6. Theorem 6. For each integer a, if 4 divides (a - 1) then 4 divides $(a^2 - 1)$.

Definition 6. A nonzero integer n divides an integer b, denoted $n \mid b$, provided that $(\exists k \in \mathbb{Z}) [nk = b]$. Remarks.

- Note 5 divides 10, also written 5 | 10, since $10 = 5 \cdot 2$ and $2 \in \mathbb{Z}$.
- The expression "4 divides (a-1)" can be written as $4 \mid (a-1)$.
- Note 4 | a 1 is wrong (and makes absolutely no sense) since 4 | a is a statement while 1 is a number (you cannot take a statement minus a number).
- 6.1. Circle True or False (but not both). No justification needed.

TRUEFALSE . $(-5) \mid 10$ True since 10 = (-5)(-2) and $-2 \in \mathbb{Z}$.TRUEFALSE . $10 \mid 5$

6.2. Write Theorem 6 symbolically. (You can use any appropriate universe(s).) Box answer.

6.3. On the next 2 pages of lined paper prove Theorem 6.

Proof. Let $a \in \mathbb{Z}$ and $4 \mid (a-1)$. We will show that $4 \mid (a^2 - 1)$.

Since $4 \mid (a-1)$, by the definition of divides, there is $k \in \mathbb{Z}$ such that

$$4k = a - 1 . (6.1)$$

Solving equation (6.1) for a gives

$$a = 4k + 1$$
. (6.2)

Using equation (6.2), followed by algebra, we get

$$a^{2} - 1 = (4k + 1)^{2} - 1$$
$$= 4^{2}k^{2} + 2(4k) + 1 - 1$$
$$= 4(4k^{2} + 2k)$$
$$= 4j$$

where $j = 4k^2 + 2k$. Note $j \in \mathbb{Z}$ since $k \in \mathbb{Z}$ and by the closure properties of \mathbb{Z} . We have just shown that $a^2 - 1 = 4j$ for some $j \in \mathbb{Z}$. So by definiton of divides we get that $4 \mid (a^2 - 1)$, which is what we wanted to show.

Consequently, we have shown for each integer a, if $4 \mid (a-1)$ then $4 \mid (a^2-1)$.