=0 cn(z− a)n be a power series with
radius of convergence R. Then the following holds.

(1)
∑∞

n=0 cn(z − a)n converges absolutely for |z − a| < R.
(2)

∑∞
n=0 cn(z − a)n diverges for |z − a| > R.

(3) If 0 < r < R, then
∑∞

n=0 cn(z − a)n converges uniformly on |z − a| ≤ r.

Proof. Let |z − a| < r < R. Then 1
r
> 1

R
implies that there exists N such

that |cn|
1
n < 1

r
for all n ≥ N . It follows that |cn(z − a)n| ≤

(
|z−a|

r

)n
for all n ≥ N .
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Since |z−a|
r

< 1, it follows that
∑∞

n=0 cn(z−a)n converges absolutely for |z−a| < r
for any r < R and thus 1. holds. Let now |z − a| > r > R. Then there exist

infinitely many n such that |cn|
1
n > 1

r
. Hence |cn(z − a)n| ≥

(
|z−a|

r

)n
> 1 for

infinitely many n, i.e., the series
∑∞

n=0 cn(z − a)n diverges for |z − a| > r for any
r > R and thus 2. holds. To prove 3. let 0 < r < s < R. Then as above there
exists N such that |cn|

1
n < 1

s
for all n ≥ N . It follows that |cn(z − a)n| ≤

(
r
s

)n

for all n ≥ N and all |z − a| < r. Since r
s
< 1, it follows that

∑∞
n=0 cn(z − a)n

converges uniformly on |z − a| ≤ r by the Weierstrass M–test. �

In dealing with power series with coefficients involving factorials, it is often
easier to use the following result.

Theorem 4.4. (Ratio test) Let
∑∞

n=0 cn(z − a)n be a power series with radius
of convergence R. Assume cn 6= 0 for all n. Then

lim

∣∣∣∣
cn+1

cn

∣∣∣∣ ≤
1

R
≤ lim

∣∣∣∣
cn+1

cn

∣∣∣∣ .

In particular, if limn→∞
∣∣∣ cn+1

cn

∣∣∣ exists, then 1
R

= limn→∞
∣∣∣ cn+1

cn

∣∣∣.

Proof. Exercise �

A power series can converge or diverge at any point of its circle of convergence
as can be seen from the following examples.

Example 4.5.

(i) The series
∑∞

n=0
(z+1)n

2n+1 has R = 2, as lim n

√
1

2n+1 = 1
2 . Note that the sum

of series equals 1
1−z

for all |z + 1| < 2, since 1
1−z

= 1
2−(z+1) = 1

2
1

1− z+1
2

=

1
2

∑∞
n=0

(
z+1
2

)n
for |z+1|

2 < 1.

(ii) The series
∑∞

n=1
zn

n2 has R = 1 (e.g. by the Ratio test), and the series

converges absolutely for any z on the circle of convergence as
∑∞

n=1
1
n2 <

∞.
(iii) The series

∑∞
n=1

zn

n
has R = 1 (e.g. by the Ratio test), but it does not

converge absolutely for any z on the circle of convergence as
∑∞

n=1
1
n
= ∞.

In particular it diverges for z = 1. One can show however (but this is not
completely trivial) that it converges for any z 6= 1 with |z| = 1 (for z = −1
this follows e.g. from the so-called alternating series test).

(iv) The series
∑∞

n=0
zn

n! has R = ∞ (e.g. by the Ratio test). We will see after
the next theorem that ez equals the sum of this series.

(v) The series
∑∞

n=1 n!z
n has R = 0 (e.g. by the Ratio test). Hence it

converges only for z = 0.

Proposition 4.6. Let R be the radius of convergence of
∑∞

n=0 cn(z − a)n.
Then R is also the radius of convergence of the power series

∑∞
n=1 ncn(z−a)n−1 =∑∞

n=0(n+ 1)cn+1(z − a)n.

Proof. From calculus we know that limn→∞ n
√
n = 1. Hence

lim n
√
(n+ 1) |cn+1| = lim

(
n+1
√
(n+ 1) |cn+1|

)n+1
n

=
1

R
.

�
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Note, if we apply the above proposition twice, we get that
∑∞

n=2 n(n− 1)zn−2

converges absolutely for |z − a| < R.
The following theorem says that inside the circle of convergence the sum of the

power series is a holomorphic function.

Theorem 4.7. Let
∑∞

n=0 cn(z − a)n have radius of convergence R 6= 0 and
define f(z) =

∑∞
n=0 cn(z − a)n for |z − a| < R. Then f ∈ H(B(a,R)) and f ′(z) =∑∞

n=1 ncn(z − a)n−1 for |z − a| < R.

Proof. It follows from the above corollary that g(z) =
∑∞

n=1 ncn(z − a)n−1

also converges in B(a,R). Remains to show that f ′(z) = g(z) on |z − a| < R.
W.l.o.g. we can assume that a = 0. In the argument below we will use that
(z + h)n − zn = h

∑n
k=1(z + h)k−1zn−k. Let z, z + h ∈ B(0, r), where 0 < r < R.

Then we have
∣∣∣∣
f(z + h)− f(z)

h
− g(z)

∣∣∣∣ =
∣∣∣∣∣

∞∑

n=1

cn

{
(z + h)n − zn

h
− nzn−1

}∣∣∣∣∣

=

∣∣∣∣∣

∞∑

n=2

cn

n∑

k=1

{
(z + h)k−1zn−k − zn−1

}
∣∣∣∣∣

≤
∞∑

n=2

|cn|
n∑

k=2

∣∣zn−k
(
(z + h)k−1 − zk−1

)∣∣

≤ |h|
∞∑

n=2

|cn|
(

n∑

k=2

∣∣zn−k
∣∣
(

k−1∑

l=1

|z + h|l−1|z|k−1−l

))

≤ |h|
∞∑

n=2

|cn|
n∑

k=2

(k − 1)rn−krk−2

= |h|
∞∑

n=2

|cn|
1

2
n(n− 1)rn−2 → 0

as h → 0, since, by the above proposition,
∑∞

n=2 |cn| 1
2n(n− 1)rn−2 < ∞ as r < R.

Hence f ′(z) = g(z) on |z| < r for any r < R and the proof is complete. �

Corollary 4.8. Let f(z) =
∑∞

n=0 cn(z−a)n have radius of convergence R 6= 0.

Then f (k)(z) exists on B(a,R) for all k ≥ 1 and thus f (k) ∈ H(B(a,R)) and

f (k)(z) =
∞∑

n=k

cnn(n− 1) . . . (n− k + 1)(z − a)n−k

for all k ≥ 1 and all |z − a| < R. In particular k!ck = f (k)(a) and thus the
coefficients ck of the power series are unique.

Example 4.9. Let f(z) =
∑∞

n=0
zn

n! . Then by the above theorem

f ′(z) =
∞∑

n=1

nzn−1

n!
=

∞∑

n=1

zn−1

(n− 1)!
= f(z)

for all z ∈ C. Let h(z) = e−zf(z). Then h′(z) = −e−zf(z) + e−zf(z) = 0 for all
z ∈ C. From the next proposition it follows that h(z) = h(0) = 1 for all z, i.e.,
f(z) = ez for all z.
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Proposition 4.10. Let G ⊂ C be an open and connected set. Assume f ∈
H(G) such that f ′(z) = 0 for all z ∈ G. Then f is constant on G.

Proof. Let z0 ∈ G and put A = {z ∈ G : f(z) = f(z0)}. Then the continuity
of f implies that A is closed. Let now a ∈ A. Then there exists ǫ > 0 such that
B(a, ǫ) ⊂ G. Let z ∈ B(a, ǫ) and put g(t) = f(tz + (1 − t)a) for 0 ≤ t ≤ 1. Then
by the chain rule g′(t) = f ′(tz + (1− t)a)(z − a) = 0 for 0 < t < 1, so g is constant
on 0 ≤ t ≤ 1. Hence f(z) = g(0) = g(1) = f(z0), and thus B(a, ǫ) ⊂ A. It follows
that A is nonempty open and closed subset of G, thus A = G. �



CHAPTER 2

Integration over contours

1. Curves and Contours

A curve is a continuous map γ : [a, b] → C. We call γ(a) the initial point and
γ(b) the end point of the curve γ, and [a, b] is called the parameter interval of γ.
If γ(a) = γ(b), then γ is called a closed curve. Denote by γ∗ the range of γ. The
curve γ induces an orientation of γ∗, namely the direction in which γ(t) traces γ∗ as
t increases from a to b. Often we will specify a curve by its range together with an
orientation indicating how (and possibly how often) the range is traversed. Given
a curve γ we can find an oriented curve −γ, with identical range, but with opposite
orientation, e.g.,

(−γ)(t) = γ(a+ b− t) where a ≤ t ≤ b

as a parametrization of the curve −γ. If γ1and γ2 are two curves with with param-
eter intervals [a1, b1], [a2, b2] respectively such that γ1(b1) = γ2(a2), then we can
join the two curves to get the curve γ = γ1 ∪ γ2 by taking

γ(t) =

{
γ1(t) a1 ≤ t ≤ b1

γ2(t+ a2 − b1) b1 ≤ t ≤ b1 + b2 − a2.

A curve γ is called smooth, if γ′(t) exists and is continuous for all a ≤ t ≤ b ( with
one-sided derivatives at a and b). Note if we write γ(t) = x(t) + iy(t), then γ′(t)
exists if and only if x′(t) and y′(t) exist. From multi-variable calculus we know that
γ′(t) represents a tangent vector to the curve γ.

A path or contour γ is a piecewise smooth curve, i.e., γ : [a, b] → C such that
there exist a = t0 < t1 < . . . < tn = b where γ restricted to [ti−1, ti] is smooth for
i = 1, . . . , n. Note that γ can have corners at the points γ(ti), i.e., the right and
left hand derivatives of γ(t) at ti can differ.

