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Indeterminate
Forms

o 5.1 LU'Hopital’s Rule
5.4.1 INTRODUCTION

Cmas;der the limit

.. iz
Iim .
X—C g(x)

(%)

If lim,_.f(x) exists and lim,_..g(x) exists and is not zero then the limit
() s straightforward to evaluate. However, as we saw in Theorem 2.3, when
lim,_..g(x) = O then the situation is more complicated (especially when
lim,—s. @) = 0 as well).

. For example, if f(x) = sinx and g(x) = x then the limit of the quotient as
x — Oeexists and equals 1. However if f(x) = x and g(x) = x> then the limit of
the quotientas x — 0 does not exist.

“In this section we learn a rule for evaluating indeterminate forms of the type ()
wheneitherlim, .. f(x) = limy—. g(x) =0orlimy_ f(x) = limx— g(x) =00.
Such limits, or “forms.” are considered indeterminate because the limit of the quo-
tient might actually exist and be finite or might not exist: one cannot analyze such
a form by elementary means.
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4

5.1.2 L'HOPITAL'S RULE

Theorem 5.1 (I’'Hopital’s Ruie)
Ler f(x) and g(x) be differentiable functions on (a. c) U (c. b). If

lim f(x)= lim g(x) =0

A= LG

then
fy . flx)

lim = fim.——,
r—=c g(x)  x—c g'(x)
provided this last limit exists as a finite or infinite limir.

Let us learn how to use this new result.

EXAMPLE 5.1
Evaluate
Inx
lim e,
x—1x=+Xx=-2
SOLUTION

We first notice that both the numerator and denominator have limit zero
as x tends to 1. Thus the quotient is indeterminate at 1 and of the form 0/0.
I"Hépital’s Rule therefore applies and the limit equals

. (d/dx)(Inx)
lim — ;
x—1(d/dx)(x~4+x —2)

provided this last limit exists. The last limit is
i 1 ;'r'C i 1
lim — = lim ————.
x—=12x+1 x—12x-+x

Therefore we see that
Inx

lim 0——— =

]
r—lx-4+x-=-2 3

You Try It: Apply I'Hépital’s Rule to the limit lim,—» sin(7rx)/(x* — 4).
You Try It: Use1’Hopital’s Rule to evaluate limy—q(sin i1/ i) and limy, .o (cos h—
1/ h). These limits are important in the theory of calculus.
EXAMPLE 5.2
Evaluate the limit
&3

lim ————.
x—0 X — Sin X
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SOLUTION
As x — 0 both numerator and denominator tend to zero, so the quotient is
indeterminate at 0 of the form 0/0. Thus I’"H6pital’s Rule applies. Our limit
equals
(d/dx)x?
111 Ay ,
x=0 (d/dx)(x —sinx)

provided that this last limit exists. It equals

. 3x2
lim ——.
x—01—cosx

This is another indeterminate form. So we must again apply 1'Hopital’s Rule.
The result is

lm ——.
x—0 81N x

This is again indeterminate; another application of 1'Hopital’s Rule gives us
finally

= 6.

Iim
x—0 CcOosXx

‘We conclude that the original limit equals 6.
You Try It: Apply I’Hépital’s Rule to the limit limy_.o x/[1/ In |x]].

Indeterminate Forms Involving oo We handle indeterminate forms involv-
ing infinity as follows: Let f(x) and g(x) be differentiable functions on (a, ¢) U
(c.b). If

lim f(x) and lim g(x)
= L o X=>C
both exist and equal +oc or —o0 (they may have the same sign or different signs)
then
fe) L )
Iim — = lim ———,
x—c g(x) i—c g'(x)

provided this last limit exists either as a finite or infinite limit.
Let us look at some examples.
EXAMPLE 5.3

Evaluate the limit
lim x°-In 1x|.
x—=0
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SOLUTION
This may be rewritten as

In |x|

m =
x—0 1/x3

Notice that the numerator tends to —oc and the denominator tends t0 %00 as
% — (). Thus the quotient is indeterminate at 0 of the form —o0/ + 00. So we
may apply 1'Hopital's Rule for infinite limits to see that the limit equals

