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Prof. Girardi §2.4 Quantifiers and Negations

The phrase for all (or its equivalents) is a universal quantifier and is denoted by V. p63
The phrase there ezists (or its equivalents) is an existential quantifier and is denoted by 3.
The symbol 3! reads there exists a unique. NotInBk
Statements with one quantifier. p64
Let P (z) be an open sentence of the variable = from the universe U.
a statement involving often has the forms the statemfent is
true provided
a universal For all x € U, P (). P i) i
quantifier: For every z € U, P (). ; <x1>1 15 trl(l;
(Ve e U) [P (x)] For each z € U, P (z). oratlz € u.
an existential .
quantifier: Tl%?ﬁe ex'lsts anxz e U SEChhtha;)P (). P (x) is true
(Fx € U) [P (v)] ere is an & € U such that P (z). for at least one z € U.
P (x) is true
(Flz € U) [P (x)] | There exists a unique = € U such that P (z). for precisely one
(and only one) x € U.
Priority /precedence when parentheses are excluded: V and 3 have equal priority and come after NotinBk
Yy p q p y AlLel

the logical connective symbols: ~ (high) , A ,V ;= , <& (low) .

Negations of Quantified Statements. For an open sentence P (), Thm2.16
p67
~{(VzeU) [P(x)]} = (Brel)|~P(z)
~{@Brel) [P0)]} = (Veel)|~P(z)
A counterexample to a statement of the form (Vz € U) [P (z)] is an object ¢ in the universal set U 69

for which P (c¢) is false. Hence, a counterexample is an example that proves that (Vo € U) [P ()]
is a false statement, and hence its negation, (3z € U) [~ P ()], is a true statement.

Statements with more than one quantifier. P73

Symbolic Form English Form

There exists an integer x such that
for each integer y, we have x +y = 0.

Statement | (Jx € Z) (Vy € Z) [x +y = 0]

For each integer z, there exists an integer y

Negation | (Vz € Z) (Jy € Z) [x +y # 0] such that z +y # 0.

Symbolic Form English Form
For each integer x, there is an integer y
such that x +y = 0.

There is an integer x such that
for each integer y, we have x 4+ y # 0.

Statement | (Vx € Z) (Jy € Z) [x +y = 0]

Negation | (Jz € Z) (Vy € Z) [x +y # 0]
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Prof. Girardi §2.4 Quantifiers and Negations

Ex. Using quantifiers, symbolically write the following previous Exercises. Indicate if the statement is true or false.

1.2.4b. If m is an odd integer, then 5m + 7 is an even integer. p27
1.2.4c. If m and n are odd integers, then mn + 7 is an even integer. p27
1.2.7a. If @, b, and c¢ are integers, then ab + ac is an even integer. p28
1.2.7b. If b,and ¢ are odd integers and a is an integer, then ab + ac is an even integer. p28
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Prof. Girardi §2.4 Quantifiers and Negations

Some definitions/ideas (from number theory) used in the homework exercises.

A natural number n is a perfect square provided: (3k € N) [n = k?]. p70
An integer n is a multiple of 3 provided: (Jk € Z) [n = 3k|. p7l

A natural number p is a prime number provided it is greater than 1 and the only natural numbers p7s
that are factors of p are: 1 and p. A natural number other than 1 that is not a prime number is a

composite number. (The number 1 is neither prime nor composite. In Math 546 you will learn 1 is a unit.)

Prime Factorization / Fundamental Theorem of Arithmetric

Find the prime factoration of 1200.

So 1200 = (12) - (100) = (2-3)-(2%-5%) = 3'.23.52 b% 23.31. 52

Thus the prime factorization of 1200 is
1200 = 2°.3'.5% (1)

To see what is going on better, note that

(1) there are m := 3 distinct primes in the prime factorization of 1200
(2) we found 3 (i.e., m) prime numbers (let’s call them: p;, po and ps)
(3) we found 3 (i.e., m) natural numbers (let’s call them: ki, ko and k3)

so that
- k1 ko k3
1200 = (p1)™ (p2)™ (p3) (2)
where
m=2 , p=3 , p3s=5
k=3, ke=1 , ky=2
and p; < pg < p3.
Theorem 8.15 (The Fundamental Theorem of Arithmetic) pd32
For each n € N\ {1} there exists unique pd27
(1) meN
(2) prime numbers py, pa, ..., Pm
(3) natural numbers ky, ks, ..., kn,
such that .
ki
n= H (p:)
i=1
and P11 <p2<...<DPm-1<DPm- (We often say: the prime factorization of n is “unique up to ordering”)
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Prof. Girardi §2.4 Quantifiers and Negations

When negating quantified statements, we often use the logical equivalencies:

[~(P=Q)] = [PAN(~Q)] (how do you break a promise?)
[~(PANQ)] = [P=(~Q)] (not in book)
~(PAQ)] = [(~P)V(~Q)] (De Morgans Law)
[~(PVQ)] = [(~P)AN(~Q) ] (De Morgans Law) -

For the universe of living things, find a negation of Some kids do not like clowns.
Solution. Let the universe U be all living things.

Let K (x) be the open sentence “z is a kid”.

Let C (x) be the open sentence “x is a clown”.

Let L (z,y) be the open sentence “x likes y”.

Can you finish?
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