A path γ is called simple if γ : [a, b] → C is such that γ(s) 6= γ(t) for all
a ≤ s < t ≤ b, except possibly for s = a and t = b. The path γ is closed if
γ(a) = γ(b).

Example 1.1.

(i) The directed line segment C from z1 to z2 is the range of a smooth curve. A
parametrization of C is given γ : [0, 1] → C defined by γ(t) = (1−t)z1+tz2.
We will denote this curve by [z1, z2].

(ii) A circular arc oriented counterclockwise is the range of an curve. Suppose
the arc is part of the circle with center z0 and radius r, then γ(t) = z0+reit

with θ1 ≤ t ≤ θ2 will trace a circular arc counterclockwise. If θ2−θ1 = 2π
the curve will be the complete circle. Note the curve is simple if and only
if θ2 − θ1 ≤ 2π.

13



14 2. INTEGRATION OVER CONTOURS

1.1. Conformal mappings. Let f be a holomorphic function on an open set
G ⊂ C. Let z0 ∈ G be a fixed point and let γ : [a, b] → C be a smooth curve in
G passing through z0 with non-zero tangent, i.e., γ(t0) = z0 for some t0 ∈ (a, b)
and γ′(t0) 6= 0. Then γ1 = f ◦ γ is a curve passing through f(z0) and γ′

1(t0) =
f ′(z0)γ′(t0). If now f ′(z0) 6= 0, we see that arg γ′

1(t0) = arg f ′(z0) + arg γ′(t0)
and |γ′

1(t0)| = |f ′(z0)||γ′(t0)|. Thus the tangent vector γ′(t0) to the curve γ at
z0 is under the mapping f rotated over an angle θ ∈ arg f ′(z0) and stretched
by a factor |f ′(z0)|. Applying this to two curves passing through z0 we see that
under the mapping f the angle between the two curves is preserved (including
the direction they are measured), while their tangent vectors are stretched by the
same amount. Mappings which preserve angles (including the direction they are
measured) between smooth curves are called conformal. Thus we have proved:

Theorem 1.2. Let f be a holomorphic function on an open set G ⊂ C.Assume
f ′(z) 6= 0 for all z ∈ G. Then f is conformal on G.

We will now see that in fact the converse is true too, To do so we will introduce
some additional notation. Let f = u+ iv as usual. Then we define ∂f

∂z
= ∂f

∂x
− i∂f

∂y

and ∂f
∂z

= ∂f
∂x

+ i∂f
∂y

. It is now a routine calculation to show that u and v satisfy

the Cauchy-Riemann equations if and only if ∂f
∂z

= 0.

Theorem 1.3. Let f = u + iv be a function on an open set G ⊂ C with
continuous partials. Assume f is conformal on G. Then f is holomorphic on G
and f ′(z) 6= 0 for all z ∈ G.

Proof. Let γ be a smooth curve with non-zero tangent passing through z0 ∈
G. Let γ1(t) = f(γ(t)). Write γ(t) = x(t)+ iy(t). Then γ′

1 = ∂u
∂x

x′+ ∂u
∂y

y′+ i∂v
∂v

v′+

i∂v
∂y

y′ = ∂f
∂x

x′ + ∂f
∂y

y′ = ∂f
∂z

γ′ + ∂f
∂z

γ′. Let γ(t0) = z0. Then

γ′
1(t0)

γ′(t0)
=

∂f

∂z
+

∂f

∂z

γ′(t0)

γ′(t0)
.

Now f conformal implies that the argument of the left hand side of this equation is

constant modulo 2π. This implies that ∂f
∂z

(z0) = 0, since the argument of γ′(t0)
γ′(t0)

is

not constant modulo 2π, when we take e.g. γ(t) = z0 + teiθ. Hence u and v satisfy

the Cauchy-Riemann equations at z0 and thus f ′(z0) exists and f ′(z0) =
∂f
∂z

(z0) =
γ′

1(t0)
γ′(t0)

6= 0.

�

2. Contour integrals

Definition 2.1. A curve γ : [a, b] → C is called rectifiable if γ is of bounded
variation, i.e., if

ℓ(γ) = sup

{
n∑

i=1

|γ(ti)− γ(ti−1)| : a = t0 < . . . < tn = b

}
< ∞.

In this case the length of γ is defined to be ℓ(γ). Given a continuous γ : [a, b] →
C we define

∫ b

a
γ(t) dt =

∫ b

a
Re γ(t) dt + i

∫ b

a
Im γ(t) dt. In case γ is (piecewise)
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smooth we have by the Fundamental Theorem of Calculus for real integrals that∫ b

a
γ′(t) dt = γ(b)− γ(a).

Lemma 2.2. Let f : [a, b] → C be a continuous function. Then

∣∣∣∣∣

∫ b

a

f(t) dt

∣∣∣∣∣ ≤
∫ b

a

|f(t)| dt.

Proof. Let α =
∫ b

a
f(t) dt. If α = 0, then the inequality is trivial. Assume

α 6= 0. Then we can write α = reiθ, where r = |
∫ b

a
f(t) dt|. Now we have

r = Re (e−iθα) =

∫ b

a

Re (e−iθf(t)) dt ≤
∫ b

a

|f(t)| dt.

�

Theorem 2.3. Let γ : [a, b] → C be a piecewise smooth curve. Then γ is
rectifiable and

ℓ(γ) =

∫ b

a

|γ′(t)| dt.

Proof. Without loss of generality we can assume that γ is smooth. Let a =
t0 < . . . < tn = b be a partition of [a, b]. Then by the Fundamental Theorem of
Calculus and the above lemma we have

|γ(ti)− γ(ti−1)| =
∣∣∣∣∣

∫ ti

ti−1

γ′(t) dt

∣∣∣∣∣ ≤
∫ ti

ti−1

|γ′(t)| dt.

This implies that γ is rectifiable and ℓ(γ) ≤
∫ b

a
|γ′(t)| dt. For the reverse inequality,

let ǫ > 0. Then γ′ is uniformly continuous on [a, b], so there exists δ > 0 such that
|γ′(t)− γ′(s)| < ǫ whenever |t− s| < δ. Now there exists a partition a = t0 < . . . <
tn = b with ∆ti = ti − ti−1 < δ such that

∣∣∣∣∣

∫ b

a

|γ′(t)| dt−
n∑

i=1

|γ′(ti)|∆ti

∣∣∣∣∣ < ǫ.

For 1 ≤ i ≤ n we have now that

||γ(ti)− γ(ti−1)| − |γ′(ti)|∆ti| ≤ |γ(ti)− γ(ti−1)− γ′(ti)∆ti|

=

∣∣∣∣∣

∫ ti

ti−1

γ′(t)− γ′(ti) dt

∣∣∣∣∣

≤
∫ ti

ti−1

|γ′(t)− γ′(ti)| dt < ǫ∆ti.
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Combining the last two estimates we get
∫ b

a

|γ′(t)| dt ≤
n∑

i=1

|γ′(ti)|∆ti + ǫ

≤
n∑

i=1

(|γ(ti)− γ(ti−1)|+ ǫ∆ti) + ǫ

≤ ℓ(γ) + ǫ(b− a) + ǫ

for all ǫ > 0. Hence
∫ b

a
|γ′(t)| dt ≤ ℓ(γ). �

Let γ : [a, b] → C be a piecewise smooth curve and let f : γ∗ → C be continuous.

Then we define
∫
γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t) dt.

Example 2.4. Let γ : [a, b] → C be a piecewise smooth curve. Then
∫
γ
1 dz =

γ(b)− γ(a). This is immediate from the definition and the Fundamental Theorem
of Calculus.

Proposition 2.5. Let γ : [a, b] → C be a piecewise smooth curve and let
f : γ∗ → C be a continuous function. Then the following hold.

(i)
∫
−γ

f(z) dz = −
∫
γ
f(z) dz, where −γ(t) = γ(a+ b− t).

(ii) If γ = γ1 ∪ γ2, then
∫

γ

f(z) dz =

∫

γ1

f(z) dz +

∫

γ2

f(z) dz.

(iii) If |f(z)| ≤ M on γ∗, then |
∫
γ
f(z) dz| ≤ Mℓ(γ).

(iv) (“Independence of parametrization”) Let τ : [a1, b1] → [a, b] be a smooth
onto function with τ ′ > 0. Then for γ1 = γ ◦ τ we have

∫

γ1

f(z) dz =

∫

γ

f(z) dz.

(v) If also g : γ∗ → C continuous and α, β ∈ C, then
∫
γ
αf(z) + βg(z) dz =

α
∫
γ
f(z) dz + β

∫
γ
g(z) dz.

Proof. Let −γ(t) = γ(a + b − t). Then −γ : [a, b] → C is piecewise smooth
and (−γ)′(t) = −γ′(a+ b− t) except possibly finitely many points, from which (i)
follows directly. Part (ii) is an immediate consequence of the definition. Part (iii)
follows from

∣∣∣∣
∫

γ

f(z) dz

∣∣∣∣ ≤
∫ b

a

|f(γ(t))γ′(t)| dt ≤ M

∫ b

a

|γ′(t)| dt = Mℓ(γ).

Part (iv) follows from the chain rule γ′
1(t) = γ′(τ(t))τ ′(t) and the change of

variable rules for real integrals
∫

γ1

f(z) dz =

∫ b1

a1

f(γ1(t))γ
′
1(t) dt =

∫ b1

a1

f(γ(τ(t)))γ′(τ(t))τ ′(t) dt

=

∫ τ(b1)

τ(a1)

f(γ(s))γ′(s) ds =

∫

γ

f(z) dz.
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Part (v) is immediate from the definition and the corresponding property of real
integrals.

�

Corollary 2.6. Let γ : [a, b] → C be a piecewise smooth curve and let fn :
γ∗ → C be continuous functions which converge uniformly to f on γ∗. Then

∫

γ

fn(z) dz →
∫

γ

f(z) dz

as n → ∞.