) 1/x . 5
lim —— = lim —x”/3 =0.
x—=0 —3x™ x=0

Yet another version of 1'Hoépital's Rule. this time for unbounded intervals, is
this: Let f and g be differentiable functions on an interval of the form [A, 4+00).
If limy—aoe f(x) = Hmy—socg(x) = 0 or if Imy—400 f(x) = xo¢ and
Hmy_. 1o g(x) = o0, then

J(x) . f'x)
= i

im - = lim =
x—-+oo g(x)  a—-+oo g'(x)

provided that this last limit exists either as a finite or infinite limit. The same result
holds for f and g defined on an interval of the form (—oc, B] and for the limit as
x — —00.

EXAMPLE 5.4

Evaluate

fim —.
X—=+00

tg{x

SOLUTION
We first notice that both the numerator and the denominator tend to +-00 as
x — +oc. Thus the quotient is indeterminate at +oc of the form +o00/ + oC.
Therefore the new version of I"'Hopital's Rule applies and our limit equals
) 4x3
Iim —.
I—2=+00 £
Again the numerator and denominator tend to +00 as x — +0C. $0 We ODEe
more apply I"Hépital's Rule. The limit equals

We must apply 1"'Hopital's Rule two more times. We first obtain

24x

Iim
x—two gF
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and then
24

m 5
x—+o0 et

We conclude that

im — =0.
x—-+oc ¥

et )
xInx/
4

You Try It: Evaluate the limit imy— +oc (

You Try It: Evaluate the limit limy— —oc x™ er.
EXAMPLE 5.5
Evaluate the limit

) sin(2/x)

lim

x——00 sin(5/x)

SOLUTION

We note that both numerator and denominator tend to 0, so the quotient is
indeterminate at — oo of the form 0/0. We may therefore apply I'Hopital s Rule.
Our limit equals

. (—=2/x*)cos(2/x)
lim —— —
x——o0 (=5/x7) cos(5/x)
This in turn simplifies to
2cos(2/x) 2
m ———=-.
x——00 5cos(5/x) 5
1"Hopital’s Rule also applies to one-sided limits. Here 1s an example.
EXAMPLE 5.6
Evaluate the limit

: sin /X
x-LnSJf .\/)_( .
SOLUTION
Both numerator and denominator tend to zero so the quotient is indeterminate
at 0 of the form 0/0. We may apply 1'Hopital's Rule: differentiating numerator
and denominator, we find that the limit equals

s/x] - (1/2x~ 12
i SOV D7 e coso/x
x—=0% (1/2)x~1/2 x—07F

=

You Try It: How can we apply I’'Hopital’s Rule to evaluate hm, o+ x - Inx?
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5.2 Other Indeterminate Forms
5.2.1 INTRODUCTION

By using some algebraic manipulations. we can reduce a variety of indeterminate
limits to expressions which can be treated by I'Hopital's Rule. We explore some of
these techniques in this section.

5.2.2 WRITING A PRODUCT AS A QUOTIENT

The technique of the first example is a simple one, but it is used frequently.

EXAMPLE 5.7

Evaluate the limit
lim X2 . e,
K==
SOLUTION
Notice that x= — +oc while ¢3* — 0. So the limit is indeterminate of the
form 0 - oc. We rewrite the limit as

lim —.
r—=—0c pTI

Now both numerator and denominator tend to infinity and we may apply
I"'Hopital’s Rule. The result is that the limit equals
. 2x
Iim ————.
x——00 —3¢— 3
Again the numerator and denominator both tend to infinity so we apply
I’Hopital’s Rule to obtain:

3
Z

‘im :
x—=—00 Q3%

It is clear that the limit of this Jast expression is zero. We conclude that

lim x-e¥ =0.
L

You Try It: Evaluate the limit Iim, _ » e~V Ly

5.2.3 THE USE OF THE LOGARITHM

The natural logarithm can be used to reduce an expression involving exponentials
to one nvolving a product or a guotient.
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EXAMPLE 5.8
Evaluate the limit

fim x*.
x—0F
SOLUTION
We study the limit of f(x) = x* by considering In f(x) = x - Inx. We
rewrite this as

