Henceforth, when asked to symbolically write a statement follow the below (unless otherwise stated).

- (1) If a statement is a quantified open sentence, then use needed quantifier(s) (e.g.: \forall , \exists , \exists !). Recall
 - \forall reads for all
 - \exists reads there exists
 - \exists ! reads there exists a unique.
- (2) Use logical connectives symbols (e.g.: $\sim, \wedge, \vee, \implies, \iff$) instead of the English words.
- (3) Within an open sentence, you can use English words that are <u>not</u> logical connectives words.
 E.g., within your open sentence, one can write: "x is even".
 Beware: "x and y are odd" should be expressed as "x is odd ∧ y is odd".
- (4) Within an open sentence, you can use math symbols that are <u>not</u> logical connectives. So you may use, e.g.: $x < \sqrt{2}$, x = y, x + y = 17, $a|b, a \equiv b \pmod{n}$, $\sum_{i=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$.
- (5) Symbolically write the statement as it is stated (rather than something logically equivalent).For example, the statement

if a real number is larger than 3, then its square is larger than
$$9$$
 (1)

can be symbolically written as

$$(\forall x \in \mathbb{R}) [x > 3 \implies x^2 > 9]$$
. (yes)

The statement in (1) is formulated as in (yes) so symbolically write (1) as (yes).

Do NOT symbolically write the statement in (1) as

$$(\forall x \in \mathbb{R}) \left[x^2 \le 9 \implies x \le 3 \right] \tag{no}$$

since (no) is not as (1) is formulated. Do note (will help you later) that the statement in (yes) is logically equivalent to the statement in (no) (since $[P \implies Q] \equiv [(\sim Q) \implies (\sim P)]$, think contrapositive); thus, if you need to prove the statement in (1), then you can prove (yes) or (no) (choice is yours when proving).