Proof. Note first that f is also continuous on γ∗ as it is the uniform limit
of a sequence of continuous functions. Let Mn = supz∈γ∗ |fn(z) − f(z)|. Then by
assumption Mn → 0 as n → ∞. From (iii) and (v) above we have now

∣∣∣∣
∫

γ

fn(z) dz −
∫

γ

f(z) dz

∣∣∣∣ =
∣∣∣∣
∫

γ

fn(z)− f(z) dz

∣∣∣∣ ≤ Mnℓ(γ) → 0

as n → ∞. �

The following example is important for the development of the theory.

Example 2.7. Let γ : [0, 2π] → C be given by γ(t) = a + reit, i.e., γ is the
circle with center a and radius r traversed counterclockwise. We will show that

(2.1)

∫

γ

(z − a)n dz =

{
0 if n ∈ Z \ {−1}
2πi if n = −1

Since γ is smooth we can write
∫

γ

(z − a)n dz =

∫ 2π

0

(reit)nireit dt

= irn+1

∫ 2π

0

ei(n+1)t dt

{
= irn+1

(
1

i(n+1)e
i(n+1)t|2π0

)
= 0 if n ∈ Z \ {−1}

= 2πi if n = −1,

which proves the formula. Note that this integral does not depend on r.

The following Theorem will allow us to extend this example, in case n 6= −1,
to arbitrary closed contours γ with a /∈ γ∗.

Theorem 2.8. Let γ : [a, b] → C be a piecewise smooth curve and assume F is
holomorphic on (an open set containing) γ∗ with F ′ continuous on γ∗. Then

∫

γ

F ′(z) dz = F (γ(b))− F (γ(a)).

In particular, if γ is a closed contour, then
∫
γ
F ′(z) dz = 0.

Proof. Assume first that γ is smooth. Then by the chainrule (F ◦ γ)′(t) =

F ′(γ(t))γ′(t) for all a ≤ t ≤ b. Hence
∫
γ
F ′(z) dz =

∫ b

a
F ′(γ(t))γ′(t) dt =

∫
γ
(F ◦

γ)′(t) dz = F (γ(b)) − F (γ(a)), which proves the theorem for the special case of a
smooth curve. In the general case, choose a = s0 < s1 < · · · < sn = b such that
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γi = γ|[si−1,si] is smooth. Then
∫
γ
F ′(z) dz =

∑n
i=1

∫
γi
F ′(z) dz =

∑n
i=1 F (γ(si))−

F (γ(si−1)) = F (γ(b))− F (γ(a)). �

Corollary 2.9. Let γ be any closed contour. Then
∫
γ
(z − a)n dz = 0 for all

n ≥ 0 and if in addition a /∈ γ∗, then also
∫
γ
(z − a)n dz = 0 for all n ≤ −2.

Proof. Take F (z) = 1
n+1 (z − a)n+1 in the above theorem. �

Let now {a, b, c} be an ordered triple of complex numbers. Then ∆ = ∆(a, b, c)
denotes the triangle with vertices a, b, and c. By ∂∆ we denote curve obtained
by joining the line segments [a, b], [b, c] and [c, a], i.e., ∂∆ denotes the boundary of
∆(a, b, c) traversed counterclockwise. Hence

∫

∂∆

f(z) dz =

∫

[a,b]

f(z) dz +

∫

[b,c]

f(z) dz +

∫

[c,a]

f(z) dz

for any continuous f on ∂∆∗.

Theorem 2.10. (Cauchy’s Theorem for a Triangle) Let G ⊂ C be an open
set and assume ∆ = ∆(a, b, c) ⊂ G. Let p ∈ G and f : G → C such that f is
continuous on G and holomorphic on G \ {p}. Then

∫

∂∆

f(z) dz = 0.

Remark. If f satisfies the above hypotheses, then we shall see later that f is
actually holomorphic on G.

Proof. Assume first that p /∈ ∆ = ∆(a, b, c). Let {a1, b1, c1} be the midpoints
of [b, c], [c, a], and [a, b] respectively. Consider the four triangles ∆1, ∆2, ∆3, and
∆4 formed by the triples {a, c1, b1}, {c1, b, a1}, {a1, b1, c1} and {a1, c, b1} (see Figure
1). Put I =

∫
∂∆

f(z) dz. Then

I =
4∑

j=1

∫

∂∆j

f(z) dz.

Now |
∫
∂∆j

f(z) dz| ≥ |I|
4 for at least one j. By relabeling we can assume that

b

c

c
1

a
1b

1

! !

! !

! "

a

# $

Figure 1. ∆ = ∆1 ∪∆2 ∪∆3 ∪∆4
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∣∣∣∣
∫

∂∆1

f(z) dz

∣∣∣∣ ≥
|I|
4
.

Dividing similarly ∆1 into four triangles by means of the midpoints of the edges
and repeating this process, we get a sequence of triangles ∆ ⊃ ∆1 ⊃ ∆2 ⊃ · · · such
that ℓ(∂∆n) =

1
2nL, where L = ℓ(∂∆), and such that

(2.2)

∣∣∣∣
∫

∂∆n

f(z) dz

∣∣∣∣ ≥
|I|
4n

.

Since ∆ is compact and {∆n} has the finite intersection property, it follows that
there exists z0 ∈ ∩n∆n. As p /∈ ∆, we have that z0 6= p and thus f is differentiable
at z0. Let ǫ > 0. Then there exists r > 0 such that

|f(z)− f(z0)− f ′(z0)(z − z0)| ≤ ǫ|z − z0|
for all z with |z − z0| < r. Now ℓ(∂∆n) → 0 implies that there exists N such that
∆N ⊂ B(z0, r). This implies that |z − z0| < ℓ(∂∆N ) = 1

2N
L for all z ∈ ∆N . By

Corollary 2.9 we know that
∫

∂∆N

f(z) dz =

∫

∂∆N

f(z)− f(z0)− f ′(z0)(z − z0) dz.

This implies that
∣∣∣∣
∫

∂∆N

f(z) dz

∣∣∣∣ ≤
(
ǫ2−NL

) (
2−NL

)
= ǫ

(
2−N

)2
L2.

From the inequality 2.2 it follows that |I| ≤ ǫL2 for all ǫ > 0 and thus I = 0.
This completes the proof in case p /∈ ∆. Assume next that p is a vertex of the

a = p b

c

x

y

Figure 2. The case a = p

triangle ∆(a, b, c), say p = a. Then pick x ∈ [a, b] and y ∈ [a, c]. Then by the above∫
∆(x,b,y)

f(z) dz =
∫
∆(y,b,c)

f(z) dz = 0 and thus
∫

∂∆

f(z) dz =

∫

∂∆(a,x,y)

f(z) dz → 0

as x, y → a, since ℓ(∂∆(a, x, y)) → 0 and f is bounded on ∆(a, x, y). Hence∫
∂∆

f(z) dz = 0 also in the case that p is a vertex of ∆. It remains the case that
p ∈ ∆ \ {a, b, c}. In that case apply the above to the triangles ∆(a, b, p), ∆(b, c, p)
and ∆(c, a, p) to get the desired result. �
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Definition 2.11. A set S ⊂ C is called starlike if the exists a ∈ S such that
the line segment [a, z] ⊂ S for all z ∈ S. The point a is called a star center of S in
this case.

Recall that a set S ⊂ C is called convex if for z1, z2 ∈ S we have that [z1, z2] ⊂
S, i.e., a convex set is a starlike set such that every point of S is a star center of S.

Theorem 2.12. (Cauchy’s Theorem for starlike sets) Let G ⊂ C be an open
starlike set. Let p ∈ G and f : G → C such that f is continuous on G and
holomorphic on G\{p}. Then f = F ′ for some holomorphic F on G. In particular

(2.3)

∫

γ

f(z) dz = 0

for every closed contour γ in G.

Proof. Let a ∈ G be a star center of G. Then the line segment [a, z] ⊂ G for
all z ∈ G. Now define

F (z) =

∫

[a,z]

f(w) dw.

Let z0 ∈ G. Then there exists r > 0 such that B(z0, r) ⊂ G. Now for any
z ∈ B(z0, r) the triangle ∆(a, z0, z) ⊂ G, so by Theorem 2.10 we have

∫

∂∆(a,z0,z)

f(w) dw = 0,

and thus

F (z)− F (z0) =

∫

[a,z]

f(w) dw −
∫

[a,z0]

f(w) dw =

∫

[z0,z]

f(w) dw.

Fixing z0 we get for all z 6= z0 in G, since
∫
[z0,z]

1 dw = z − z0, that

∣∣∣∣
F (z)− F (z0)

z − z0
− f(z0)

∣∣∣∣ =
∣∣∣∣∣

1

z − z0

∫

[z0,z]

f(w)− f(z0) dw

∣∣∣∣∣

≤ 1

|z − z0|

(
sup

w∈[z0,z]

|f(w)− f(z0)|
)
|z − z0|

= sup
w∈[z0,z]

|f(w)− f(z0)| → 0

as z → z0, by the continuity of f at z0. This proves that f(z0) = F ′(z0)
for all z0 ∈ G and thus F is holomorphic on G. Now equation 2.3 follows from
Theorem 2.8. �

Definition 2.13. Let γ be a closed piecewise smooth curve in C and let a ∈
G = C \ γ∗. Then

Indγ(a) =
1

2πi

∫

γ

dz

z − a

is called the index of γ with respect to a or winding number of γ around a.



2. CONTOUR INTEGRALS 21

Theorem 2.14. (Cauchy’s Integral Formula for starlike sets) Let G ⊂ C be an
open starlike set and let γ be a closed contour in G. Let f be holomorphic on G
and z0 ∈ G \ γ∗. Then

f(z0) · Indγ(z0) =
1

2πi

∫

γ

f(z)

z − z0
dz.