Inx
lim In f(x) = lim —.
=0 f( ! x—07 I/X
Both numerator and denominator tend to 200, so the quotient is indeterminate
of the form —oo/oc. Thus 1'Hépital’s Rule applies. The limit equals
1/x
lim /

x—=0T ""1/).’2 ] x—0t

Now the only way that In f(x) can tend to zero is if f(x) = x* tends to 1. We
conclude that

im x% = 1.
x—0t

EXAMPLE 5.9
Evaluate the limit

fim (1 + %)™
x—0

SOLUTION

Let f(x) = (1 + x?) ! and consider In f(x) = In x| - In(1 + x2). This
expression is indeterminate of the form —oc - 0.

We rewrite it as

In(1 + x?)
im ————.
x—=0 1/In|x|

so that both the numerator and denominator tend to 0. So I'Hopital’s Rule
applies and we have

B ] e 2x2 % (jx
Iim In f(x) = lim -————l/( ,,l ) = lim 2 AP (':"D
x—0 =0 —1/[xIn*(Ix)] =0 (1 +x7)

The numerator tends to O (see Example 5.3) and the denominator tends to 1.
Thus

lim In f(x) = 0.
x—0
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But the only way thatIn f(x) can tend to zero is if f(x)tends to 1. We conclude
that

lim (1 + x3)nlxl = 1

x—0
You Try It: Evaluate the limit lim, g+ (1/x)*.

You Try It: Evaluate the limit lim,_o+(1 4+ x)/*, In fact this limit gives an
important way to define Euler’s constant e (see Sections 1.9 and 6.2.3).

5.2.4 PUTTING TERMS OVER A COMMON
DENOMINATOR

Many times a simple algebraic manipulation involving fractions will put a limit
into a form which can be studied using I'Hopital's Rule.

EXAMPLE 5.10
Evaluate the limit

: 1 1
fim | — —mf
x—=0 [sm 3x 3)(:‘

SOLUTION
We put the fractions over a common denominator to rewrite our limit as

_ 3x — sin 3x
Iim | —M—— | .
x=0] 3x -sin3x
Both numerator and denominator vanish as x — 0. Thus the quotient has

indeterminate form 0/0. By 1'Hépital’s Rule, the limit is therefore equal to

3 —3cos3x

lim — .
x—0 3 sin 3x + 9x cos 3x
This quotient is still indeterminate; we apply I"Hopital’s Rule again to obtain

Osin3x

im i
x—0 18 cos 3x — 27x sin 3x

EXAMPLE 5.11
Evaluate the limit

1 1
im | —~ .
x—0 |V4X - :]
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SOLUTION
The expression is indeterminate of the form oo — oc. We put the two fractions
over a common denominator to obtain
g e ] iy
A
x—=0 4x(e® —1)
Notice that the numerator and denominator both tend to zero as x — 0. so this
is indeterminate of the form 0/0. Therefore 1'Hépital's Rule applies and our
limit equals
_ 4e** — 4
lim . ;
x—0 4e% (1 +4x) — 4
Again the numerator and denominator tend to zero and we apply 1"Hépitals
Rule: the limit equals

. 16e%
530 166%% (2 + 4x)

1
5.

