6. Theorem 6. For each integer a, if 4 divides $(a-1)$ then 4 divides $\left(a^{2}-1\right)$.

Definition 6. A nonzero integer n divides an integer b, denoted $n \mid b$, provided that $(\exists k \in \mathbb{Z})[n k=b]$.

Remarks.

- Note 5 divides 10 , also written $5 \mid 10$, since $10=5 \cdot 2$ and $2 \in \mathbb{Z}$.
- The expression " 4 divides $(a-1)$ " can be written as $4 \mid(a-1)$.
- Note $4 \mid a-1$ is wrong (and makes absolutely no sense) since $4 \mid a$ is a statement while 1 is a number (you cannot take a statement minus a number).
6.1. Circle True or False (but not both). No justification needed.

TRUE FALSE . $(-5) \mid 10 \quad$ True since $10=(-5)(-2)$ and $-2 \in \mathbb{Z}$.
TRUE FALSE. $10 \mid 5$
6.2. Write Theorem 6 symbolically. 〈You can use any appropriate universe(s).〉 Box answer.

$$
(\forall a \in \mathbb{Z})\left[4|(a-1) \Rightarrow 4|\left(a^{2}-1\right)\right]
$$

6.3. On the next 2 pages of lined paper prove Theorem 6.

Proof. Let $a \in \mathbb{Z}$ and $4 \mid(a-1)$. We will show that $4 \mid\left(a^{2}-1\right)$.
Since $4 \mid(a-1)$, by the definition of divides, there is $k \in \mathbb{Z}$ such that

$$
\begin{equation*}
4 k=a-1 \tag{6.1}
\end{equation*}
$$

Solving equation (6.1) for a gives

$$
\begin{equation*}
a=4 k+1 . \tag{6.2}
\end{equation*}
$$

Using equation (6.2), followed by algebra, we get

$$
\begin{aligned}
a^{2}-1 & =(4 k+1)^{2}-1 \\
& =4^{2} k^{2}+2(4 k)+1-1 \\
& =4\left(4 k^{2}+2 k\right) \\
& =4 j
\end{aligned}
$$

where $j=4 k^{2}+2 k$. Note $j \in \mathbb{Z}$ since $k \in \mathbb{Z}$ and by the closure properties of \mathbb{Z}. We have just shown that $a^{2}-1=4 j$ for some $j \in \mathbb{Z}$. So by definiton of divides we get that $4 \mid\left(a^{2}-1\right)$, which is what we wanted to show.

Consequently, we have shown for each integer a, if $4 \mid(a-1)$ then $4 \mid\left(a^{2}-1\right)$.