Proof. Let z ∈ G \ γ∗ and define

g(z) =

{
f(z)−f(z0)

z−z0
if z ∈ G \ {z0}

f ′(z0) if z = z0

Then g satisfies the hypotheses of Theorem 2.12, so

1

2πi

∫

γ

g(z) dz = 0.

Hence

1

2πi

∫

γ

f(z)

z − z0
dz =

1

2πi

∫

γ

f(z0)

z − z0
dz

= f(z0)
1

2πi

∫

γ

1

z − z0
dz

= f(z0) · Indγ(z0),
and thus the proof of the theorem is complete. �

Remark 2.15. The above theorem is used most often for the case that Indγ(a) =
1. We will see e.g. that Indγ(z0) = 1, when γ is a circle containing z0, traversed
counter clockwise once.

Theorem 2.16. (Fundamental Theorem of Algebra) Let p(z) be a polynomial
of degree m ≥ 1. Then p has exactly m zeros in C, counting each zero according to
its multiplicity.

Proof. Assume p(z) 6= 0 for all z ∈ C. Then f(z) = 1
p(z) is an entire function.

We can assume that p(z) = zm + · · ·+ a1z + a0. Now

|p(z)| = |z|m
∣∣∣1 + · · ·+ a1

zm−1
+

a0
zm

∣∣∣

≥ |z|m
∣∣∣∣|1− · · · − |a1|

|z|m−1
− |a0|

|z|m
∣∣∣∣ ≥

1

2
|z|m ≥ 1

2
Rm

for |z| ≥ R for R large enough. Now applying Cauchy’s Integral formula to f(z)
and γR = Reit with 0 ≤ t ≤ 2π, we get

∫

γR

f(z)

z
dz = 2πif(0) =

2πi

p(0)
6= 0,

while ∣∣∣∣
∫

γR

f(z)

z
dz

∣∣∣∣ ≤ 2π max
|z|=R

| 1

p(z)
| ≤ 2π

2

Rm
→ 0,

as R → ∞, which is a contradiction. Hence there exists z1 ∈ C such that p(z1) = 0.
Now factor p(z) = (z − z1)p1(z) and repeat the above argument.

�
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To apply the Cauchy’s Integral formula, we need to be able to compute the
index of a curve. We will derive a number of properties of the index, which will
facilitate this.

Proposition 2.17. Let γ be a closed contour and let G = C\γ∗. Then Indγ(a)
is an integer for all a ∈ G.

Proof. Let γ : [b, c] → C be piecewise smooth such that γ(b) = γ(c). Then

1

2πi

∫

γ

dz

z − a
=

1

2πi

∫ c

b

γ′(s)

γ(s)− a
ds.

Let

g(t) =

∫ t

b

γ′(s)

γ(s)− a
ds.

Then g(b) = 0 and g′(t) = γ′(t)
γ(t)−a

, except possibly on the finite set S where γ is not

differentiable. Now e−g(t)(γ(t)− a) is a continuous function such that

d

dt
e−g(t)(γ(t)− a) = e−g(t)γ′(t)− g′(t)e−g(t)(γ(t)− a)

= e−g(t){γ′(t)− g′(t)(γ(t)− a)} = 0,

except on the finite set S. This implies that e−g(t)(γ(t) − a) is constant on [b, c].
Evaluating this function at t = b and t = c gives then

e−g(b)(γ(b)− a) = γ(b)− a = e−g(c)(γ(c)− a),

which implies e−g(c) = 1, since γ(b) = γ(c). Hence g(c) = 2πim for some integer
m, and thus 1

2πi

∫
γ

dz
z−a

= m which completes the proof of the theorem. �

By the above proposition the index of a closed contour is an integer m. In-
tuitively this integer measures how many times the contour γ winds around the
point a and in what direction. From the properties of contour integrals we have
immediately that the following properties hold.

(1) Ind−γ(a) = −Indγ(a).
(2) If γ is obtained by joining the closed contours γ1 and γ2, then

Indγ(a) = Indγ1
(a) + Indγ2

(a).

We shall prove that the index of a closed contour depends continuously on the point
a and that therefore the index is constant on each connected component of C \ γ∗.
We recall first the relevant definitions. Let S ⊂ C. Then S1 is called a (connected)
component of S, if S1 is a maximal connected subset of S. One can show that if S1

is a connected subset of S, then so is the relative closure of S1. Hence connected
components of a set S are always relatively closed.

Proposition 2.18. Let G be an open set in C. Then every connected com-
ponent of G is also open and thus G is a countable disjoint union of open and
relatively closed components.

Proof. Let C denote a component of G and let z0 ∈ C. Let ǫ > 0 such that
B(z0, ǫ) ⊂ G. Then C∪B(z0, ǫ) is a connected subset ofG and thus C = C∪B(z0, ǫ),
i.e., B(z0, ǫ) ⊂ C. Hence C is open. In each component we can pick a different
a+ bi with a, b ∈ Q, so there are countably many components. �
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Remark 2.19. If G = C \ K, where K is a compact set, then G has exactly
one unbounded component. In particular, when G = C \ γ∗ for a closed contour γ,
then G has one unbounded component.

Theorem 2.20. Let γ be a closed contour and let G = C \ γ∗. Then Indγ
is constant on each component of G and Indγ(a) = 0 for all a in the unbounded
component of G.

Proof. Define f(w) = Indγ(w) for w ∈ G. We first show that f : G → C is
continuous. Let w ∈ G. Then r = dist(w, γ∗) > 0, since γ∗ is compact. Let ǫ > 0

and then take 0 < δ < min{ r
2 ,

ǫπr2

L
.}, where L = ℓ(γ). Then for |w1 − w| < δ we

have

|f(w)− f(w1)| =
1

2π

∣∣∣∣
∫

γ

(w − w1)

(z − w)(z − w1)
dz

∣∣∣∣ .

For z ∈ γ∗ we have |z − w| ≥ r and |z − w1| ≥ |z − w| − |w − w1| > r
2 . Hence

|f(w)− f(w1)| <
δ

πr2
L < ǫ.

It follows that f is continuous. If now C ⊂ G is a component, then f(C) is a
connected subset of C. On the other hand f(C) ⊂ Z and thus f(C) consists of a
single point. To see that Indγ(a) = 0 for all a in the unbounded component of G,
let R > 0 such that {z : |z| > R} is contained in the unbounded component of G.
Then find a ∈ C with |a| > R such that |z − a| > L

π
for all z ∈ γ∗. Then

|Indγ(a)| ≤
1

2π

π

L
L =

1

2
,

and thus Indγ(a) = 0. As Indγ(a) is constant on the unbounded component it
follows that this holds for all a in the unbounded component of G. �

Example 2.21.

(i) Let γ : [0, 2π] → C be defined by γ(t) = z0 + Reit. Then γ traces the
circle |z − z0| = R once counterclockwise. In this case Indγ(a) = 1 for
|a− z0| < R and Indγ(a) = 0 for |a− z0| > R, since Indγ(z0) = 0 and the
component of G \ γ containing z0 equals |z − z0| < R.

(ii) Let γ : [0, 4π] → C be defined by γ(t) = z0 + Re−it. Then γ traces
the circle |z − z0| = R twice clockwise. In this case Indγ(a) = −2 for
|a− z0| < R and Indγ(a) = 0 for |a− z0| > R.

The following proposition provides the index for practically every curve en-
countered in applications.

Proposition 2.22. Let γ : [a, b] → C a closed curve. Assume there exists
z0 ∈ C \ γ∗, t0 ∈ (a, b) and ǫ > 0 so that the rays Rt = {z0 + s(γ(t)− z0) : s ≥ 0}
have the following properties.

(1) Rt ∩ γ∗ = {γ(t)} for all t ∈ (t0 − ǫ, t0 + ǫ)
(2) The part of Rt with s > 1 lies in the unbounded component of C \ γ∗ and

the part with 0 < s < 1 lies in a bounded component of C \ γ∗.
(3) γ traces γ∗ ∩ {γ(t) : t ∈ (t0 − ǫ, t0 + ǫ)} once counter clockwise.

Then Indγ(z0) = 1.
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Proof. Let f(z) = log |z− z0|+ i arg∗(z− z0) be a branch of log(z− z0) with
domain C \Rt0 . Denote by γǫ the part of the curve γ in C \Rt0 with initial point
γ(t0 + ǫ) and terminal point γ(t0 − ǫ). Then

∫

γǫ

1

z − z0
dz = f(γ(t0 − ǫ))− f(γ(t0 + ǫ)) → 2πi

as ǫ → 0. On the other hand∫

γǫ

1

z − z0
dz →

∫

γ

1

z − z0
dz

as ǫ → 0 and thus Indγ(z0) = 1.
�

Theorem 2.23. (Power series expansion of holomorphic functions) Let G ⊂ C

and let f be holomorphic on G. Then for all a ∈ G and all R > 0 such that
B(a,R) ⊂ G there exists (unique) cn such that

f(z) =
∞∑

n=0

cn(z − a)n

for all z ∈ B(a,R).

Proof. Let 0 < r < R and define γ : [0, 2π] → B(a,R) by γ(t) = a + reit.
Then Indγ(z) = 1 for all z ∈ B(a, r). Hence by the Cauchy’s Integral formula
(applied to the open set B(a,R)) we have

f(z) =
1

2πi

∫

γ

f(ζ)

ζ − z
dζ

Now
∣∣∣ z−a
ζ−a

∣∣∣ = |z−a|
r

< 1 for all z ∈ B(a, r) and all ζ ∈ γ∗. Hence the geometric

series
∞∑

n=0

(z − a)n

(ζ − a)n+1
=

1

ζ − a

{
1

1− z−a
ζ−a

}
=

1

ζ − z

converges uniformly in ζ on γ∗ for each z ∈ B(a, r). Hence

f(z) =
1

2πi

∫

γ

f(ζ)
∞∑

n=0

(z − a)n

(ζ − a)n+1
dζ

=
∞∑

n=0

(
1

2πi

∫

γ

f(ζ)

(ζ − a)n+1
dζ

)
(z − a)n

=

∞∑

n=0

cn(z − a)n

where

cn =
1

2πi

∫

γ

f(ζ)

(ζ − a)n+1
dζ.

