These Jam Problems are a sampling of the type of problems which could be an the final.
These problem are, in no way, meant as a comprehensive review for the cumulative final.

1. Theorem 1. For all real numbers x and y, if x is rational, $x \neq 0$ and $y \notin \mathbb{Q}$, then $x y$ is irrational.
1.1. Complete the following definitions.

A real number x is rational provided \qquad .

A real number y is irrational provided \qquad .
1.2. Symbolically write Theorem 1.
1.3. Prove Theorem 1. (You may use the closure properities of \mathbb{Q}.)
2. Theorem 2. Let $x, y \in \mathbb{R}$. If y is irrational then $(x+y)$ is irrational or $(x-y)$ is irrational.
2.1. Symbolically write Theorem 2.
2.2. Prove Theorem 2.
3. Theorem 3. Let a and b be natural numbers such that

$$
a^{2}=b^{3}
$$

Then we have the following.
3a. If a is even then 4 divides a.
3b. If 4 divides a then 4 divides b.
3c. If 4 divides b then 8 divides a.
3 d . If a is even then 8 divides a.
Also
3e. there exists $a, b \in \mathbb{N}$ such that $a^{2}=b^{3}$ and a is even but 8 does not divide b.
3.1. Prove Theorem 3 parts 3a-3e. You may use, without proving, the following theorems from class.

Theorem \mathbf{S}. An integer z is even if and only if z^{2} is even.
Theorem C. An integer z is even if and only if z^{3} is even.
4. Theorem 4. There does not exist an integer x such that

$$
x \equiv 4 \quad(\bmod 9) \quad \text { and } \quad x \equiv 5 \quad(\bmod 6)
$$

4.1. Explain why we cannot apply modulo arithmetric to the congruences as they are written in Thm. 4.
4.2. Prove Theorem 4.
5. Theorem 5. There is a unique natural number n such that n and $n+1$ are both primes.
5.1. Complete the following definition.

A natural number n is prime provided \qquad .
5.2. Symbolically write Theorem 5.
5.3. Prove Theorem 5.
6. Theorem 6. Let I be a nonempty arbitrary indexing set and $\left\{A_{i}: i \in I\right\}$ be a collection of subsets of some universeral set U. Then

$$
\left[\bigcap_{i \in I} A_{i}\right]^{C}=\bigcup_{i \in I}\left(A_{i}\right)^{C} .
$$

6.1. Clearly explain why Thm. 6 is true. Use complete sentences. You may (and are encouraged to) use symbolic notation in your explanation. Hint: Write out equivalent statements for $x \in\left[\bigcap_{i \in I} A_{i}\right]^{C}$.
7. A Challenging Problem.

Def. Let $f: X \rightarrow Y$ be a function from a set X into a set Y. Let $B \subseteq Y$.
The preimage of B under f, denoted by $f^{-1}[B]$, is the set $f^{-1}[B] \stackrel{\text { def }}{=}\{x \in X: f(x) \in B\}$.
Note. So $\quad x \in f^{-1}[B] \underset{\text { of preimage }}{\stackrel{\text { by def. }}{\Longrightarrow}} f(x) \in B$.
Theorem 7. Let $f: X \rightarrow Y$ be a function from a set X into a set Y.
Let $B_{i} \subseteq Y$ for each i in a nonempty index set I. Then

$$
f^{-1}\left[\bigcap_{i \in I} B_{i}\right] \subseteq \bigcap_{i \in I} f^{-1}\left[B_{i}\right] .
$$

7.1. Clearly explain why Thm. 7 is true. Use complete sentences. You may (and are encouraged to) use symbolic notation in your explanation. Hint: Let 〈your hypothesis〉x $\in f^{-1}\left[\bigcap_{i \in I} B_{i}\right]$. Write out what implications you get from your hypothesis until you get to your wanted conclusion that $x \in \bigcap_{i \in I} f^{-1}\left[B_{i}\right]$.
8. A Really Challenging Problem.

Theorem 8. For every (strictly) positive real number ϵ there is a (strictly) positive real number δ such that for each real number x, if $2<x<3+\delta$ then $4<x^{2}<9+\epsilon$.
8.1. Fill in the two blanks as so to symbolically write Theorem 8 .
$\left(\forall \epsilon \in \mathbb{R}^{>0}\right)\left(\exists \delta \in \mathbb{R}^{>0}\right)(\forall x \in \mathbb{R})[(\square)]$
8.2. Prove Theorem 8. Hint. Your δ will have a ϵ in it, i.e., δ is a function of ϵ.

