
Prof. Girardi solution Final Exam Jam Problems

These Jam Problems are a sampling of the type of problems which could be an the final.
These problem are, in no way, meant as a comprehensive review for the cumulative final.

Math is not a spectator sport.
Often we learn more from our failed attempts at a proof rather than reading a clean proof.

So give these problems a solid attempt before seeking help, e.g.:
looking through your notes and/or book, looking at the below hints, or looking at Piazza.

Some hints are very generous. Do not except such generous hints on the exam.
Since these problems are not to hand in, on Piazza you may share:
hints and/or an attempt at a solution for others to comment on.

1. Theorem 1. For all real numbers x and y, if x is rational, x 6= 0 and y 6∈ Q, then xy is irrational.

1.1. Complete the following definitions.

A real number x is rational provided there exists n ∈ Z and d ∈ N such that x = n
d

.

A real number y is irrational provided y is not rational .

1.2. Symbolically write Theorem 1.

1.3. Prove Theorem 1. (You may use the closure properities of Q.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hints.

1. Symbolically written, Thm. 1 is(
∀ (x, y) ∈ R2

)
[(x ∈ Q ∧ x 6= 0 ∧ y /∈ Q) =⇒ xy /∈ Q] . (1.1)

Knowing a real number is irrational does not give us much of a bird in the hand. On the other

hand, knowing a real number is rational give us some bird in the hand (namely a numerator and

a denominator). As stated, Thm. 1 has
:::
two irrational numbers 〈y and xy 〉 but only

:::
one rational

number 〈x 〉. So let’s look at some negations of Thm. 1 in attempt to get more rational numbers

〈as so to get more birds in the hand 〉. Below are some negations of Thm 1 〈 some more useful than others 〉.

∼
[ (
∀ (x, y) ∈ R2

)
[(x ∈ Q ∧ x 6= 0 ∧ y /∈ Q) =⇒ xy /∈ Q]

]
(
∃ (x, y) ∈ R2

)
∼ [(x ∈ Q ∧ x 6= 0 ∧ y /∈ Q) =⇒ xy /∈ Q]

〈Recall think of P ⇒ Q as a promise. So the negation of P ⇒ Q is to break our promise. Thus ∼ [P ⇒ Q] ≡ [P ∧ (∼ Q)]. 〉(
∃ (x, y) ∈ R2

)
[(x ∈ Q ∧ x 6= 0 ∧ y /∈ Q) ∧ xy ∈ Q](

∃ (x, y) ∈ R2
)

[x 6= 0 ∧ x ∈ Q ∧ xy ∈ Q ∧ y /∈ Q] (1.2)

The statement in (1.2) gives us more to work with 〈more of a bird in the hand 〉 than (1.1). So let’s try

a
:::::
proof

::::
by

::::::::::::::
contradiction and assume (1.2) holds 〈 i.e., the negation of what we want to show holds 〉 and go

looking for a contradition. Our birds in the hand are: x ∈ Q and xy ∈ Q. Can we somehow use

that x ∈ Q and xy ∈ Q to find a contradition to y 6∈ Q? The key observation is that, since x 6= 0,

we can write y =
(
1
x

)
(xy). Actually, Thm. 1 is the book’s Proposition 3.19 (p. 123) so you can

read the proof in the book. Please note that in Version 2.1 there is a small typo (book forgot to

assume x 6= 0) but the proof in Version 3 is correct.
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2. Theorem 2. Let x, y ∈ R. If y is irrational then (x+ y) is irrational or (x− y) is irrational.

2.1. Symbolically write Theorem 2.

2.2. Prove Theorem 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hints.

2. Symbolically written, Thm. 2 is(
∀ (x, y) ∈ R2

)
[ y 6∈ Q =⇒ { (x+ y) 6∈ Q ∨ (x− y) 6∈ Q } ] . (2.1)

Knowing a real number is irrational does not give us much of a bird in the hand. On the other

hand, knowing a real number is rational give us some bird in the hand (namely a numerator and

a denominator). As stated, all the real numbers in Thm. 2 are irrational. So let’s look at some

negations of Thm. 2 in attempt to get some rational numbers 〈as so to get some birds in the hand 〉. Below

are some negations of Thm 2 〈 some more useful than others 〉.