The uniqueness follows from Corollary 4.8 in Chapter1, where it was shown that

cn = f(n)(a)
n! . �
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Corollary 2.24. Let G ⊂ C be an open set and assume f : G → C is
holomorphic. Then f ′ is holomorphic on G and thus f (n) exists for all n ≥ 1 on
G. Moreover, if B(a,R) ⊂ G and |f(z)| ≤ M on B(a,R), then

|f (n)(a)| ≤ n!M

Rn
(Cauchy Estimates).

Proof. The fact that f ′ is holomorphic on G follows immediately from the
above theorem and Theorem 4.7. From Corollary 4.8 we get

f (n)(a) =
n!

2πi

∫

γ

f(ζ)

(ζ − a)n+1
dζ,

where γ(t) = a+ reit, 0 ≤ t ≤ 2π, 0 < r < R and thus

|f (n)(a)| ≤ n!

2π
2πr

M

rn+1
=

n!M

rn
.

As this holds for all 0 < r < R the proof is complete. �

Theorem 2.25. (Morera’s Theorem) Let G ⊂ C be an open set and f : G → C

a continuous function such that ∫

∂∆

f(z) dz = 0

for all triangles ∆ ⊂ G. Then f is holomorphic on G.

Proof. Let B(a,R) ⊂ G for a ∈ G. Then as in the proof of Theorem 2.12 we
can find F holomorphic on B(a,R) such that F ′ = f on B(a,R). From the above
corollary we now conclude that f is holomorphic on B(a,R). As this holds for all
B(a,R) ⊂ G we conclude that f is holomorphic on G. �

Theorem 2.26. (Liouville’s Theorem) Let f be an entire function. Assume
that f is bounded on C. Then f is constant.

Proof. Let f(z) =
∑∞

n=0 anz
n be the power series expansion around z = 0.

Since f is entire, this series has radius of convergence equal to ∞. Let M be
such that |f(z)| ≤ M for all z ∈ C. Then for all R > 0 we have for n ≥ 1 that
|f (n)(0)| ≤ n!M

Rn → 0 as R → ∞. Hence f (n)(0) = 0 for all n ≥ 1, and thus also
an = 0 for all n ≥ 1. Therefore f(z) = a0 for all z ∈ C. �





CHAPTER 3

Zeros and singularities of holomorphic functions

1. Zeros of holomorphic functions

A subset G ⊂ C is called a region if G is open and connected. If f : G → G,
then z0 ∈ G is called a zero of f if f(z0) = 0.

Theorem 1.1. Let f be a holomorphic function on a region G. Then either
every zero of f is isolated or f is identically zero on G. For each isolated zero a ∈ G
there exists a unique m ∈ N such that f(z) = (z− a)mg(z), where g is holomorphic
on G and g(a) 6= 0. Moreover if f is not identically zero on G, then f has countably
many zeros in G.

Proof. Let a ∈ G such that f(a) = 0. Then there exists r > 0 such that
B(a, r) ⊂ G. Then by Theorem 2.23 we can expand f in a power series

f(z) =
∞∑

n=0

cn(z − a)n

on B(a, r). Note that c0 = 0 as f(a) = 0. There are now two possibilities: either
cn = 0 for all n in which case f vanishes identically on B(a, r) and thus on G, or
there exists a smallest m ≥ 1 such that cm 6= 0. In the latter case we define

g(z) =

{
f(z)

(z−a)m if z ∈ G \ {a}
cm if z = a

Then clearly f(z) = g(z)(z − a)m for all z ∈ G and thus g is holomorphic on
G \ {a}. But the power series of f shows that g has a power series expansion on
B(a, r) and is thus holomorphic on B(a, r). This shows that g is holomorphic on
G and g(a) = cm 6= 0. Since g is continuous it follows that g(z) 6= 0 in a open disk
around a and thus a is an isolated zero of f in this case. We have thus shown that
a zero of f is either isolated or f is identically zero on a disk around the zero. We
show next that if f has a non-isolated zero, then f is identically zero on G. Assume
f has a non isolated zero on G. Then the interior U of f−1(0) = {z ∈ G : f(z) = 0
is non-empty. We next observe that U is relatively closed in G. Let zn ∈ U such
that zn → z0. Then continuity of f implies that also f(z0) = 0. Since the zn’s
are non-isolated zeros, we can assume that zn 6= zm. Then z0 is a non-isolated
zero of f and thus z0 ∈ U . It follows that U is open and closed in G and thus
U = G by connectedness of G. It remains to show that f−1(0) is countable, in
case f is not identically zero on G. In this case every a ∈ f−1(0) is isolated, so
for every a ∈ f−1(0) there exists r > 0 such that B(a, r) ∩ f−1(0) = {a}. Hence
there exists a1 ∈ Q+ iQ and ra > 0 such that a ∈ Da = B(a1, ra) ⊂ B(a, r). The
collection {Da : a ∈ f−1(0)} is countable and if a, b ∈ f−1(0) with a 6= b, then

27
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Da 6= Db. Hence the mapping a 7→ Da is a one-to-one mapping and thus f−1(0) is
countable. �

Remark 1.2. The number m associated with the zero a, as in the above the-
orem, is called the order of the zero a.

Corollary 1.3. Let f and g be a holomorphic functions on a region G and
assume there exists a subset S ⊂ G with limit point in G such that f(z) = g(z) on
S. Then f(z) = g(z) for all z ∈ G.

Proof. Let h = f − g. Then h has a non-isolated zero in G (namely the limit
point of S) and thus by the above theorem h is identically zero on G. �

Example 1.4.

(i) Let f be an entire function such that f( 1
n
) = sin( 1

n
) for all n ∈ N. Then

by the above corollary f(z) = sin z for all z ∈ C.
(ii) Let f be a holomorphic fuction on C \ {0} such that f(z) = sin( 1

z
) for

all z = 1
nπ

, n = 1, 2, · · · , i.e., f( 1
nπ

) = 0 for all n ≥ 1. It does not follow

in this case that f(z) = sin 1
z
for all z 6= 0, since f(z) ≡ 0 also satisfies

f( 1
nπ

) = 0.

Theorem 1.5. (Maximum Modulus Theorem) Let G ⊂ C be open and connected
and f : G → G holomorphic. Assume |f | attains a maximum at a point a ∈ G,
i.e., |f(z)| ≤ |f(a)| for all z ∈ G. Then f is constant on G.

Proof. Let a ∈ G such that |f(z)| ≤ |f(a)| for all z ∈ G. Then there exists
R > 0 such that B(a,R) ⊂ G. Take 0 < r < R and let γ(t) = a+reit for 0 ≤ t ≤ 2π.
Then Cauchy’s Integral Formula 2.14, applied to B(a,R), gives

f(a) =
1

2πi

∫

γ

f(z)

z − a
dz

=
1

2πi

∫ 2π

0

f(a+ reit)

reit
rieit dt

=
1

2π

∫ 2π

0

f(a+ reit) dt.

Hence |f(a)| ≤ 1
2π

∫ 2π

0
|f(a + reit)| dt ≤ 1

2π

∫ 2π

0
|f(a)| dt = |f(a)|. It follows

that ∫ 2π

0

|f(a)| − |f(a+ reit)| dt = 0.

The integrand is non-negative and continuous, so it must be identically zero. Hence
|f(a)| = |f(a+reit)| for all 0 < r < R and it follows that |f | is constant on B(a,R).
It is now an an exercise to show, using the Cauchy-Riemann equations, that f is
constant on B(a,R). Hence f(z)−f(a) = 0 on B(a,R) and from the connectedness
of G it follows that f(z)− f(a) = 0 on G. �

Remark 1.6. If G is a bounded region and f is holomorphic on G and con-
tinuous on G, then by the above theorem |f | must attains its maximum on the
boundary ∂G of G.
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A corollary of the maximum modulus theorem in the form of the remark is the
Minimum Modulus Theorem.

Corollary 1.7. (Minimum Modulus Theorem) Let G ⊂ C be a bounded region
and let f : G → C a non-constant continuous function which is holomorphic on G.
If there exists z0 ∈ G such that |f(z0)| ≤ inf{|f(z)| : z ∈ ∂G}, then f has a zero on
G.

Proof. Assume f has no zero on G. Then g = 1
f
is holomorphic on G and

has an interior maximum on G. Hence g is constant, which contradicts that f is
non-constant. �

We now note that if G is region and f : G → C is non-constant, then for a ∈ C

there exists a closed disk B(a, r) such that f(z) 6= f(a) for all z ∈ B(a, r) \ {a}.
This follows from the fact that z = a is an isolated zero of f(z)− f(a). Combined
withe minimum modulus theorem we can use this observation to prove the Open
Mapping Theorem. Recall first that a mapping f from a metroic space X into a
metric space Y is called open, if f(U) is open in Y for all open U ⊂ X.

Theorem 1.8. (Open Mapping Theorem) Let f be a non-constant holomorphic
function on a region G. Then f is an open mapping

Proof. Let U ⊂ G be open and a ∈ U . We need to prove that f(a) is
an interior point of f(U). By the above remark there exists r > 0 such that

B(a, r) ⊂ U and f(z) 6= f(a) for all z with |z − a| = r. This implies that δ =
1
2 min{z:|z−a|=r} |f(z) − f(a)| > 0. We claim that B(f(a), δ) ⊂ f(U). To see this
let w ∈ B(f(a), δ). Then |f(a)− w| < δ. For z with |z − a| = r we have that

|f(z)− w| ≥ |f(z)− f(a)| − |f(a)− w| ≥ 2δ − δ = δ.

