－Proposition 3．27．If n is an integer，then 3 divides $n^{3}-n$ ． Symbolically write：$\quad(\forall n \in \mathbb{Z})\left[3 \mid\left(n^{3}-n\right)\right]$ ．
\triangleright ．Do any proof methods that we have learned so far seem as if they would work？
Well ．．．not really．So let＇s try a proof by cases．（If need be，review（the linked）Pascal＇s triangle．）
Proof．Let $n \in \mathbb{Z}$ ．We will show that 3 divides $n^{3}-n$ by examining the cases for the remainder when n is divided by 3 ．By the Division Algorithm，there exist unique integers q and r such that

$$
\begin{equation*}
n=3 q+r \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
r \in\{0,1,2\} \tag{2}
\end{equation*}
$$

We will examine \langle each of \rangle the 3 possible cases in（2）for the remainder：（1） $\mathrm{r}=0$ ，（2） $\mathrm{r}=1$ ，（3） $\mathrm{r}=2$ ．
For case 1 ，let $r=0$ ．By（1）we have $n=3 q$ for some $q \in \mathbb{Z} .<$ Let our WTS guide our algebra． $\mathrm{WTF}_{\text {ind }} j \in \mathbb{Z}$ s．t． $3 j=n^{3}-n$ ，i．e．，$n^{3}-n=3 j .>$ Thus

$$
\begin{align*}
n^{3}-n & =(3 q)^{3}-(3 q) \\
& =3^{3} q^{3}-3 q \\
& =3\left(3^{2} q^{3}-q\right) \tag{3}\\
& =3 j_{1}
\end{align*}
$$

where $j_{1}=3^{2} q^{3}-q$ ．Note $j \in \mathbb{Z}$ by the closure properties of \mathbb{Z} since $q \in \mathbb{Z}$ ．Thus the calculation in（3）show that $3 \mid\left(n^{3}-n\right)$ ．This complete case 1 ．

For case 2，let $r=1$ ．By（1）we have $n=3 q+1$ for some $q \in \mathbb{Z}$ ．Thus 〈use Pascal＇s triangle〉

$$
\begin{align*}
n^{3}-n & =(3 q+1)^{3}-(3 q+1) \\
& =\left(1 \cdot 3^{3} q^{3}+3 \cdot 3^{2} q^{2}+3 \cdot 3^{1} q+1 \cdot 1\right)-(3 q+1) \\
& =3^{3} q^{3}+3^{3} q^{2}+3\left(3^{1}-1\right) q+0 \tag{4}\\
& =3\left(3^{2} q^{3}+3^{2} q^{2}+2 q\right) \\
& =3 j_{2}
\end{align*}
$$

where $j_{2}=3^{2} q^{3}+3^{2} q^{2}+2 q$ ．Note $j_{2} \in \mathbb{Z}$ by the closure properties of \mathbb{Z} since $q \in \mathbb{Z}$ ．Thus the calculation in（4）show that $3 \mid\left(n^{3}-n\right)$ ．This complete case 2 ．

For case 3，let $r=2$ ．By（1）we have $n=3 q+2$ for some $q \in \mathbb{Z}$ ．Thus 〈use Pascal＇s triangle〉

$$
\begin{align*}
n^{3}-n & =(3 q+2)^{3}-(3 q+2) \\
& =\left[1 \cdot\left(3^{3} q^{3}\right)+3 \cdot\left(3^{2} q^{2}\right)\left(2^{1}\right)+3 \cdot\left(3^{1} q^{1}\right)\left(2^{2}\right)+1 \cdot\left(2^{3}\right)\right]-(3 q+2) \\
& =3^{3} q^{3}+3^{3} \cdot 2 \cdot q^{2}+3\left(3^{1} \cdot 2^{2}-1\right) q^{1}+6 \tag{5}\\
& =3\left(3^{2} q^{3}+3^{2} \cdot 2 \cdot q^{2}+\left(3 \cdot 2^{2}-1\right) q^{1}+2\right) \\
& =3 j_{3}
\end{align*}
$$

where $j_{3}=3^{2} q^{3}+3^{2} \cdot 2 q^{2}+\left(3 \cdot 2^{2}-1\right) q+2$ ．Note $j_{3} \in \mathbb{Z}$ by the closure properties of \mathbb{Z} since $q \in \mathbb{Z}$ ． Thus the calculation in（5）show that $3 \mid\left(n^{3}-n\right)$ ．This complete case 3 ．

We have just shown that for each possible case $3 \mid\left(n^{3}-n\right)$ ．Thus have show that if $n \in \mathbb{Z}$ then $3 \mid\left(n^{3}-n\right)$ ．
－．Question 1．Can we simplify the algebra some by using the Division Algorithm ${ }^{+}$？
－．Question 2．Can we prove this proposition by using Modulo Arithmetic instead of the Division Algorithm（or Division Algorithm ${ }^{+}$）？