∼
[ (
∀ (x, y) ∈ R2

)
[ y 6∈ Q =⇒ { (x+ y) 6∈ Q ∨ (x− y) 6∈ Q } ]

]
(
∃ (x, y) ∈ R2

)
∼ [ y 6∈ Q =⇒ { (x+ y) 6∈ Q ∨ (x− y) 6∈ Q } ]

〈Recall think of P ⇒ Q as a promise. So the negation of P ⇒ Q is to break our promise. Thus ∼ [P ⇒ Q] ≡ [P ∧ (∼ Q)]. 〉(
∃ (x, y) ∈ R2

)
[ y 6∈ Q ∧ ∼ { (x+ y) 6∈ Q ∨ (x− y) 6∈ Q } ](

∃ (x, y) ∈ R2
)

[ y 6∈ Q ∧ (x+ y) ∈ Q ∧ (x− y) ∈ Q ](
∃ (x, y) ∈ R2

)
[ (x+ y) ∈ Q ∧ (x− y) ∈ Q ∧ y 6∈ Q ] (2.2)

The statement in (2.2) gives us more to work with 〈more of a bird in the hand 〉 than (2.1). So let’s try

a
:::::
proof

::::
by

::::::::::::::
contradiction and assume (2.2) holds 〈 i.e., the negation of what we want to show holds 〉 and go

looking for a contradition. Our birds in the hand are: x+ y ∈ Q and x− y ∈ Q. Can we somehow

use that x + y ∈ Q and x − y ∈ Q to find a contradition to y 6∈ Q? The key observations are:

(x+ y)− (x− y) = 2y and y = 1
2

(2y).

Proof. We shall show Theorem 2 by contradiction. Thus let x, y ∈ R satisfy that

x+ y ∈ Q and x− y ∈ Q and y 6∈ Q. (2.3)

We shall find a contradiction 〈 to our above assumption in (2.3) 〉.

Since both x+ y and x− y are rational, Q is closed under subtraction, and

720 (x+ y)− (x− y) = 2y

we have that 2y ∈ Q. Since 1
2

is also rational, Q is closed under multiplication, and

y =
1

2
(2y)

we get that y ∈ Q. However we assumed that y 6∈ Q. So we have a contradiction.

This completes the proof by contradiction of Theorem 2. �
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3. Theorem 3. Let a and b be natural numbers such that

a2 = b3.

Then we have the following.

3a. If a is even then 4 divides a.
3b. If 4 divides a then 4 divides b.
3c. If 4 divides b then 8 divides a.
3d. If a is even then 8 divides a.

Also

3e. there exists a, b ∈ N such that a2 = b3 and a is even but 8 does not divide b.

3.1. Prove Theorem 3 parts 3a–3e. You may use, without proving, the following theorems from class.
Theorem S. An integer z is even if and only if z2 is even.
Theorem C. An integer z is even if and only if z3 is even.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
hints. Below are Thinking Lands. Let a, b ∈ N satisfy

a2 = b3. (3.1)

3a. Let a be even. Then

a even
Thm. S
====⇒ a2 even

(3.1)
==⇒ b3 even

Thm. C
====⇒ b even.

So ∃j, k ∈ Z s.t. a = 2k and b = 2j. So

a2 = b3
Alg
=⇒ 22k2 = 23j3

Alg
=⇒ k2 = 2j3

def.
==⇒
even

k2 even
Thm. S
====⇒ k even

def.
==⇒
even
∃n ∈ Z s.t. k = 2n.

Know a = 2k so get

a = 2k = 2 (2n) = 4n
def.

===⇒
divides

4 | a.

3b. Let 4 divide a. Then

4 | a def.
===⇒
divides

∃n ∈ Z s.t. a = 4n
(3.1)
==⇒ b3 = (4n)2 = 2

(
8n2
) def.

==⇒
even

b3 even
Thm. C
====⇒ b even

def.
==⇒
even
∃k ∈ Z s.t. b = 2k

(3.1)
==⇒ (2k)3 = (4n)2

Alg
==⇒
4=22

23k3 = 24n2 Alg
=⇒ k3 = 2n2

def.
==⇒
even

k3 even
Thm. C
====⇒ k even

def.
==⇒
even
∃j ∈ Z s.t. k = 2j

put
====⇒
together

b = 2k = 2(2j) = 4j
def.

