To help us write our proofs more efficiently (as so to save time on an exam) and clearer, below are **two** color coded proofs from class.

Compare the color coding of the (WTS) to the color coding in the proof.

Do you see that the symbolic writing of the (WTS) provides a format of the proof.

1. Prove that

$$\lim_{n\to\infty} \ \frac{n^5}{n^2+7n-17} \ = \infty$$

by using the definition of diverges to infinity. Recall that, by definition, $\lim_{n\to\infty} x_n = \infty$ provided

$$(\forall M \in \mathbb{R}) \ (\exists N \in \mathbb{N}) \ (\forall n \in \mathbb{N}) \ [\ n \ge N \implies x_n > M \],$$

or equivalently,

$$(\forall M \in \mathbb{R}^{>0}) \ (\exists N \in \mathbb{N}) \ (\forall n \in \mathbb{N}) \ [n \ge N \implies x_n > M].$$
 (WTS)

Proof. Fix M > 0. Using the Archimedean property, pick $N \in \mathbb{N}$ such that

$$N > \sqrt[3]{8M}.\tag{1}$$

Note that (1) gives

$$N^3 > 8M. (2)$$

Fix $n \in \mathbb{N}$ such that $n \geq N$. Then (note, in (WTS), here have $x_n = \frac{n^5}{n^2 + 7n - 17}$)

$$\frac{n^{5}}{n^{2} + 7n - 17} > \frac{n^{5}}{n^{2} + 7n}$$

$$\geq \frac{n^{5}}{n^{2} + 7n^{2}}$$

$$= \frac{n^{5}}{8n^{2}}$$

$$= \frac{n^{3}}{8}$$

and since $n \geq N$

$$\geq \frac{N^3}{8}$$

and by our choice of N (see (2))

$$\geq \frac{8M}{8}$$
$$= M.$$

We have just shown that if $n \geq N$ then

$$\frac{n^5}{n^2 + 7n - 17} > M.$$

Thus, by definition of diverges to infinity,

$$\lim_{n \to \infty} \frac{n^5}{n^2 + 7n - 17} = \infty,$$

as needed.

22.02.22 Page 1 of 2 Bartle/Sherbert, 4thEd.

2. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences of strictly positive numbers such that

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \infty$$

and

$$\{x_n\}_{n=1}^{\infty}$$
 is bounded above by $U \in \mathbb{R}$.

Using the definition of convergence, prove that

$$\lim_{n\to\infty} y_n = 0.$$

HINT. Start by fixing $\epsilon > 0$. Since $\frac{x_n}{y_n} \to \infty$, you can make $\frac{x_n}{y_n}$ as big as you need by taking n big enough.

.....

LTGBG. Want to show

$$(\forall \epsilon > 0) \ (\exists N \in \mathbb{N}) \ (\forall n \in \mathbb{N}) \ [n \ge N \implies |y_n - 0| < \epsilon].$$
 (WTS)

......

Proof. LTGBG. We shall show $\lim_{n\to\infty} y_n = 0$.

Fix $\varepsilon > 0$. Since $\lim_{n \to \infty} \frac{x_n}{y_n} = \infty$, using the definition of divergent to ∞ , pick $N \in \mathbb{N}$ such that

if
$$n \ge N$$
 then $\frac{U}{\varepsilon} < \frac{x_n}{y_n}$. (1)

Note that (1) gives, since $U \ge x_{17} > 0$ and each of ε , x_n , and y_n is strictly positive,

if
$$n \ge N$$
 then $0 < \frac{y_n}{x_n} < \frac{\varepsilon}{U}$. (2)

Fix $n \in \mathbb{N}$ such that $n \geq N$. Then, since $y_n > 0$

$$|y_n - 0| = y_n$$

and since $x_n \neq 0$

$$=\frac{y_n}{x_n} x_n$$

and since U is an upper bound of $\{x_n\}_n$

$$\leq U \frac{y_n}{x_n}$$

and by (2)

$$< U \frac{\varepsilon}{U}$$

 $= \varepsilon$.

We have just shown that if $n \geq N$ then

$$|y_n - 0| < \varepsilon.$$

Thus, by definition of convergence, we have that $\lim_{n\to\infty} y_n = 0$, as needed.

22.02.22 Page 2 of 2 Bartle/Sherbert, 4thEd.