Henceforth，when asked to symbolically write a statement follow the below（unless otherwise stated）．
（1）If a statement is a quantified open sentence，then use needed quantifier（s）（e．g．：$\forall, \exists, \exists!$ ）． Recall
－\forall reads for alll
－\exists reads there exists
－\exists ！reads there exists a unique．
（2）Use logical connectives symbols（e．g．：$\sim, \wedge, \vee, \Longrightarrow, \Longleftrightarrow$ ）instead of the English words．
（3）Within an open sentence，you can use English words that are not logical connectives words． E．g．，within your open sentence，one can write：＂x is even＂．

Beware：＂x and y are odd＂should be expressed as＂x is odd $\wedge y$ is odd＂．
（4）Within an open sentence，you can use math symbols that are not logical connectives．
So you may use，e．g．：$x<\sqrt{2}, x=y, x+y=17, a \mid b, a \equiv b(\bmod n), \sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}$ ．
（5）Symbolically write the statement as it is stated（rather than something logically equivalent）． For example，the statement
if a real number is larger than 3 ，then its square is larger than 9
can be symbolically written as

$$
\begin{equation*}
(\forall x \in \mathbb{R})\left[x>3 \Longrightarrow x^{2}>9\right] \tag{yes}
\end{equation*}
$$

The statement in（1）is formulated as in（yes）so symbolically write（1）as（yes）．
Do NOT symbolically write the statement in（1）as

$$
\begin{equation*}
(\forall x \in \mathbb{R})\left[x^{2} \leq 9 \Longrightarrow x \leq 3\right] \tag{no}
\end{equation*}
$$

since（no）is not as（1）is formulated．Do note 〈will help you later〉 that the statement in（yes） is logically equivanlent to the statement in（no）〈since $[P \Longrightarrow Q] \equiv[(\sim Q) \Longrightarrow(\sim P)]$ ，think contrapositive \rangle ；thus，if you need to prove the statement in（1），then you can prove（yes） or（no）〈choice is yours when proving〉．