===⇒
divides

4 | b.

3c. Let 4 divide b. Then

4 | b def.
===⇒
divides

∃k ∈ Z s.t. b = 4k = 2(2k)
def.

==⇒
even

b even
Thm. C
====⇒ b3 even

(3.1)
==⇒ a2 even

Thm. S
====⇒ a even

part
==⇒
3a.

4 | a def.
===⇒
divides

∃j ∈ Z s.t. a = 4j.

So now have j, k ∈ Z s.t. a = 4j and b = 4k. So get

a2 = b3 =⇒ (4j)2 = (4k)3
Alg
=⇒ 42j2 = 43k3

Alg
=⇒ j2 = 4k3 = 2(2k3)

def.
==⇒
even

j2 even

Thm. S
====⇒ j even

def.
==⇒
even
∃n ∈ Z s.t. j = 2n

Alg
=⇒ a = 4j = 4(2n) = 8n

def.
===⇒
divides

8 | a.

3d. Follows from parts: 3a, 3b, 3c.

3e. a = 8 and b = 4. Think prime fractorizations: a =

n∏
i=1

(pi)
ki and b =

m∏
i=1

(qi)
ji . Since a is even p1 = 2 .

n∏
i=1

(pi)
2ki by

=
(3.1)

m∏
i=1

(qi)
3ji uniqueness of

========⇒
prime factoriz.

n = m and ∀i ∈ {1, 2, . . . , n} : pi = qi and 2ki = 3ji.

So can take n = m = 1 and p1 = q1 = 2 and 〈 for 2ki = 3ji 〉 k1 = 3, and j1 = 2.
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4. Theorem 4. There does not exist an integer x such that

x ≡ 4 (mod 9) and x ≡ 5 (mod 6).

4.1. Explain why we cannot apply modulo arithmetric to the congruences as they are written in Thm. 4.

4.2. Prove Theorem 4.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hints.

4.1. To apply modulo arithmetric to two congruences, the two congruences must be of the
:::::
same

::::::::
modulo.

As the two congruences in Thm. 4 are stated, one congruence is modulo 9 while the other congru-

ence is modulo 6.

4.2. Thinking Land. The fact that such an x does
::::
not exist does

:::
not give us much of a bird in the hand.

On the other hand, if such an x were to exist, we would have some birds in the hand. So let’s try

a
:::::
proof

::::
by

::::::::::::::
contradiction and assume the

:::::::::
negation of Thm. 4 holds 〈 i.e.,such an x does exist 〉 and go

looking for a contradition.

The negation of Thm. 4 is that there exists x ∈ Z such that x ≡ 4 (mod 9) and x ≡ 5 (mod 6).

Given our answer to part 4.1, we cannot apply modulo arithmetric (MA) to the given congruences

as stated. But since 3 divides both 9 and 6, each of the given congruences should imply some

congruence modulo 3. Then we can apply MA to these congruences modulo 3.

Proof. We shall show Theorem 4 by contradiction. Thus let x ∈ Z satisfy

x ≡ 4 (mod 9) and x ≡ 5 (mod 6). (4.1)

We shall find a contradiction.

Since x ≡ 4 (mod 9), there exists k ∈ Z such that x = 9k + 4. Thus

x = 9k + 4 = 3(3k) + 3 + 1 = 3(3k + 1) + 1

and 3k + 1 ∈ Z by closure properties of Z; thus,

x ≡ 1 (mod 3). (4.2)

Similarly, since x ≡ 5 (mod 6), there exists j ∈ Z such that x = 6j + 5. Thus

x = 6j + 5 = 3(2j) + 3 + 2 = 3(2j + 1) + 2

and 2j + 1 ∈ Z by closure properties of Z; thus,

x ≡ 2 (mod 3). (4.3)

Since there exists a
:::::::
unique r ∈ {0, 1, 2} such that x ≡ r (mod 3), equations (4.2) and (4.3) provide

a contradiction to our assumption in (4.1).

We have just shown that assuming Theorem 4 is false leads to a contradiction. Thus Theorem 4

is true. �
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5. Theorem 5. There is a unique natural number n such that n and n+ 1 are both primes.

