
Prof. Girardi §2.4 Quantifiers and Negations

Def. The phrase for all (or its equivalents) is a universal quantifier and is denoted by ∀. p63

The phrase there exists (or its equivalents) is an existential quantifier and is denoted by ∃.
Rmk. The symbol ∃! reads there exists a unique. NotInBk

.. Statements with one quantifier. p64

Let P (x) be an open sentence of the variable x from the universe U .

a statement involving often has the forms
the statement is
true provided

a universal
quantifier:

(∀x ∈ U) [P (x)]

For all x ∈ U , P (x).
For every x ∈ U , P (x).
For each x ∈ U , P (x).

P (x) is true
for all x ∈ U .

an existential
quantifier:

(∃x ∈ U) [P (x)]

There exists an x ∈ U such that P (x).
There is an x ∈ U such that P (x).

P (x) is true
for at least one x ∈ U .

(∃!x ∈ U) [P (x)] There exists a unique x ∈ U such that P (x).
P (x) is true

for precisely one
(and only one) x ∈ U .

Rmk. Priority/precedence when parentheses are excluded: ∀ and ∃ have equal priority and come
:::::
after NotInBk

the logical connective symbols: ∼ (high) , ∧ , ∨ ,⇒ ,⇔ (low) .

Thm. Negations of Quantified Statements. For an open sentence P (x), Thm2.16

p67

∼ { (∀x ∈ U) [P (x)] } ≡ (∃x ∈ U) [∼ P (x)]

∼ { (∃x ∈ U) [P (x)] } ≡ (∀x ∈ U) [∼ P (x)]

.. A counterexample to a statement of the form (∀x ∈ U) [P (x)] is an object c in the universal set U 69

for which P (c) is false. Hence, a counterexample is an example that proves that (∀x ∈ U) [P (x)]

is a false statement, and hence its negation, (∃x ∈ U) [∼ P (x)], is a true statement.

.. Statements with more than one quantifier. p73

Symbolic Form English Form

Statement (∃x ∈ Z) (∀y ∈ Z) [x + y = 0]
There exists an integer x such that

for each integer y, we have x + y = 0.

Negation (∀x ∈ Z) (∃y ∈ Z) [x + y 6= 0]
For each integer x, there exists an integer y

such that x + y 6= 0.

Symbolic Form English Form

Statement (∀x ∈ Z) (∃y ∈ Z) [x + y = 0]
For each integer x, there is an integer y

such that x + y = 0.

Negation (∃x ∈ Z) (∀y ∈ Z) [x + y 6= 0]
There is an integer x such that

for each integer y, we have x + y 6= 0.
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Prof. Girardi §2.4 Quantifiers and Negations

Ex. Using quantifiers,
:::::::::::
symbolically write the following previous Exercises. Indicate if the statement is true or false.

1.2.4b. If m is an odd integer, then 5m + 7 is an even integer. p27

1.2.4c. If m and n are odd integers, then mn + 7 is an even integer. p27

1.2.7a. If a, b, and c are integers, then ab + ac is an even integer. p28

1.2.7b. If b,and c are odd integers and a is an integer, then ab + ac is an even integer. p28
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Prof. Girardi §2.4 Quantifiers and Negations

Some definitions/ideas (from number theory) used in the homework exercises.

Def. A natural number n is a perfect square provided: (∃k ∈ N) [n = k2]. p70

Def. An integer n is a multiple of 3 provided: (∃k ∈ Z) [n = 3k]. p71

Def. A natural number p is a prime number provided it is greater than 1 and the only natural numbers p78

that are factors of p are: 1 and p. A natural number other than 1 that is not a prime number is a

composite number. 〈The number 1 is neither prime nor composite. In Math 546 you will learn 1 is a unit. 〉

Prime Factorization / Fundamental Theorem of Arithmetric

Rmk. Find the prime factoration of 1200.

So 1200 = (12) · (100) = (2 · 3) · (22 · 52) = 31 · 23 · 52 or
=

better
23 · 31 · 52.

Thus the prime factorization of 1200 is

1200 = 23 · 31 · 52. (1)

To see what is going on better, note that

(1) there are m := 3 distinct primes in the prime factorization of 1200

(2) we found 3 (i.e., m) prime numbers (let’s call them: p1, p2 and p3)

(3) we found 3 (i.e., m) natural numbers (let’s call them: k1, k2 and k3)

so that

1200 = (p1)
k1 (p2)

k2 (p3)
k3 (2)

where

p1 = 2 , p2 = 3 , p3 = 5

k1 = 3 , k2 = 1 , k3 = 2

and p1 < p2 < p3.

Thm. Theorem 8.15 (The Fundamental Theorem of Arithmetic) p432

p427For each n ∈ N \ {1} there exists
:::::::
unique

(1) m ∈ N
(2) prime numbers p1, p2, . . . , pm

(3) natural numbers k1, k2, . . . , km

such that

n =
m∏
i=1

(pi)
ki

and p1 < p2 < . . . < pm−1 < pm. (We often say: the prime factorization of n is “unique up to ordering”)
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Prof. Girardi §2.4 Quantifiers and Negations

Recall

When negating quantified statements, we often use the logical equivalencies:

[ ∼ (P ⇒ Q) ] ≡ [ P ∧ (∼ Q) ] (how do you break a promise?)

[ ∼ (P ∧Q) ] ≡ [ P ⇒ (∼ Q) ] (not in book)

[∼ (P ∧Q) ] ≡ [ (∼ P ) ∨ (∼ Q) ] (De Morgans Law)

[ ∼ (P ∨Q) ] ≡ [ (∼ P ) ∧ (∼ Q) ] (De Morgans Law) .

Ex. For the universe of living things, find a negation of Some kids do not like clowns.

Solution. Let the universe U be all living things.

Let K (x) be the open sentence “x is a kid”.

Let C (x) be the open sentence “x is a clown”.

Let L (x, y) be the open sentence “x likes y”.

Can you finish?
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