This implies that |f(a)−w| < min{z:|z−a|=r} |f(z)−w|. By the minimum modulus
theorem there exists z ∈ B(a, r) such that f(z)− w = 0. This shows B(f(a), δ) ⊂
f(U) and the proof is complete. �

2. Singularities of holomorphic functions

Let G ⊂ C be an open set and let a ∈ G. Assume f is holomorphic on G \ {a},
then we say that f has an isolated singularity at a. If we can define f(a) in such a
way that f becomes differentiable at a, then a is called a removable singularity of
f .

Theorem 2.1. Let G ⊂ C be an open set and let a ∈ G. Assume f is holo-
morphic on G \ {a} and that f is bounded on B(a, r) \ {a} for some r > 0. Then
f has a removable singularity at z = a.

Proof. Define

h(x) =

{
(z − a)2f(z) z 6= a, z ∈ G

0 z = a.
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Then f bounded on B(a, r) \ {a} implies that h′(a) = 0. Hence h is holomorphic
on G. It follows that h has a power series expansion

h(z) =

∞∑

n=2

cn(z − a)n

for all z ∈ B(a, r). Now define f(a) = c2, then f has the power series expansion

f(z) =
∞∑

n=0

cn+2(z − a)n

for all z ∈ B(a, r), which implies that f is holomorphic on B(a, r). Thus f is
holomorphic on G.

�

Remark 2.2. Note that if f is holomorphic on G\{a} and if limz→a f(z) exists
in C, then f is bounded on B(a, r)\{a} for some r > 0 and thus f has a removable
singularity at z = a in that case. In particular, if f is holomorphic on G\{a} and if
f is continuous at a, then f is holomorphic on G. Conversely, if f has a removable
singularity at z = a, then limz→a f(z) exists in C.

Example 2.3. Let f(z) = sin z
z

on C \ {0}. For z 6= 0 we find by using the
power series of sin z that

f(z) = 1− z2

3!
+

z4

5!
− · · · .

Now the series on the right hand side converges for all z ∈ C to a holomorphic
function g, which agrees with f on C \ {0}. Thus 0 is a removable singularity of f
and by defining f(0) = g(0) = 1 we extend f to an entire function.

An isolated singularity a of f is called a pole of f if limz→a |f(z)| = ∞. An
isolated singularity a of f which is neither a removable singularity or a a pole is
called an essential singularity of f . We first characterize poles.

Theorem 2.4. Let G ⊂ C be an open set and let a ∈ G. Assume f is holo-
morphic on G \ {a}. Then the following are equivalent.

(i) f has a pole at a.
(ii) There exist a unique m ∈ N and a holomorphic function g on G with

g(a) 6= 0 such that

f(z) =
g(z)

(z − a)m

for all z ∈ G \ {a}.
(iii) There exist a unique m ∈ N and c−1, c−2, · · · , c−m ∈ C with c−m 6= 0

such that

f(z)−
m∑

k=1

c−k

(z − a)k

has a removable singularity at a.

Proof. Assume first that (i) holds, i.e., f has a pole at a. Then limz→a |f(z)| =
∞ implies that there exists r > 0 such that f(z) 6= 0 on B(a, r) \ {a}. Then define
h(z) = 1

f(z) for z ∈ B(a, r) \ {a}. Then h is holomorphic on B(a, r) \ {a} and

limz→a h(z) = 0, so a is a removable singularity of h and by defining h(a) = 0
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we have a holomorphic function on B(a, r) with its only zero zero at a. Hence by
Theorem 1.1 we know that there exist m ∈ N and a holomorphic function g1 on
B(a, r) with g1(z) 6= 0 such that h(z) = (z−a)mg1(z), so (ii) holds on B(a, r) with
g = 1

g1
. Now (z− a)mf(z) is holomorphic on G \ {a} and agrees with g on B(a, r),

so we can extend g to a holomorphic function on G so that (ii) holds. If (ii) holds
then there exists r > 0 such that g(z) =

∑∞
n=0 an(z − a)n for all z ∈ B(a, r) and

g(a) = a0 6= 0. Now

f(z)−
m∑

k=1

am−k

(z − a)k
=

∞∑

k=0

ak+m(z − a)k

for all z ∈ B(a, r) \ {a}, which shows that (iii) holds if we take c−k = am−k for
k = 1, · · · ,m. If (iii) holds, then (z − a)mf(z) defines a holomorphic function g
with g(a) 6= 0 on an open disk B(a, r) for some r > 0. Hence

lim
z→a

|f(z)| = lim
z→a

|g(z)|
|z − a|m = ∞,

which completes the proof of the theorem. �

Remark 2.5. If f has a pole at a, then the number m as in the above theorem
is called the order of the pole and

∑m
k=1

c−k

(z−a)k
is called the principal part of f at

the pole a. Note also that (iii) above implies that if f has a pole of order m at a,
then there exist r > 0 and c−m, · · · , c−1, c0, c1, · · · such that we have

f(z) =
c−m

(z − a)m
+ · · ·+ c−1

(z − a)
+

∞∑

k=0

ck(z − a)k

for all z ∈ B(a, r) \ {a}.
We now present a limit characterization of essential singularities.

Theorem 2.6. (Casorati-Weierstrass Theorem) Let G ⊂ C be an open set and
let a ∈ G. Assume f is holomorphic on G \ {a}. Then the following are equivalent.

(i) f has an essential singularity at a.
(ii) If r > 0 such that B(a, r) ⊂ G, then f(B(a, r)) is dense in C, i.e., for all

w ∈ C there exist zn ∈ G \ {a} with zn → a such that limn→∞ f(zn) = w.
(iii) There exist zn → a and z′n → a in G \ {a} such that limn→∞ f(zn) and

limn→∞ f(z′n) exist, but are unequal.

Proof. Assume a is an essential singularity of f . If (ii) does not hold, then
there exist a w ∈ C such that

g(z) =
1

f(z)− w

is bounded in a neighborhood of a. Hence g has a removable singularity at a. This
implies that f has either a removable singularity at a (in case g(a) 6= 0) or a pole
at a, which contradicts our assumption. hence (ii) holds. Clearly (ii) implies (iii).
If (iii) holds, then a can not be a removable singularity of f by Remark 2.2 and a
can not a pole either, so it must be an essential singularity of f . �

Example 2.7. Let f(z) = e
1
z on G = C \ {0}. Then z = 0 is an essential

singularity of f , since limn→∞ f(− 1
n
) = 0 and limn→∞ f( 1

2πni ) = 1.
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Theorem 2.8. (Laurent Series expansion) Let G ⊂ C be an open set and let
a ∈ G. Assume f is holomorphic on G \ {a}. Then there exists R > 0 and cn
(n = 0,±1,±2, . . .) such that for all z ∈ B(a,R) \ {a} we have

f(z) =
∞∑

k=−∞
ck(z − a)k,

where

ck =
1

2πi

∫

γr

f(ζ)

(ζ − a)k+1
dζ

and γr(t) = a + reit, 0 ≤ t ≤ 2π with 0 < r < R. Moreover the series converges
uniformly on any annulus 0 < r1 ≤ |z − a| ≤ r2 < R.

Proof. Let R > 0 such that B(a,R) ⊂ G and let 0 < r1 < |z − a| < r2 < R.
Define γrk(t) = a + rke

it, 0 ≤ t ≤ 2π for k = 1, 2. Now write γr1 ∪ γr2 as a join
of two curves, each one lying in a starlike open set contained in 0 < |z − a| < R
and such that z is inside exactly one of the two curves (see figure 1 below). Than

g(ζ) = f(ζ)
ζ−z

is holomorphic inside the other curve. We see by Theorems 2.12 and

Figure 1. −γr1∪γr2 as a join of two curves.

2.14 that

(3.1)

∫

γr2

f(ζ)

ζ − z
dζ −

∫

γr1

f(ζ)

ζ − z
dζ = 2πif(z).

Now we have

1

ζ − z
=

1

(ζ − a)− (z − a)
=

1

ζ − a

∞∑

n=0

(
z − a

ζ − a

)n

for ζ ∈ γ∗
r2

for all |z − a| < r2 = |ζ − a| and
1

ζ − z
=

1

(ζ − a)− (z − a)
= − 1

z − a

∞∑

n=0

(
ζ − a

z − a

)n
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for ζ ∈ γ∗
r1

for all |z − a| > r1 = |ζ − a|. Inserting these expansions in 3.1 we get

(3.2) f(z) =

∞∑

k=0

ak(z − a)k +

−1∑

k=−∞
bk(z − a)k,

where

ak =
1

2πi

∫

γr2

f(ζ)

(ζ − a)k+1
dζ

and

bk =
1

2πi

∫

γr1

f(ζ)

(ζ − a)k+1
dζ.

The two series for 1
ζ−z

converge uniformly in z − a for r′1 ≤ |z − a| ≤ r′2, where

r1 < r′1 and r′2 < r2. Thus the series (3.2) converges uniformly on r′1 ≤ |z −
a| ≤ r′2. Similarly to how we established the equation (3.1), we can see that

ck =
∫
γr

f(ζ)
(ζ−a)k+1 dζ does not depend on r, so that ck = ak for k ≥ 0 and ck = bk

for k ≤ −1, which completes the proof of the theorem. �

The following corollary follows now immediately from the previous characteri-
zations of removable singularities and poles.

Corollary 2.9. Let G ⊂ C be an open set and let a ∈ G. Assume f is
holomorphic on G \ {a}. Let f(z) =

∑∞
k=−∞ ck(z − a)k be the Laurent series

expansion of f around a. Then the following hold.

(i) f has a removable singularity at z = a if and only if ck = 0 for all k ≤ −1.
(ii) f has a pole at z = a of order m if and only if ck = 0 for all k ≤ −(m+1)

and c−m 6= 0.
(iii) f has an essential singularity at a if and only ck 6= 0 for infinitely many

k < 0.

