
Prof. Girardi Induction

Setup. Let N = {1, 2, 3, . . . } be the natural numbers and Z = {. . . ,−2,−1, 0, 1, 2, . . . } be the integers.

Let P (n) be an open sentence (also called predicate) in the variable n, where n is in a subset S of Z.
So when a specified value for n ∈ S is assigned, P (n) is a statement. Sometimes we denote P (n) by Pn.

For a n0 ∈ N, let N≥n0 := {n ∈ N : n ≥ n0}
i.e.
= {n0, n0 + 1, n0 + 2, n0 + 3, . . . }

so
⊂ N.

For a n0 ∈ Z, let Z≥n0 := {n ∈ Z : n ≥ n0}
i.e.
= {n0, n0 + 1, n0 + 2, n0 + 3, . . . }

so
⊂ Z.

INDUCTION

1. Induction (basic form)

If

base step: P (1) is true

inductive step: for each n ∈ N: [ P (n) is true ]︸ ︷︷ ︸
inductive hypothesis

=⇒ [ P (n + 1) is true ]︸ ︷︷ ︸
inductive conclusion

then P (n) is true for each n ∈ N.

2. Induction (doesn’t matter where you start form) 〈 instead of starting at 1, let’s start at n0 ∈ Z 〉

Fix n0 ∈ Z.

If

base step: P (n0) is true

inductive step: for each n ∈ Z≥n0 : [ P (n) is true ]︸ ︷︷ ︸
inductive hypothesis

=⇒ [ P (n + 1) is true ]︸ ︷︷ ︸
inductive conclusion

then P (n) is true for each n ∈ Z≥n0 .

3. Strong Induction (also called complete induction)

Fix n0 ∈ Z.

If

base step: P (n0) is true

inductive step: for each n ∈ Z≥n0 : [ P (j) is true for j ∈ {n0, 1 + n0, . . . , n} ]︸ ︷︷ ︸
inductive hypothesis

⇒ [ P (n + 1) is true ]︸ ︷︷ ︸
inductive conclusion

then P (n) is true for each n ∈ Z≥n0 .

guidelines for writing an induction proof

When writing an induction proof, remember to keep your reader informed ; thus, you should:

(1) say what you are trying to show inductively

(2) say what your induction variable is (e.g., if you are trying to show (∀j ∈ N) [P (j)]

then say: We will show that blub holds for each j ∈ N by induction on j.)

(3) indicate where your base step begins

(4) indicate where your base step ends

(5) indicate where your inductive step begins

(6) clearly state your inductive hypothesis (IH)

(7) clearly state your inductive conclusion (IC)

(8) indicate where your inductive step ends.
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Prof. Girardi Sample Student Solutions Induction

1. Show that
n+1∏
i=1

(
1− 1

i + 1

)
=

1

n + 2
for each n ∈ N.

Proof. We shall show that for each n ∈ N
n+1∏
i=1

(
1− 1

i + 1

)
=

1

n + 2
(1)

by induction on n.

For the base step, let n = 1. Then

n+1∏
i=1

(
1− 1

i + 1

)
=

(
1− 1

2

)(
1− 1

3

)
=

(
1

2

)(
2

3

)
=

2

6
=

1

3
=

1

1 + 2
=

1

n + 2
.

Thus equation (1) holds when n = 1. This concludes the base step.

For the inductive step, let n ∈ N and assume that

n+1∏
i=1

(
1− 1

i + 1

)
=

1

n + 2
. (IH)

We will show that
(n+1)+1∏

i=1

(
1− 1

i + 1

)
=

1

(n + 1) + 2
. (IC)

Using the definition of a product we can see that

n+2∏
i=1

(
1− 1

i + 1

)
=

(
n+1∏
i=1

(
1− 1

i + 1

))(
1− 1

(n + 2) + 1

)
and by the inductive hypothesis (IH)

=

(
1

n + 2

)(
1− 1

n + 3

)
and now by some algebra

=

(
1

n + 2

)(
(n + 3)− 1

n + 3

)
=

(
1

n + 2

)(
n + 2

n + 3

)
=

1

n + 3

=
1

(n + 1) + 2
.

Therefore the inductive conclusion (IC) holds. This completes the inductive step.

Thus, by induction, equation (1) holds for each n ∈ N. �
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2. Show that 2n > n2 each natural number n strictly larger than 4.

Proof. We shall show that if n ∈ N≥5 then

2n > n2 (1)

by induction on n.

For the base step, let n = 5. Then

2n = 25 = 32 > 25 = 52 = n2.

Thus, inequality (1) holds when n = 5.

For the inductive step, fix a natural number n ∈ N≥5. Assume that

2n > n2. (IH)

We need to show that

2(n+1) > (n + 1)2. (IC)

Using the inductive hypothesis (IH) and algebra, we have

2(n+1) = 2(2n)

> 2(n2)

= n2 + n2

= n2 + (n)(n)

and since n > 4

> n2 + (4)(n)

= n2 + 2n + 2n.

and since n > 4 it is clear that 2n > 1 so

> n2 + 2n + 1

= (n + 1)2.

Therefore, the inequality (IC) holds. This completes the inductive step.

Thus, by induction, inequality (1) holds for each natural number n ∈ N≥5. �
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3. Each natural number n has a factorization as

n = 2km

for
:::::
some k is some nonnegative integer and

:::::
some odd natural number m.

Written symbolically: (∀n ∈ N) (∃k ∈ Z) (∃m ∈ N)
[
k ≥ 0 ∧ m is odd ∧ n = 2km

]
.

Proof. We shall show that if n ∈ N then n can be written as

n = 2km for some k ∈ N ∪ {0} and odd natural number m (1)

by strong induction on n.

For the base step, let n = 1. Then

n = 1 = 20 · 1 = 2km

where k = 0 ∈ N ∪ {0} and m = 1 ∈ N is odd. Thus (1) holds when n = 1. This completes the

base step.

For the inductive step, fix n ∈ N and assume the inductive hypotheses, which is that for each

j ∈ {1, 2, . . . , n}

j = 2ab for some a ∈ N ∪ {0} and odd natural number b. (IH)

To show the inductive conclusion, which is

n + 1 = 2km for some k ∈ N ∪ {0} and odd natural number m, (IC)

we consider two cases: n is even and n is odd.

For the first cases, let n be an even integer. Then n + 1 is odd and so

n + 1 = 20 (n + 1) = 2km

where k = 0 ∈ N ∪ {0} and m = n + 1 is an odd integer. Thus (IC) holds for the first case.

For the second case, let n be an odd integer. Then n + 1 is even; thus, there is i ∈ N such that

n + 1 = 2i. (2)

Note that i ∈ {1, 2, . . . , n} since i ∈ N and

1 ≤ i < 2i = n + 1.

Thus by the inductive hypotheses (IH), there exists a ∈ N ∪ {0} and an odd natural number b

such that

i = 2ab. (3)

Equations (2) and (3) give,

n + 1 = 2i = 2 (2ab) = 2a+1b = 2km

where m:=b is an odd natural number and k:=a + 1 ∈ N ∪ {0} (since a ∈ N ∪ {0}). Thus (IC)

holds for the second case.

This completes the inductive step. So, by strong induction, equation (1) holds for all n ∈ N. �

20.01.02 (yr.mn.dy) Page 4 of 4 Principle of Math Induction (PMI)