. 1 )
You Try It: Evaluate the limit im,_. ( ——) + (—.,)
cosx — 1 x=

5.2.5 OTHER ALGEBRAIC MANIPULATIONS

Sometimes a factorization helps to clarify a subtle limit:

EXAMPLE 5.12
Evaluate the limit

fim [x* = (x* + 4x* + 5)"2 k
X—=+0C
SOLUTION
The limit as written is of the form oc — oc. We rewrite it as
1—(0+4x~245x—%H12

Em x?[1— (1 +4x72+507%H72] = 1im .
X=++00 x—+too X~

Notice that both the numerator and denominator tend to zero. so it is now
indeterminate of the form 0/0. We may thus apply I'Hépital’s Rule. The result
is that the limit equals

. (=1/2)0 +4x72 £ 574712 (—8x 73 — 20x75)

lim -

x—4-00 —2x—

= Hm —(14+4x77 +5x79"1V2. (2 4 5x72,
A—t00
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Since this last limit is —2, we conclude that

lim [_,‘,: — (ot 4t 4 5)‘-{"’3} = -2.
T b
EXAMPLE 5.13
Evaluate
lim [e—x _ (e—3x _X-*‘r)ws]_
L .
SOLUTION

First rewrite the limit as

" p— . 1= =xte1A3
lim e [l —4] —x"e"")“‘"} = lim - :
A=y A=+ —0Q et
Notice that both the numerator and denominator tend to zero (here we use the
result analogous to Example 5.7 that x*¢>* — 0). So our new expression is
indeterminate of the form 0/0. I"Hopital’s Rule applies and our limit equals

~(LIBHE — ey 22 (dig? 07— 3% P

lim

X——00 e
: 1 4 3\ =2/ 3,2, 9 2
= lim (1/3)(1 = x*e3)™ 233 . e + 3x% . ™).
T -0
4 3y

Just as in Example 5.7, x*- ¢3*x3 . ¢** and x* - ¢>* all tend to zero. We conclude
that our limit equals 0.

You Try It:  Evaluate limy— too[~/x + 1 — %]

5.3 Improper Integrals: A First Look
5.3.1 INTRODUCTION

The theory of the integral that we learned earlier enables us to integrate a continuous
function f(x) on a closed. bounded interval [«, £]. See Fig. 5.1. However. it is
frequently convenient to be able to integrate an unbounded function. or a function
defined on an unbounded interval. In this section and the next we learn to do so. and
we see some applications of this new technique. The basic idea is that the integral
of an unbounded function is the limit of integrals of bounded functions: likewise.
the integral of a function on an unbounded interval is the limit of the integral on
bounded intervals.
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A N

-
b

¥

Fig. 5.1

5.3.2 INTEGRALS WITH INFINITE INTEGRANDS

Let f be a continuous function on the interval [a.b) which is unbounded as
x — b~ (see Fig. 5.2). The integral

b
f f(x)dx
Y }

Fig. 5.2

is then called an improper integral with infinite integrand at b. We often just say
“improper integral” because the source of the improperness will usually be clear
from context. The next definition tells us how such an integral is evaluated.

If
b
f f(x)dx

is an improper integral with infinite integrand at b then the value of the integral 1s
defined to be

b—e¢
lim f fx)dx,

e— (07

provided that this limit exists. See Fig. 5.3.
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—

\
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A

Fig. 5.3

EXAMPLE 5.14
Evaluate the integral

8
[ 48— x)" " dx.
2

SOLUTION
The integral

g
f 48 — x)~ VP dx
2

is an improper integral with infinite integrand at 8. According to the definition,
the value of this integral is
§—¢ .
lim 4(8 — x)~ 13 dx,
e—=07 J2
provided the limit exists. Since the integrand is continuous on the interval

[2. 8 — €], we may calculate this last integral directly. We have
lim [ —5(8 =~ x)2./3:||§—6 — h%‘l _6[62,’3 - 62/3].
e—{t+

et

This limit is easy to evaluate: it equals 6°/. We conclude that the integral is
convergent and

8
[ 48 — x)" 1B gx = 673,

3
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EXAMPLE 5.15
Analyze the integral

3
f (x—3)"2 dx.
2
SOLUTION

This is an improper integral with infinite integrand at 3. We evaluate this
integral by considering

3—¢ = 3—¢
lim / (x —3)""dx= lim —(x —3)7!
e—=0% J2 e— 0+ 2
= lim [6_1 — 1_1}‘
e—0t

This last limit is +o0o. We therefore conclude that the improper integral diverges.