Remark 2.10. Let f be holomorphic on G \ {a} and let

f(z) =
∞∑

k=−∞
ck(z − a)k

be the Laurent series expansion of f around a. Then the coefficient c−1 is called the
residue of f at a and denoted by Res(f, a). Its importance derives from the fact that
if γ(t) = a + reit with 0 ≤ t ≤ 2π is a curve in G, then

∫
γ
f(z) dz = 2πiRes(f, a).

This follows immediately from the uniform convergence of the series, which allows
us to integrate the series term by term. In case f has a pole of order m at a, we
can compute Res(f, a) without using the Laurent series as follows:

Res(f, a) = lim
z→a

1

(m− 1)!

dm−1

dzm−1
[(z − a)mf(z)].

3. The Residue Theorem and Applications

We start with an application of the Laurent expansion.
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Theorem 3.1. (Residue Theorem) Let G be a starlike region. Let p1, · · · , pn
in G and f : G \ {p1, · · · , pn} → C be holomorphic. Let γ be a piecewise smooth
closed curve in G \ {p1, · · · , pn}. Then

∫

γ

f(z) dz = 2πi
n∑

k=1

[Res(f, pk)]Indγ(pk).

Proof. For each pk there exists Rk > 0 such that B(pk, Rk) ⊂ G. Then for
z ∈ B(pk, Rk) \ {pk} we have a Laurent expansion f(z) =

∑∞
n=−∞ cn(z − pk)

n.

Denote by Sk(z) the singular part
∑−1

n=−∞ cn(z − pk)
n. Then there exist ǫ > 0

such that Sk converges uniformly on |z − pk| ≥ ǫ and such that γ∗ is a subset of
each |z − pk| ≥ ǫ. In particular each Sk is holomorphic on C \ {pk}. Define g(z) =
f(z)−∑n

k=1 Sk(z) on G\{p1, · · · , pn}. Clearly g is holomorphic on G\{p1, · · · , pn}.
We claim that each pk is a removable singularity of g. To see this, note that on
B(pk, Rk) we have that

g(z) = −
n∑

j 6=k

Sj(z) +

∞∑

m=0

cm(z − pk)
m.

Both terms on the right hand side are holomorphic on B(pk, Rk) so that z = pk is
a removable singularity for g. Hence we can extend g to a holomorphic function on
G. It follows now from Cauchy’s theorem 2.12 that

∫
γ
f(z) dz = 0. Hence

∫

γ

f(z) dz =

n∑

k=1

∫

γ

Sk(z) dz.

Now each Sk converges uniformly on γ∗, so that

∫

γ

Sk(z) dz =
−1∑

m=−∞
cm

∫

γ

(z − pk)
m dz = 2πi[Res(f, pk)]Indγ(pk),

from which the conclusion follows. �

To apply the above theorem to the evaluation of improper teal integrals, we first
recall some definitions. Assume f : R → R is function which is Riemann integrable
over [−R1, R2] for all R1, R2 > 0 (this holds e.g. when f is continuous). Then f

is (improper) Riemann integrable over R if both limits limR1→∞
∫ 0

−R1
f(x) dx and

limR2→∞
∫ R2

0
f(x) dx exist and

∫∞
−∞ f(x) dx is by definition the sum of these two

limits. One can also define the Cauchy principal value integral of f by

(PV )

∫ ∞

−∞
f(x) dx = lim

R→∞

∫ R

−R

f(x) dx.

It is easy to see that if f is improper Riemann integrable, then the Cauchy principal
value of the integral of f exists and equals

∫∞
−∞ f(x) dx, but that the converse is

false in general (take e.g. f(x) = x). There are two cases, where the two integrals
coincide. The first case is when f is an even function, i.e. f(−x) = f(x) for all x.
In this case we have ∫ R

0

f(x) dx =
1

2

∫ R

−R

f(x) dx.
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The other case is when the integral of |f(x)| has a finite Cauchy principal value.
We present now some examples of applications of the residue theorem.

Example 3.2. Let f(x) = 1
(1+x2)2 . We want to compute

∫∞
0

f(x) dx. Observe

first that f is an even function, so that by the above
∫ ∞

0

f(x) dx =
1

2
lim

R→∞

∫ R

−R

f(x) dx.

First extend f to C \ {i,−i} by f(z) = 1
(1+z2)2 . Now define γR(t) = Reit for

0 ≤ t ≤ π and define the closed curve CR = γR ∪ [−R,R]. Then for R > 1 we have
IndCR

(i) = 1 and IndCR
(−i) = 0. By the residue theorem we have for R > 1 that
∫

CR

f(z) dz = 2πi Res(f(z), i).

Now z = i is a pole of order 2, so Res(f(z), i) = d
dz
( 1
(z+i)2 )|z=i =

1
4i . It follows

that for R > 1 ∫

CR

f(z) dz = 2πi · 1

4i
=

π

2
.

Now
∫
CR

f(z) dz =
∫
γR

f(z) dz +
∫ R

−R
f(x) dx and

∣∣∣∣
∫

γR

f(z) dz

∣∣∣∣ ≤ πRmax
z∈γ∗

R

1

|(1 + z2)2| ≤
πR

(R2 − 1)2
→ 0

as R → ∞. It follows that
∫ ∞

0

1

(1 + x2)2
dx =

1

2
lim

R→∞

∫ R

−R

f(x) dx =
1

2
· π
2
=

π

4
.

Example 3.3. Suppose we want to compute
∫∞
0

1
1+x4 dx. We first observe that

f(x) = 1
1+x4 is even, so that

∫ ∞

0

1

1 + x4
dx =

1

2
lim

R→∞

∫ R

−R

f(x) dx.

Let f(z) = 1
1+z4 . Then f is holomorphic on C \ {z1, z2, z3, z4}, where zj are the

solutions of z4 = −1, i.e., z1 = e
πi
4 = 1

2

√
2 + i

2

√
2, z2 = − 1

2

√
2 + i

2

√
2, z3 = −z1,

and z4 = −z2. Let ΓR = γR ∪ [−R,R], where γR(t) = Reit with 0 ≤ t ≤ π. Then
for R > 1 we have ∫

ΓR

f(z) dz = 2πi (Res(f, z1) + Res(f, z2)) .

As the pole at z1 is simple we compute the residue by

Res(f, z1) = lim
z→z1

(z − z1)f(z) =
1

(z1 − z2)(z1 − z3)(z1 − z4)
=

1

8
(−

√
2− i

√
2).

Similarly Res(f, z2) =
1
8 (
√
2− i

√
2). Thus

∫
ΓR

f(z) dz = π
√
2

2 . Now
∣∣∣∣
∫

γR

f(z) dz

∣∣∣∣ ≤ πR max
|z|=R

|f(z)| ≤ πR

R4 − 1
→ 0

as R → ∞. Hence

lim
R→∞

∫ R

−R

f(x) dx =
π
√
2

2
,
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which implies that ∫ ∞

0

1

1 + x4
dx =

π
√
2

4
.

We now apply the residue theorem to location and counting of zeros and poles
of a holomorphic function.

Theorem 3.4. (Principle of the Argument) Let G ⊂ C be a starlike region and
γ a closed contour in G. Let f be holomorphic on G, except for poles of order lk at
z = pk ∈ G \ γ∗ (1 ≤ k ≤ m). Assume f has zeros of order mj at z = aj ∈ G \ γ∗

(1 ≤ j ≤ n). Then

Indγ1
(0) =

1

2πi

∫

γ

f ′(z)

f(z)
dz

=

n∑

j=1

mjIndγ(aj)−
m∑

k=1

lkIndγ(pk)

where γ1 = f ◦ γ.

Proof. Let h(z) = f ′(z)
f(z) . Then h is holomorphic at all z ∈ G where f(z) 6= 0

and has a pole at the zeros of f . If z = aj is a zero of order mj , then f(z) =
(z − aj)

mjg(z), where g is holomorphic on G \ {pi, · · · , pm} and g(a) 6= 0. Then

there exists r > 0 such that h(z) = f ′(z)
f(z) =

mj

z−aj
+ g′(z)

g(z) onB(a, r)\{a}, where g′(z)
g(z) is

holomorphic on B(a, r). Hence h has a simple pole at z = aj and Res(h, aj) = mj .
Similarly at the point z = pk we can write f(z) = (z − pk)

−lkg(z), where g is
holomorphic near pk and g(pk) 6= 0. As above this implies that h has a simple pole
at z = pk and Res(h, pk) = −lk. Hence we have by the residue theorem that

1

2πi

∫

γ

f ′(z)

f(z)
dz =

n∑

j=1

mjIndγ(aj)−
m∑

k=1

lkIndγ(pk).

Let γ : [a, b] → C. Then

Indγ1
(0) =

1

2πi

∫

γ1

1

z
dz =

1

2πi

∫ b

a

γ′
1(s)

γ1(s)
ds

=
1

2πi

∫ b

a

f ′(γ(s))

f(γ(s))
γ′(s) ds =

1

2πi

∫

γ

f ′(z)

f(z)
dz.

