Set Operations with $\underbrace{\mathsf{two}}_{}$ $\underbrace{\mathsf{sets}}_{}$

Definitions. Let A_1 and A_2 be subsets of a universal set U. $\langle eg, U = \mathbb{R}^2 \& \text{draw 2 subsets } A_1 \text{ and } A_2 \text{ in } \mathbb{R}^2 \rangle$

1. The relative complement of A_1 with respect to A_2 , also called A_2 set minus A_1 , is the set

$$A_2 \setminus A_1 \stackrel{\text{def}}{=} \{x \in U \colon x \in A_2 \text{ and } x \notin A_1\} \stackrel{\text{other}}{=} A_2 - A_1.$$

2. The **complement** of A_1 , denoted $(A_1)^C$, is the set of all elements of U that are not in A_1 . So

$$(A_1)^C \stackrel{\text{def}}{=} \{x \in U : x \notin A_1\} \stackrel{\text{note}}{=} U \setminus A_1 \stackrel{\text{note}}{=} U - A_1$$

3. The union of A_1 and A_2 , denoted $A_1 \cup A_2$, is the set of all elements that are in $A_1 \supseteq A_2$. Thus

$$A_1 \cup A_2 \stackrel{\text{def}}{=} \{x \in U \colon x \in A_1 \text{ or } x \in A_2\} \quad \stackrel{\text{other}}{=} \quad \bigcup_{i=1}^2 A_i$$

$$\stackrel{\text{note}}{=} \{x \in U \colon \underbrace{\text{there exists}}_{\text{notation}} \text{ an } i \in \{1,2\} \text{ such that } x \in A_i\} \quad \stackrel{\text{other}}{=} \quad \bigcup_{i \in \{1,2\}} A_i$$

4. The intersection of A_1 and A_2 , denoted $A_1 \cap A_2$, is the set of all elements in both $A_1 \underset{\sim}{\text{and}} A_2$. So

$$A_1 \cap A_2 \stackrel{\text{def}}{=} \{x \in U \colon x \in A_1 \ \text{ and } x \in A_2\} \quad \stackrel{\text{other}}{=} \quad \bigcap_{i=1}^2 A_i$$

$$\stackrel{\text{note}}{=} \{x \in U \colon \text{for all } i \in \{1,2\} \text{ we have that } x \in A_i\} \quad \stackrel{\text{other}}{=} \quad \bigcap_{i \in \{1,2\}} A_i$$

Union and Intersection over arbitrary index set

Above we had 2 subsets $(A_1 \text{ and } A_2)$ of a universe U and our index set I was $I = \{1, 2\}$. We can take the union and intersection of 17 sets (so our indexing set I would be $I = \{1, 2, \ldots, 17\}$).

Defs. Definitions.

(Warning. Do not mix up the indexing set I and universe U.)

Let I be a set $\langle \text{we call } I \text{ the } index \text{ set} \rangle$. Let U be a universe $\langle \text{where the sets } A_i \text{ live} \rangle$

Consider a family (i.e., collection) of subsets $\{A_i : i \in I\}$ of U (so $A_i \subseteq U$ for each $i \in I$).

5. The union of family/collection of subsets $\{A_i: i \in I\}$ over the index set I is:

$$\bigcup_{i \in I} A_i \stackrel{\text{def.}}{=} \{x \in U : \underbrace{\text{there exists}}_{i \in I} \text{ an } i \in I \text{ such that } x \in A_i\}$$

$$\stackrel{\text{i.e.}}{=} \{x \in U : x \text{ is in (at least) one of the } A_i \text{'s}\} \stackrel{\text{note}}{\subseteq} U.$$

6. The intersection of family/collection of subsets $\{A_i: i \in I\}$ over the index set I is:

$$\bigcap_{i \in I} A_i \stackrel{\text{def.}}{=} \{x \in U \colon \underbrace{\text{for all}}_{i \in I} i \in I \text{ we have that } x \in A_i\}$$

$$\stackrel{\text{i.e.}}{=} \{x \in U \colon x \text{ is in all of the } A_i\text{'s}\}$$

$$\stackrel{\text{i.e.}}{=} \{x \in U \colon \text{if } i \in I \text{ then } x \in A_i\} \stackrel{\text{note}}{\subseteq} U.$$

So:.
$$\left[x \in \bigcup_{i \in I} A_i\right] \Leftrightarrow \left[(\exists i \in I) \ [x \in A_i]\right] \quad \text{while} \quad \left[x \in \bigcap_{i \in I} A_i\right] \Leftrightarrow \left[(\forall i \in I) \ [x \in A_i]\right]$$

Note when $I = \emptyset$

$$\bigcup_{i \in \emptyset} A_i = \emptyset \qquad \text{while} \qquad \bigcap_{i \in \emptyset} A_i = U.$$

250808 Page 1 of 1