You Try It: Evaluate the improper integral f__zl (dx/(x + 1)*°) dx.

Improper integrals with integrand which is infinite at the left endpoint of
integration are handled in a manner similar to the right endpoint case:

EXAMPLE 5.16
Evaluate the integral

7?4
[ ax.
o X-Infx
SOLUTION

This integral is improper with infinite integrand at 0. The value of the integral
is defined to be
' /2
Iim — dx.
e=»0FJe  x-In"x

provided that this limit exists.

Since 1/(x In” x) is continuous on the interval [e, 1/2] for € > 0, this last
integral can be evaluated directly and will have a finite real value. For clarity,
write ¢(x) = Inx, ¢’(x) = 1/x. Then the (indefinite) integral becomes

/_@2(x) dx.
@=(x)
Clearly the antiderivative is —1/@(x). Thus we see that
TEA Lz 1 1
lim —dx= lim ——| = lim ([—— - o )
e—0tJ.  x.In"x e=0+ Inx|, e—0F In(1/2) Ine
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Now as € — 07 we have Ine — —o0 hence 1/Ine — 0. We conclude that
the improper integral converges to 1/1n 2.

You Try It: Evaluate the improper integral ff,z 1/(x +2)" 12 gx.

Many times the integrand has a sin gularity in the middle of the interval of inte-
gration. In these circumstances we divide the integral into two pieces for each of
which the integrand is infinite at one endpoint, and evaluate each piece separately.

EXAMPLE 5.17
Evaluate the improper integral

4
f 4(x + 1)'1”5 dx.
-4

SOLUTION
The integrand is unbounded as x tends to —I1. Therefore we evaluate
separately the two improper integrals

-1 _ 4 .
/ 4(x + 1)~ dx and f 4(x + 1)~ 10 dx.
-4 -1

The first of these has the value .
—l—e —1—¢

lim 4x + 1)V dx = lim 5(x + 1)4‘/5J
e—(t+ =3 =1t —4

= lim 5{(—)*® — (=3)*?}

=f g

The second integral has the value

4 ; |4
lim f 4x + 1) dx = Iim 5(x+1)4/5‘
e—07 J_14¢ e—=0~ =i

= lim 5{5%° — ¢4/

e—=(+

=8,

We conclude that the original integral converges and

4 =] 4 i
f Ar+ 1)~ e = f 4(x + )7 dx +f 4(x + D)7V gx
—d 4 1

L

You Try It: Evaluate the improper integral fii.r*‘ dx.
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It is dangerous to try to save work by not dividing the integral at the singularity.
The next example illustrates what can go wrong.

EXAMPLE 5.18

Evaluate the improper integral

2
f x4 dx.
-2

What we should do is divide this problem into the two integrals

] 2
/ x~*dx and f x4 dx.
-2 0

Suppose that instead we try to save work and just antidifferentiate:

) 2
~ 1 - 1
f;:x_‘;dx:—ax"a‘ =——,

2 12

SOLUTION

(%)

A glance at Fig. 5.4 shows that something is wrong. The function 2 i

is
positive hence its integral should be positive too. However, since we used
an incorrect method, we got a negative answer.

Ly

|
|

/-l it
I| y=1lx

>

Bl 4

Fig. 5.4
In fact each of the integrals in line (x} diverges, so by definirion the improper
integral

) 3

f T xdx
-2

diverges.
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EXAMPLE 5.19
Analyze the integral

! 1
/0 —————-XO T ax.
SOLUTION

The key idea is that we can only handle one singularity at a time. This
integrand is singular at both endpoints 0 and 1. Therefore we divide the domain
of integration somewhere in the middle—at 1/2 say (it does not really matter
where we divide)—and treat the two singularities separately.

First we treat the integral

1/2 1
f S 7
0o x(1—x)72

Since the integrand has a singularity at 0, we consider

1/2 1
limf .
=07 J, a'((l-—XJV“

This is a tricky integral to evaluate directly. But notice that
1 1
F 2 5
x(1—x)/2 = x . (1)1/2

when 0 < € < x < 1/2. Thus

1/2 1 1/2 1 1/31
f -.——,,a'xzf —de=f L
e x(1—x)l/2 e x-(DHlz S

We evaluate the integral: it equals In(1/2) — In €. Finally,

Iim —Ine = +c0.
e—(~

The first of our integrals therefore diverges.

