Lecture Outline

§2.4: Quantifiers and Negations

Some definitions/ideas (from number theory) used in the homework exercises.

Def. A natural number p is a **prime number** provided it is greater than 1 and the only natural numbers provided it is greater than 1 and the only natural number provided it is greater than 1 and the only natural number provided it is greater than 1 and the only natural number provided it is greater than 1 and the only natural number provided it is greater than 1 and the only natural number provided it is greater than 1 and the only natural number provided it is greater than 1 and the only natural number provided it is greater than 1 and the only natural number provided it is greater than 1 and the only natural number provided it is greater than 1 and the only natural number is a **composite number**. (The number 1 is neither prime nor composite. In Math 546 you will learn 1 is a unit.) **Def.** An integer n is a **multiple of 3** provided: $(\exists k \in \mathbb{Z}) [n = 3k]$. P71 **Def.** A natural number n is a **perfect square** provided: $(\exists k \in \mathbb{N}) [n = k^2]$.

Def. The phrase *for all* (or its equivalents) is a **universal quantifier** and is denoted by \forall . The phrase *there exists* (or its equivalents) is an **existential quantifier** and is denoted by \exists .

Rmk. The symbol \exists ! reads there exists a unique.

Rmk. Priority/precedence when parentheses are excluded: \forall and \exists and \exists ! have equal priority and come NotInBk after the logical connective symbols: \sim (high) , \land , \lor , \Rightarrow , \Leftrightarrow (low) .

quantifies the variable
$$x$$
 open sentence in the variable x

►. Statements with one quantifier. e.g.

$$\overbrace{(\forall x \in U)}^{i} [P(x)]$$
a statement

p64

p63

NotInBk

Let $P(x)$ be an open sentence of the variable x from the universe U.			
a statement involving	often has the forms	the statement is true provided	
universal quantifier $(\forall x \in U) [P(x)]$	For all $x \in U$, $P(x)$. For every $x \in U$, $P(x)$. For each $x \in U$, $P(x)$.	P(x) is true for all $x \in U$.	
existential quantifier	There exists an $x \in U$ such that $P(x)$.	P(x) is true	
$(\exists x \in U) \ [P(x)]$	There is an $x \in U$ such that $P(x)$.	for at least one $x \in U$.	
$(\exists ! x \in U) \ [P(x)]$	There exists a unique $x \in U$ such that $P(x)$.	P(x) is true for precisely one (and only one) $x \in U$.	

Def. A counterexample to a statement of the form $(\forall x \in U) [P(x)]$ is an object c in the universal p69 set U for which P(c) is false. So a counterexample is an example that shows $(\forall x \in U) [P(x)]$ is false.

 ${\tt Ex1a.}$ Do the part a's of Example 1. PT0 (Please Turn Over)

Thm. Negations of Quantified Statements. For an open sentence P(x),

$$\sim \{ (\forall x \in U) [P(x)] \} \equiv (\exists x \in U) [\sim P(x)] \\ \sim \{ (\exists x \in U) [P(x)] \} \equiv (\forall x \in U) [\sim P(x)] \}$$

Ex1b. Do the part b's of Example 1. PT0 (Please Turn Over)

►. Statements with more than one quantifier.

	Symbolic Form	English Form	
Statement	$(\exists x \in \mathbb{Z}) (\forall y \in \mathbb{Z}) [x + y = 0]$	There exists an integer x such that	
	$(\exists x \in \mathbb{Z}) \ (\forall y \in \mathbb{Z}) \ [x + y = 0]$	for each integer y , we have $x + y = 0$.	
Negation	$(\forall x \in \mathbb{Z}) \ (\exists y \in \mathbb{Z}) \ [x + y \neq 0]$	For each integer x , there exists an integer y	
		such that $x + y \neq 0$.	
	Symbolic Form	English Form	
Statement	$(\forall x \in \mathbb{Z}) \ (\exists y \in \mathbb{Z}) \ [x + y = 0]$	For each integer x , there is an integer y	
		such that $x + y = 0$.	
Negation	$(\exists m \in \mathbb{Z})$ $(\forall a \in \mathbb{Z})$ $[m + a \neq 0]$	There is an integer x such that	
	$1 \rightarrow \infty$ ($1 \rightarrow 1 $	<u>e</u>	

 $\mathbf{E_{x}}$ 2. What about switching order of mixed quantifiers?

p73

Thm2.16 p67 **Ex 1. Read** the Symbolically Write Guidelines, which are posted on the course Handout page. Below are statements from previous Exercises . For each Exercise (ER):

- a. Symbolically write (using quantifiers) the original statement. Then indicate whether the original statement is true or false (no justification needed).
- b. Symbolically write (using quantifiers) the negation of the original statement. Then indicate whether the negation of the original statement is true or false (no justification needed).
- **1.1.** If m is an odd integer, then 5m + 7 is an even integer.

ER1.2.4b p27

ER1.2.4c

p27

1.2. If m and n are odd integers, then mn + 7 is an even integer. I.e., The sum of 7 and the product of 2 odd integers is an even integer.

1.3. If a, b, and c are integers, then ab + ac is an even integer.

ER1.2.7a p28