> Some definitions/ideas (from number theory) used in the homework exercises.

Def．A natural number p is a prime number provided it is greater than 1 and the only natural numbers that are factors of p are： 1 and p ．A natural number other than 1 that is not a prime number is a composite number．〈The number 1 is neither prime nor composite．In Math 546 you will learn 1 is a unit．）
Def．An integer n is a multiple of $\mathbf{3}$ provided：$(\exists k \in \mathbb{Z})[n=3 k]$ ．
Def．A natural number n is a perfect square provided：$(\exists k \in \mathbb{N})\left[n=k^{2}\right]$ ．
Def．The phrase for all（or its equivalents）is a universal quantifier and is denoted by \forall ．
The phrase there exists（or its equivalents）is an existential quantifier and is denoted by \exists ．
Rmk．The symbol \exists ！reads there exists a unique．
Rmk．Priority／precedence when parentheses are excluded：\forall and \exists and \exists ！have equal priority and come after the logical connective symbols：$\sim($ high $), \wedge, \vee, \Rightarrow, \Leftrightarrow$（low）．
－Statements with one quantifier．

Let $P(x)$ be an open sentence of the variable x from the universe U		
a statement involving	often has the forms	the statement is true provided
universal quantifier $(\forall x \in U)[P(x)]$	For all $x \in U, P(x)$. For every $x \in U, P(x)$.	$P(x)$ is true for all $x \in U$.
existential quantifier $(\exists x \in U)[P(x)]$	There exists an $x \in U$, such that $P(x)$. There is an $x \in U$ such that $P(x)$.	$P(x)$ is true for at least one $x \in U$.
$(\exists!x \in U)[P(x)]$	There exists a unique $x \in U$ such that $P(x)$.	$P(x)$ is true for precisely one （and only one）$x \in U$.

Def．A counterexample to a statement of the form $(\forall x \in U)[P(x)]$ is an object c in the universal set U for which $P(c)$ is false．So a counterexample is an example that shows $(\forall x \in U)[P(x)]$ is false．
Ex1a．Do the part a＇s of Example 1．PT0 〈Please Turn Over〉
Thm．Negations of Quantified Statements．For an open sentence $P(x)$ ，

$$
\begin{aligned}
& \sim\{(\forall x \in U)[P(x)]\} \equiv \\
& \sim\{(\exists x \in U)[\sim P(x)] \\
&\sim\{x \in U)[P(x)]\} \equiv(\forall x \in U)[\sim P(x)]
\end{aligned}
$$

－Statements with more than one quantifier．

	Symbolic Form	English Form
Statement	$(\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z})[x+y=0]$	There exists an integer x such that for each integer y, we have $x+y=0$.
Negation	$(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})[x+y \neq 0]$	For each integer x ，there exists an integer y such that $x+y \neq 0$.

	Symbolic Form	English Form
Statement	$(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})[x+y=0]$	For each integer x, there is an integer y such that $x+y=0$.
Negation	$(\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z})[x+y \neq 0]$	There is an integer x such that for each integer y, we have $x+y \neq 0$.

Ex 2．What about switching order of mixed quantifiers？

Ex 1. Read the Symbolically Write Guidelines, which are posted on the course Handout page.
Below are statements from previous Exercises . For each Exercise (ER):
a. Symbolically write (using quantifiers) the original statement.

Then indicate whether the original statement is true or false (no justification needed).
b. Symbolically write (using quantifiers) the negation of the original statement.

Then indicate whether the negation of the original statement is true or false (no justification needed).
1.1. If m is an odd integer, then $5 m+7$ is an even integer.

ER1.2.4b
p27

ER1.2.4c
p27

ER1.2.7a p28