But the full integral
1
1
N,
0 x(1 _x)llr-_

converges if and only if each of the component integrals

1/2 1
] s b
0o x(1—x)l2

! 1
[ et il
1z 21 ~x)e

and
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converges. Since the first integral diverges. we conclude that the original
integral diverges as well.

You Try It: Calculate f_32 (2x)~'/? dx as an improper integral.

5.3.3 AN APPLICATION TO AREA

Suppose that [ is a non-negative, continuous function on the interval (a, b] which
1s unbounded as x — a™. Look at Fig. 5.5. Let us consider the area under the graph
of f and above the x-axis over the interval (a, b]. The area of the part of the region
over the interval [a + €. b]. € > 0, is

b
f fx)dx.
a+e
' v
\\
< B
Fig. 5.5

Therefore it is natural to consider the area of the entire region, over the interval
(a, b], to be

b
lim f(x)dx.

=07 Jaiqe

This is just the improper integral

b
Area:f flx)dx.
a

) 139 4
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EXAMPLE 5.20
Calculate the area above the x-axis and under the curve

1

s a3

O<x<1/2.
M R

SOLUTION
According to the preceding discussion, this area is equal to the value of the
improper integral

1/2 1 1/2 - 1
f e dx = lim e dx.
0 x-In*°x e—0tJe  x.In*x

For clarity we let ¢(x) = Inx, ¢'(x) = 1/x. Then the (indefinite) integral

becomes
f @'(x) 3
L o e dx T
gg-‘-lf:u(xj 99”3()()
Thus

1/2 1 "
lim f S S Wy A
E

- x-In*3 x e—0+ In

o . =3
T B [meps |

Now as € — O then Ine€ — —oc hence 1/[In €]/ — 0. We conclude that our
improper integral converges and the area under the curve and above the x-axis
equals 3/[In 2]}/3.

5.4 More on Improper Integrals
5.4.1 INTRODUCTION

Suppose that we want to calculate the integral of a continuous function f(x) over
an unbounded interval of the form [A, +00) or (—oc. B]. The theory of the integral
that we learned earlier does not cover this situation, and some new concepts are
needed. We treat improper integrals on infinite intervals in this section, and give
some applications at the end.
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5.4.2 THE INTEGRAL ON AN INFINITE INTERVAL

Let f be a continuous function whose domain contains an interval of the form
[A, +00). The value of the improper integral

=00
f(x)dx
A
is defined to be
N
lim fx)dx.
N—+oo 4

Similarly, we have: Let g be a continuous function whose domain contains an
. interval of the form (—oc, B]. The value of the improper integral

B
f g(x)dx

B
lim f fx)dx.
M

M——na

18 defined to be

EXAMPLE 5.21
Calculate the improper integral

+00
f x2dx
5
SOLUTION
We do this problem by evaluating the limit

N . N
lim T [—(1/:);:“‘1}

N—+co /1 N—+4co

= lim —(1/2) [N—z N 1_2]

N—+oc

1|

We conclude that the integral converges and has value 1/2.

EXAMPLE 5.22
Evaluate the improper integral

32
/ x ' ax.
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SOLUTION
We do this problem by evaluating the limit
~32 i s |3
lim f WPy = Hm_—x*°
M= —o M M——oc 4 M

— lim %[(-32)4/5—M4f’5]

M——oo

= lim 2[16— M5
= lim 4[16 M ]

M——oc
This limit equals —oo. Therefore the integral diverges.
You Try It: Evaluate [[°(1 +x) 3 dx.

Sometimes we have occasion to evaluate a doubly infinite integral. We do so by
breaking the integral up into two separate improper integrals. each of which can be
evaluated with just one limit.