�

Theorem 3.5. (General Rouché’s Theorem) Let G ⊂ C be a starlike region and
γ a closed contour in G. Let f, g be holomorphic on G, except for poles of order lk
at z = pk ∈ G \ γ∗ (1 ≤ k ≤ m) for f and poles of order ni at z = qi ∈ G \ γ∗ for
g (1 ≤ j ≤ r). Let f have zeros of order mj at z = aj ∈ G (1 ≤ j ≤ n) and g have
zeros of order sj at z = bj ∈ G (1 ≤ j ≤ t). Assume |f(z) + g(z)| < |f(z)|+ |g(z)|
on γ∗. Then

n∑

j=1

mjIndγ(aj)−
m∑

k=1

lkIndγ(pk) =
t∑

j=1

sjIndγ(bj)−
r∑

k=1

lkIndγ(qk).
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Proof. Observe first that the strict inequality |f(z) + g(z)| < |f(z)| + |g(z)|
implies that f and g can’t have zeros on γ∗. By hypothesis

∣∣∣∣
f(z)

g(z)
+ 1

∣∣∣∣ <
∣∣∣∣
f(z)

g(z)

∣∣∣∣+ 1

on γ∗. Observe that the strict inequality prevents that f(z)
g(z) is a non-negative real

number for z ∈ γ∗. Hence f
g
maps γ∗ into C \ [0,∞). Let γ1 = ( f

g
) ◦ γ, then 0 is in

the unbounded component of C \ γ∗
1 . Hence Indγ∗

1
(0) = 0. Hence by the lefthand

part of the equality in the above theorem we have

0 =
1

2πi

∫

γ

(
f

g
)′(

f

g
)−1 dz =

1

2πi

∫

γ

(
f ′

f
− g′

g
) dz =

1

2πi

∫

γ

f ′

f
dz − 1

2πi

∫

γ

g′

g
dz,

and the conclusion now follows from the righthand part of the equality in the above
theorem. �

Remark 3.6. Note most often the above theorems are applied to curves γ with
C \ γ∗ having exactly two components, namely the “exterior” of γ where Indγ = 0

and the “interior” with Indγ = 1. In that case 1
2πi

∫
γ1

f ′(z)
f(z) dz = Nf − Pf , where

Nf is the number of zeros of f inside γ (counting with their orders) and Pf is
the number of poles of f inside γ (also counted according to their order). With
this notation and with these hypotheses we have then as conclusion in the above
theorem that Nf − Pf = Ng − Pg.

The following corollary is the classical Rouché’s Theorem, which has a slightly
stronger hypothesis than the above theorem.

Corollary 3.7. (Rouché’s Theorem) Assume f and g are holomorphic in a

neighborhood of B(a,R). Assume also that |f(z)+g(z)| < |f(z)| on {z : |z−a| = R}.
Let Nf , Ng denote the number of zeros of f , respectively g inside γ (with orders).
Then Nf = Ng.

Example 3.8. Let g(z) = z5−12z3+14. Let first R = 1. Then with the choice
of f(z) = −14 we get |g(z) + f(z)| ≤ |z|5 + 12|z|2 = 13 < |f(z)| on |z| = 1. Hence
g has the same number of zeros on B(0, 1) as f , namely zero. Now take R = 2.
Now take f(z) = 12z3. Then |g(z) + f(z)| ≤ 25 +14 = 46 < 96 = |f(z)| on |z| = 2.
Hence g has three zeros inside |z| = 2, since f has three zeros inside |z| = 2. For
R = 4 we can take f(z) = −z5 and see that all five zeros of g lie in the disk B(0, 4).

4. The Global Cauchy Theorem

The goal of this section is to obtain versions of Theorems 2.12 and 2.14 of
chapter 2 without starlike assumptions.

Proposition 4.1. Let G ⊂ C be an open set, f be a holomorphic function on
G, and let g : G×G → C be defined by

g(ζ, z) =

{
f(ζ)−f(z)

ζ−z
ζ 6= z

f ′(z) ζ = z.

Then for fixed ζ ∈ G, the function g(ζ, ·) is holomorphic on G and if γ is a contour
in G, the function h defined by h(z) =

∫
γ
g(ζ, z) dζ is holomorphic on G.
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Proof. For fixed ζ ∈ G, the function g(ζ, z) is holomorphic on G \ {ζ} and
continuous at ζ, and thus by Remark 2.2 we see that g(ζ, z) is holomorphic on G.
We claim now that g(ζ, z) is continuous on G×G. To prove continuity of g we only
need to consider points (a, a) ∈ G × G. Let a ∈ G and ǫ > 0. Then there exists
r > 0 such that B(a : r) ⊂ G and |f ′(w) − f ′(a)| < ǫ for all w ∈ B(a, r). Let now
ζ, z ∈ B(a, r). Then

f(ζ)− f(z)− f ′(a)(ζ − z) =

∫

[z,ζ]

f ′(w)− f ′(a) dw

implies that |g(ζ, z)−g(a, a)| ≤ maxw∈[z.ζ] |f ′(w)−f ′(a)| < ǫ. Hence g is continuous

at (a, a) for all a ∈ G. Next we prove that h(z) =
∫
γ
g(ζ, z) dζ is continuous on

G, let zn → z in G. Then g(ζ, zn) → g(ζ, z) uniformly on γ∗. This implies that
h(zn) → h(z). Now let ∆ ⊂ G be a triangle. Then

∫

∂∆

h(z) dz =

∫

γ

(∫

∂∆

g(ζ, z) dz

)
dζ = 0.

Hence h is holomorphic on G by Morera’s Theorem. �

Theorem 4.2. (Global Cauchy’s Theorem) Let G ⊂ C be an open set and let
f be a holomorphic function on G. If γ1, . . . , γm are closed contours in G such that
Indγ1(z)+ · · ·+ Indγm

(z) = 0 for all z ∈ C \G, then for all z ∈ G \∪m
k=1γ

∗
k we have

Cauchy’s Integral Formula

f(z) ·
m∑

k=1

Indγk
(z) =

1

2πi

m∑

k=1

∫

γk

f(ζ)

ζ − z
dζ

and Cauchy’s Theorem
m∑

k=1

∫

γk

f(ζ) dζ = 0.

Proof. Let g be as in the previous proposition and let h be defined as h(z) =
1

2πi

∑m
k=1

∫
γk

g(ζ, z) dζ. Then h is holomorphic on G and Cauchy’s Integral Formula

is equivalent to proving that h(z) = 0 for all z ∈ G \ ∪m
k=1γ

∗
k . Define H = {z ∈

C \ ∪m
k=1γ

∗
k :
∑m

k=1 Indγk
(z) = 0}. Then H is open (since the index is a continuous

integer valued function) and C = G ∪H. Now define h1 on H by

h1(z) =
1

2πi

m∑

k=1

∫

γk

f(ζ)

ζ − z
dζ.

If z ∈ G ∩ H, then h1(z) = h(z) by the definition of h and H. As in the

proof of Theorem 2.23 we can expand each integral
∫
γk

f(ζ)
ζ−z

dζ in a power series

around each point z ∈ H and thus h1 is holomorphic on H. Therefore we can
extend h to an entire function by defining h = h1 on H. Now lim|z|→∞ |h(z)| ≤
lim|z|→∞

1
2π

∑m
k=1 |

∫
γk

f(ζ)
ζ−z

dζ| ≤ 1
2π

∑m
k=1 ℓ(γk) lim|z|→∞ maxζ∈γ∗

k

|f(ζ)|
|ζ−z| = 0. It

follows from Liouville’s Theorem that h(z) = 0 for all z. For z ∈ G\∪m
k=1γ

∗
k we get

f(z) ·
m∑

k=1

Indγk
(z) =

1

2πi

m∑

k=1

∫

γk

f(z)

ζ − z
dζ =

1

2πi

m∑

k=1

∫

γk

f(ζ)

ζ − z
dζ.
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To prove Cauchy’s Theorem, take a ∈ G \ ∪m
k=1γ

∗
k . Then

m∑

k=1

∫

γk

f(ζ) dζ =
m∑

k=1

∫

γk

f(ζ)(ζ − a)

ζ − a
dζ = 2πi

(
m∑

k=1

Indγk
(a)

)
f(a)(a− a) = 0.

�

Corollary 4.3. Let G ⊂ C be an open set and let f be a holomorphic function
on G. If γ1, . . . , γm and σ1, . . . , σn are closed contours in G such that Indγ1(z) +
· · ·+ Indγm

(z) = Indσ1
(z) + · · ·+ Indσn

(z) for all z ∈ C \G, then
m∑

k=1

∫

γk

f(ζ) dζ =
n∑

k=1

∫

σk

f(ζ) dζ.

Proof. Apply Cauchy’s Theorem to the closed contours γ1, . . . , γm, −σ1, . . . ,−σn.
�

Next we prove a theorem generalizing Theorem 3.1.

Theorem 4.4. (General Residue Theorem) Let G ⊂ C be an open set and let f
be a holomorphic function on G except for a subset A of G of isolated singularities.
If γ1, . . . , γm are closed contours in G \ A such that Indγ1

(z) + · · ·+ Indγm
(z) = 0

for all z ∈ C \G, then

m∑

k=1

∫

γk

f(ζ) dζ = 2πi
∑

a∈A

{
Res(f, a)

m∑

k=1

Indγk
(a)

}
.

Proof. Let B = {a ∈ A :
∑m

k=1 Indγk
(a) 6= 0}. The unbounded component

of C \ ∪γ∗
k and G̃ are both contained in the set {z ∈ C :

∑m
k=1 Indγk

(z) = 0}
and thus B is the intersection of A with a compact subset of G. This implies
that B is finite, as every point of A is isolated. Let B = {a1, . . . , an} and define
lj =

∑m
k=1 Indγk

(aj) for 1 ≤ j ≤ n. Then pick rj > 0 for j = 1, . . . , n such that
B(aj , rj) are mutually disjoint, none of them intersects any γ∗

k , and are contained
in G \ (A \ B). Then define σj to be the boundary of B(aj , rj) traversed lj times
(clockwise when lj < 0). Let G1 = (G \A) ∪B. Then f is holomorphic on G1 \B
and

∑m
k=1 Indγk

(z) = 0 on C \ G1. We also have
∑n

j=1 Indσj
(z) = 0 on C \ G1

as A \ B is outside each disk B(aj , rj) for j = 1, . . . , n. For ai ∈ B we have∑n
j=1 Indσj

(ai) = li =
∑m

k=1 Indγk
(ai). Hence by Corollary 4.3 applied to G1 \ B

we have
m∑

k=1

∫

γk

f(ζ) dζ =
n∑

j=1

∫

σj

f(ζ) dζ

= 2πi
n∑

j=1

Res(f, aj) lj

= 2πi
∑

a∈A

{
Res(f, a)

m∑

k=1

Indγk
(a)

}
.

�


