Def. The phrase *for all* (or its equivalents) is a **universal quantifier** and is denoted by \forall . The phrase *there exists* (or its equivalents) is an **existential quantifier** and is denoted by \exists .

Rmk. The symbol \exists ! reads there exists a unique.

NotInBk

p63

Prof. Girardi

p64

p73

Let $P(x)$ be an open sentence of the variable x from the universe U.						
a statement involving	the statement is true provided					
a universal quantifier: $(\forall x \in U) [P(x)]$	For all $x \in U$, $P(x)$. For every $x \in U$, $P(x)$. For each $x \in U$, $P(x)$.	P(x) is true for all $x \in U$.				
an existential quantifier: $(\exists x \in U) \ [P(x)]$	There exists an $x \in U$ such that $P(x)$. There is an $x \in U$ such that $P(x)$.	P(x) is true for at least one $x \in U$.				
$(\exists ! x \in U) \ [P(x)]$	There exists a unique $x \in U$ such that $P(x)$.	P(x) is true for precisely one (and only one) $x \in U$.				

Rmk. Priority/precedence when parentheses are excluded: \forall and \exists have equal priority and come <u>after</u> NotInBk the logical connective symbols: \sim (high) , \land , \lor , \Rightarrow , \Leftrightarrow (low) .

Thm. Negations of Quantified Statements . For an open sentence $P(x)$,	Thm2.16
$\sim \{ (\forall x \in U) [P(x)] \} \equiv (\exists x \in U) [\sim P(x)]$	por
$\sim \{ (\exists x \in U) [P(x)] \} \equiv (\forall x \in U) [\sim P(x)]$	

- ▷. A counterexample to a statement of the form $(\forall x \in U) [P(x)]$ is an object *c* in the universal set *U* 69 for which P(c) is false. Hence, a counterexample is an example that proves that $(\forall x \in U) [P(x)]$ is a false statement, and hence its negation, $(\exists x \in U) [\sim P(x)]$, is a true statement.
- **b.** Statements with more than one quantifier.

	Symbolic Form	English Form
Statement	$(\exists x \in \mathbb{Z}) \ (\forall y \in \mathbb{Z}) \ [x + y = 0]$	There exists an integer x such that for each integer y , we have $x + y = 0$.
Negation	$(\forall x \in \mathbb{Z}) \ (\exists y \in \mathbb{Z}) \ [x + y \neq 0]$	For each integer x , there exists an integer y such that $x + y \neq 0$.

	Symbolic Form	English Form
Statement	$(\forall x \in \mathbb{Z}) \ (\exists y \in \mathbb{Z}) \ [x + y = 0]$	For each integer x , there is an integer y such that $x + y = 0$.
Negation	$(\exists x \in \mathbb{Z}) \ (\forall y \in \mathbb{Z}) \ [x + y \neq 0]$	There is an integer x such that for each integer y, we have $x + y \neq 0$.

- Ex. Using quantifiers, symbolically write the following previous Exercises. Indicate if the statement is true or false.
- 1.2.4b. If m is an odd integer, then 5m + 7 is an even integer.

1.2.4c. If m and n are odd integers, then mn + 7 is an even integer.

1.2.7a. If a, b, and c are integers, then ab + ac is an even integer.

1.2.76. If b, and c are odd integers and a is an integer, then ab + ac is an even integer.

p27

p27

p28

	Some definitions	/ideas	from	number	theory)	used	in	the	homework	exercises.
--	------------------	--------	------	--------	---------	------	----	-----	----------	------------

- **Def.** A natural number *n* is a **perfect square** provided: $(\exists k \in \mathbb{N}) [n = k^2]$.
- **Def.** An integer n is a **multiple of 3** provided: $(\exists k \in \mathbb{Z}) [n = 3k]$.
- **Def.** A natural number p is a **prime number** provided it is greater than 1 and the only natural numbers provided it is greater than 1 and the only natural number provided it is greater than 1 and the only natural number provided it is not a prime number of p are: 1 and p. A natural number other than 1 that is not a prime number is a **composite number**. (The number 1 is neither prime nor composite. In Math 546 you will learn 1 is a unit.)

Prime Factorization / Fundamental Theorem of Arithmetric

Rmk. Find the prime factoration of 1200.

So $1200 = (12) \cdot (100) = (2 \cdot 3) \cdot (2^2 \cdot 5^2) = 3^1 \cdot 2^3 \cdot 5^2 \stackrel{\text{or}}{=} 2^3 \cdot 3^1 \cdot 5^2$. Thus the prime factorization of 1200 is

$$1200 = 2^3 \cdot 3^1 \cdot 5^2. \tag{1}$$

To see what is going on better, note that

- (1) there are m := 3 distinct primes in the prime factorization of 1200
- (2) we found 3 (i.e., m) prime numbers (let's call them: p_1 , p_2 and p_3)
- (3) we found 3 (i.e., m) natural numbers (let's call them: k_1 , k_2 and k_3)

so that

$$1200 = (p_1)^{k_1} (p_2)^{k_2} (p_3)^{k_3}$$
(2)

where

$p_1 = 2$,	$p_2 = 3$,	$p_3 = 5$
$k_1 = 3$,	$k_2 = 1$,	$k_3 = 2$

and $p_1 < p_2 < p_3$.

Thm. Theorem 8.15 (The Fundamental Theorem of Arithmetic)

For each $n \in \mathbb{N} \setminus \{1\}$ there exists unique

- (1) $m \in \mathbb{N}$
- (2) prime numbers p_1, p_2, \ldots, p_m
- (3) natural numbers k_1, k_2, \ldots, k_m

such that

$$n = \prod_{i=1}^{m} \left(p_i \right)^{k_i}$$

and $p_1 < p_2 < \ldots < p_{m-1} < p_m$. (We often say: the prime factorization of *n* is "unique up to ordering")

p432 p427

p71

Recall

When negating quantified statements, we often use the logical equivalencies:

$$\begin{bmatrix} \sim (P \Rightarrow Q) \end{bmatrix} \equiv \begin{bmatrix} P \land (\sim Q) \end{bmatrix}$$
 (how do you break a promise?)
$$\begin{bmatrix} \sim (P \land Q) \end{bmatrix} \equiv \begin{bmatrix} P \Rightarrow (\sim Q) \end{bmatrix}$$
 (not in book)
$$\begin{bmatrix} \sim (P \land Q) \end{bmatrix} \equiv \begin{bmatrix} (\sim P) \lor (\sim Q) \end{bmatrix}$$
 (De Morgans Law)
$$\begin{bmatrix} \sim (P \lor Q) \end{bmatrix} \equiv \begin{bmatrix} (\sim P) \land (\sim Q) \end{bmatrix}$$
 (De Morgans Law) .

Ex. For the universe of living things, find a negation of Some kids do not like clowns. Solution. Let the universe U be all living things.
Let K(x) be the open sentence "x is a kid".
Let C(x) be the open sentence "x is a clown".

Let L(x, y) be the open sentence "x likes y".

Can you finish?