5.1. Complete the following definition.

A natural number n is prime provided n 6= 1 and only natural numbers that are factors of n are 1 and n .

5.2. Symbolically write Theorem 5.

5.3. Prove Theorem 5.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hints.

5.1. (∃!n ∈ N) [ (n is prime) ∧ (n+ 1 is prime) ]

5.2.
:::::
First agrue there

::::::
exists an n ∈ N such that both n and n + 1 are primes by constructing/finding

such an n. Will get n = 2 since both 2 are 3 are primes.
:::::
Next are that n = 2 is the

::::
only

:::::::::
possible

:::::
(i.e.,

::::::::
unique) n such that both n and n+ 1 are primes. Since we will use the below lemma twice,

we will begin by stating and proving the lemma.

Lemma P. The only even prime number is 2.

Proof of Lemma P. We know that 2 is an even prime number. Let p be an
:::::::::
arbitrary even prime

number. We shall show that p = 2.

Since p is prime, if a natural number k divides p then k ∈ {1, p}. Since p is even, we know 2 | p.
So 2 ∈ {1, p}. Thus p = 2.

We have just shown that the only even prime is 2. �

Proof of Thm. 5. We shall show Theorem 5, which says that there exists unique natural number

n such that n and n+ 1 are both primes, by first showing that there
::::::::::
existence such an n and then

showing that this n is the only possible n.

Towards the existence part, let n = 2. Then n + 1 = 3. Note 2 and 3 are both primes. Thus

n = 2 satisfies that both n and n+ 1 are prime. This complete the existence part.

Towards the uniqueness part, let n ∈ N be such that both n and n+ 1 are primes. We will show

that n = 2 by cases: n is even and n is odd.

For case 1, let n be even. Then by Lemma P, n = 2.

For case 2, let n be odd. Then by Lemma SOO, n + 1 is even. We are assuming that n + 1 is

prime so by Lemma P, n + 1 = 2. Thus n = 1. But n is prime and 1 is not prime so n cannot

be 1. Thus case 2 cannot occur.

We have just shown that if n ∈ N such that both n and n+ 1 are primes, then n = 2.

This completes the proof. �
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6. Theorem 6. Let I be a nonempty arbitrary indexing set and {Ai : i ∈ I} be a collection of subsets

of some universeral set U . Then [ ⋂
i∈I

Ai

]C
=
⋃
i∈I

(Ai)
C .

6.1. Clearly explain why Thm. 6 is true. Use complete sentences. You may (and are encouraged to) use

symbolic notation in your explanation. Hint: Write out equivalent statements for x ∈
[ ⋂

i∈I Ai
]C

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hints. For sets S and T , to show that S = T we often show that S ⊆ T and T ⊆ S, i.e., we

show set containment holds in both directions. Note the below proof is an example of where both

directions can easily be done at the same time.

Proof. Let I be a nonempty arbitrary indexing set and {Ai : i ∈ I} be a collection of subsets of

some universeral set U . We shall show that[ ⋂
i∈I

Ai

]C
=
⋃
i∈I

(Ai)
C . (6.1)

Let x ∈ U . Note the following statements are equivalent, using symbolic notation when helpful.

x ∈

[ ⋂
i∈I

Ai

]C
(6.2)

and by definition of complement

x /∈
⋂
i∈I

Ai

and by definition of intersection

∼ { (∀i ∈ I) [x ∈ Ai] }

and by rules of negation

(∃i ∈ I) [x /∈ Ai]

and by definition of complement

(∃i ∈ I) [x ∈ (Ai)
c]

and by definition of union

x ∈
⋃
i∈I

(Ai)
c (6.3)

Thus (6.2) and (6.3) are equivalent, showing that

x ∈

[ ⋂
i∈I

Ai

]C
if and only if x ∈

⋃
i∈I

(Ai)
c

Thus (6.1) holds. �
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7.
::
A

:::::::::::::
Challenging

:::::::::
Problem.

Def. Let f : X → Y be a function from a set X into a set Y . Let B ⊆ Y .

The preimage of B under f , denoted by f−1 [B], is the
:::
set f−1 [B]

def
= {x ∈ X : f (x) ∈ B} .

Note. So x ∈ f−1 [B]
by def.⇐=====⇒

of preimage
f (x) ∈ B.

Theorem 7. Let f : X → Y be a function from a set X into a set Y .

Let Bi ⊆ Y for each i in a nonempty index set I. Then

f−1

[⋂
i∈I

Bi

]
⊆
⋂
i∈I

f−1 [Bi] .

7.1. Clearly explain why Thm. 7 is true. Use complete sentences. You may (and are encouraged to)

use symbolic notation in your explanation. Hint: Let 〈your hypothesis 〉 x ∈ f−1
[⋂

i∈I Bi

]
. Write

out what implications you get from your hypothesis until you get to your wanted conclusion that

x ∈
⋂
i∈I

f−1 [Bi].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hints. Compare the below proof to the proof of DeMorgan’s law for sets. Recall

x ∈ f−1 [B]
by def.⇐=====⇒

of preimage
f (x) ∈ B .

Proof. Consider the function f : X → Y . Let Bi ⊆ Y for each i in a nonempty index set I. Let

〈 since f−1
[⋂

i∈I Bi

]
⊆ X, let’s call an element in f−1

[⋂
i∈I Bi

]
by x 〉

x ∈ f−1
[⋂
i∈I

Bi

]
.

We shall show that

x ∈
⋂
i∈I

f−1 [Bi] .

Since x ∈ f−1
[⋂
i∈I

Bi

]
, by definition of preimage, we get

f (x) ∈
⋂
i∈I

Bi.

By definition of intersection, we get

(∀i ∈ I) [f (x) ∈ Bi] .

By definition of preimage, we get

(∀i ∈ I)
[
x ∈ f−1 [Bi]

]
.

By definition of intersection, we get

x ∈
⋂
i∈I

f−1 [Bi] .

We have just shown that if x ∈ f−1
[⋂
i∈I

Bi

]
then x ∈

⋂
i∈I

f−1 [Bi]. This completes the proof. �
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8.
::
A

:::::::
Really

:::::::::::::
Challenging

:::::::::
Problem.

Theorem 8. For every (strictly) positive real number ε there is a (strictly) positive real number δ

such that for each real number x, if 2 < x < 3 + δ then 4 < x2 < 9 + ε.

8.1. Fill in the two blanks as so to symbolically write Theorem 8.

(∀ε ∈ R>0) (∃δ ∈ R>0) (∀x ∈ R) [ ( 2 < x < 3 + δ ) =⇒ ( 4 < x2 < 9 + ε ) ]

8.2. Prove Theorem 8. Hint. Your δ will have a ε in it, i.e., δ is a function of ε.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hints. Thinking Land. Fix ε ∈ R>0 (i.e., ε > 0). We want to find the δ > 0 but to do this we first

have to do some calculations. So let’s look at what such a δ > 0 would have to look like.

Let’s say we know that 2 < x < 3 + δ. Then algebra gives us that 4 < x2 < 9 + 6δ + δ2. So if

9 + 6δ + δ2 = 9 + ε, then we would be done. But note 9 + 6δ + δ2 = 9 + ε ⇔ δ2 + 6δ − ε = 0 ⇔
δ = −6±

√
36+4ε
2

. Algebra gives −6±
√
36+4ε
2

=
−6±
√

4(9+ε)

2
= −3±

√
9 + ε. So take δ:=

√
9 + ε− 3

so
> 0.

4! . For guidance with the proof’s first paragraph, look at the symbolic writting of Theorem 8.

Proof. Let ε > 0. Set δ:=
√

9 + ε− 3. Note δ > 0 since δ =
√

9 + ε− 3 >
√

9− 3 = 0. Let x ∈ R
satisfy 2 < x < 3 + δ. We shall show that 4 < x2 < 9 + ε.

Since we know that 2 < x we have 4 < x2. Towards the upper bound on x2, since x < 3 + δ

x2 < [3 + δ]2

and since δ =
√

9 + ε− 3

<
[

3 +
(√

9 + ε− 3
) ]2

and now by algebra

=
[ (√

9 + ε
) ]2

= 9 + ε.

We have just shown that 4 < x2 < 9 + ε.

This completes the proof. �
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