Group 1

Theorem 1. Let $n \in \mathbb{N}$ and $a_1, a_2, b_1, b_2 \in \mathbb{Z}$. Let

$$a_1 \equiv a_2 \pmod{n}$$

and

$$b_1 \equiv b_2 \pmod{n}$$
.

Then $a_1 + b_1 \equiv a_2 + b_2 \pmod{n}$.

Group 2

Theorem 2. Let $n \in \mathbb{N}$ and $a_1, a_2, b_1, b_2 \in \mathbb{Z}$. Let

$$a_1 \equiv a_2 \pmod{n}$$

and

$$b_1 \equiv b_2 \pmod{n}$$
.

Then $a_1 \cdot b_1 \equiv a_2 \cdot b_2 \pmod{n}$.

Group 3

Theorem 3. Let $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$. (transitive)