EXAMPLE 5.23
Evaluate the improper integral

e 1
ax.
[x 14 x2 &
SOLUTION

The interval of integration is (—oc, +00). To evaluate this integral. we break
the interval up into two pieces:

(—00. +00) = (—o0, 0] U [0, +00).

(The choice of zero as a place to break the interval is not important; any
other point would do in this example.) Thus we will evaluate separately the

integrals
+oo 1 0 1
] —dx and f ~dx.
0 1+ x- —oc 1 +x°

For the first one we consider the Iimit

N 1 L
lim f ~dx = lim Tan™ x‘
N—+oo Jg 1 +x- N— oo 0

= hm [Ta.n"'lN——Tan_i{)}

Ne—=o0

o] A
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The second integral is evaluated similarly:

0 0
lim f ~dx = lim Tan™lx
M——co fpy 1+ x- M——cc M

= fim [T:m—‘O—Tan-lM}
M——c
e

?.
Since each of the integrals on the half line is convergent, we conclude that the
original improper integral over the entire real line is convergent and that its

value is

+ - =m.

o] H
o] =

You Try It: Discuss [{~(1+x)~"dx.

5.4.3 SOME APPLICATIONS

Now we may use improper integrals over infinite intervals to calculate area.

EXAMPLE 5.24

Calculate the area under the curve y = 1/[x - (In x)*] and above the x-axis,
2ot e .

SOLUTION
The area is given by the improper integral

00 1 N 1
S N .
fg x ozl N—l-r-n!-oo]a: -

For clarity, we let ¢(x) = Inx, ¢'(x) = 1/x. Thus the (indefinite) integral

becomes
ffﬁ"(x) J 1/3
4 N X =-= 37 4
@™ (x) @°(x)
Thus
N 1 l ] N
fim ki g i fetl
N=>+o0o f» x-(Inx)* N—+co| Inxls
) [ 1/3 1/3]
= Im —|—F———
N=+o [N In®2
. 1,/3
el

Thus the area under the curve and above the x-axisis 1/(3 In® 2).
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EXAMPLE 5.25

Because of inflation, the value of a dollar decreases as time goes on. indeed,
this decrease in the value of money is directly related to the continuous
compounding of interest. For if one dollar today is invested at 6% contin-
uously compounded interest for ten years then that dollar will have grown
to e®0610 = §1.82 (see Section 6.5 for more detail on this matter). This
means that a dollar in the currency of ten years from now corresponds to
only 700810 = $0,55 in today’s currency.

Now suppose that a trust is established in your name which pays 2t +50
dollars per year for every year in perpetuity, where ¢ is time measured in
years (here the present corresponds to time t = 0). Assume a constant
interest rate of 6%, and that all interest is re-invested. What is the total
value, in today’s dollars, of all the money that will ever be earned hy your
trust account?

SOLUTION _
Over a short time increment [f;_1, #;], the value in today's currency of the
money earned is about

L i “006( g
(21‘]—.50)-(6 J) - Atj.
The corresponding sum over time increments is

> (2t +50) - e Az
j

This in turn is a Riemann sum for the integral
f (2t + 50)e90% 4.

If we want to calculate the value in today’s dollars of all the money earned from
now on. in perpetuity, this would be the value of the improper integral

+00
f (22 5009 gt
Q

This value is easily calculated to be $1388.89. rounded to the nearest cent.

You Try It: A trustis established in your name which pays 7 + 10 dollars per year
for every year in perpetuity, where ¢ is time measured in years (here the present
corresponds to time ¢ = 0). Assume a constant interest rate of 4%. What is the total
value, in today’s dollars. of all the money that will ever be earned by your trust
account?
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Exercises

1. [If possible, use I'Hopital’s Rule to evaluate each of the following limits. In
each case, check carefully that the hypotheses of 1’Hopital’s Rule apply.

