There will be proof problems on the exam. Below are some problems, which you will probably recognize from class, turned into sample (basic, on the easy side) exam proof problems. Note the initial parts of a problem often are used in the final part where you actually write your proof. This format is often used with both the easier and harder proof problems.

1. Theorem 1. If x and y are odd integers, then $x y$ is an odd integer.
1.1. Write Theorem 1 symbolically. 〈You can use any appropriate universe(s).〉 Box answer.
1.2. Complete the definitions (either in English or symbolically).

An integer z is even provided \qquad .

An integer z is odd provided \qquad .
1.3. On the next 2 pages of lined paper prove Theorem 1 by using the definition of even and odd.

You may not use previously shown results.
If you want you may use the below blank space for Thinking Land.
Optional Thinking Land Space
\qquad
\qquad Finished with proof.

Problem 1
Proof is continued on Page \qquad .
\qquad
\qquad Finished with proof.

Problem 1
Proof is continued on Page \qquad .
2. Theorem 2. If m is an even integer, then

$$
3 m^{2}+2 m+3
$$

is an odd integer.
2.1. Write Theorem 2 symbolically. 〈You can use any appropriate universe(s).〉 Box answer.
2.2. On the next pages of lined paper prove Theorem 2 by using the below Previously Shown Results.

> Previously Shown Results

Lemma SE1. If m is an even integer, then $m+1$ is an odd integer.
Lemma SO1. If m is an odd integer, then $m+1$ is an even integer.
Lemma SEE. If x is an even integer and y is an even integer, then $x+y$ is an even integer.
Lemma SEO. If x is an even integer and y is an odd integer, then $x+y$ is an odd integer.
Lemma SOO. If x is an odd integer and y is an odd integer, then $x+y$ is an even integer.
Lemma PEA. If x is an even integer and y is an integer, then $x \cdot y$ is an even integer.
Lemma POO. If x is an odd integer and y is an odd integer, then $x \cdot y$ is an odd integer.

If you want you may use the below blank space for Thinking Land.
Optional Thinking Land Space
\qquad
\qquad Finished with proof.

Problem 2
Proof is continued on Page \qquad .
\qquad

Finished with proof.
Problem 2
Proof is continued on Page \qquad .
3. Theorem 3. For each integer a, if 4 divides $(a-1)$ then 4 divides $\left(a^{2}-1\right)$.

Definition 3. A nonzero integer m divides an integer n, denoted $m \mid n$, provided that $(\exists q \in \mathbb{Z})[n=m q]$.

Remarks.

- Note 5 divides 10 , also written $5 \mid 10$, since $10=5 \cdot 2$ and $2 \in \mathbb{Z}$.
- The expression " 4 divides $(a-1)$ " can be written as $4 \mid(a-1)$.
- Note $4 \mid a-1$ is wrong (and makes absolutely no sense) since $4 \mid a$ is a statement while 1 is a number (you cannot take a statement minus a number).
3.1. Circle True or False (but not both). No justification needed.

TRUE FALSE . (-5) | 10
TRUE FALSE . $10 \mid 5$
3.2. Write Theorem 3 symbolically. 〈You can use any appropriate universe(s).〉 Box answer.
3.3. On the next 2 pages of lined paper prove Theorem 3.

If you want you may use the below blank space for Thinking Land.
Optional Thinking Land Space
\qquad

Finished with proof.
Problem 3
Proof is continued on Page \qquad .
\qquad

Finished with proof.
Problem 3
Proof is continued on Page \qquad .