. cosx —1
(a) llm ——
=0 ¥ —x°
® i e —1—2x
e 2 4 x4
(¢) lim o
1
H r—0 xl
In x]?
@ g
r—1{(x—1)
. =23
1 ]
© xl—l-n: sin(x —2) — (x — 2)
e —1
f Ii
( ) :cl—I—»nl x—1

2. If possible, use "'Hopital’s Rule to evaluate each of the following limits. In
each case, check carefully that the hypotheses of 1’'Hopital’s Rule apply.

-
2

@ i L
2) JLJIE')G e¥ — x2
b o
x—=-+oc X
—x
(c) lim ——
x—+o0 In[x/(x + 1)]
) sin x
(d) lim
x—+4o0 g™t
X
& s
-
@ w2l

x——co g F

3. If possible, use some algebraic manipulations. plus 1'Hopital’s Rule, to
evaluate each of the following limits. In each case, check carefully that the
hypotheses of 1’'Hopital’s Rule apply.

(a) Lm x37*
x—=42C

(b) lim x -sin[1/x]

X—+0oc



-

2.
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(c) lim Infx/(x+D]-(x+1)
X = 40T

¥

(d) Iim Inx-e”

X0
i A
(e) lim e -x-
K= —CC
(f) Hmx-e'*
x—0

Evaluate each of the following improper integrals. In each case. be sure to
write the integral as an appropriate limit.

1
(a) h/x_‘?-'md.'{
1]
(b) f = 3)"3 4y
1
(c) / i : d
£ _a (x + 113 B
6 :
(d) f N WS
4 x=1Dx+2)

8 x+4
—_—d
W [4 x—8)in

. S sinx
(f) — dx
Jo X7

Evaluate cach of the following improper integrals. In each case. be sure to
write the integral as an appropriate limit.

3“-; -
(a) [ e " dx
Ji
m has &
(b) / e d%
¥
(c) [ rinxdx
Jo
o0 d)\_
(d) f 3
1 I + o N
e dx
(e) [ =
41 X

=1 dx
(f) [ e
—_ AT T X
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Solutions to Exercises

1. (a) limy—o(cosx —1) = 0 and lim,— x? — x3 = 0 so I'Hopital’s
Rule applies. Thus

i cosx — 1 : —sinx
im —————=1Im ——.
x=0 x2 —x3 x—02x — 3x2

(b)

(c)

(d)

(e)

(f)

2. (a)

Solutions to Exercises

Now I'Hopital’s Rule applies again to yield .
— lim = cosx 1 |
T x—=02—-6x 2

limy_ge™ —1 —2x = 0 and limy_—ox* + x* = 0 so I’Hopital’s
Rule applies. Thus

e —1-2x 22 —2
lim ——— = lim ———.
=0 x4+ x4 x—02x + 4x3
I"Hépital’s Rule applies again to yield
4621

=hm ————i=G,
x—=02 4 12x~
lim,_.gcosx = 0, so ’Hopital’s Rule does not apply. In fact the
limit does not exist.
limy—[Inx]* = 0 and limy—;(x — 1) = 0 so I’Hopital’s Rule
applies. Thus

[In x]? . [2Inx)/x
i = lim ———— =0.

r=1{x—1) 2x—1 1
limy—2(x — 2)> = 0 and Iimy_osin(x —2) — (x —2) = 0 so
I"Hopital’s Rule applies. Thus

- i 2)° ) 3(x —2)2

Iim — = lim —m8 .

x—=2sin(x —2)—(x—2) x—2cos{x —2)—1

Now 1'Hépital’s Rule applies again to yield
- 6(x —2)
= lim ——.
x—2 —sin(x —2)

We apply I"Hopital’s Rule one last time to obtain

lim,_.j(e* — 1) = 0 and limy—(x — 1) = 0 so I’"Hépital’s Rule
applies. Thus

. er—1 . e
Iim = lim — =e.
x—1 x =1 =1 1]
My — oo x° = liMy—too(e — x%) = 400 50 I’'Hopital's Rule
applies. Thus
x° 3x2

lim - - = lim : :
x—=+o0 e¥ — x2  x—-roc o¥ — 2x
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1’Hépital’s Rule applies again to yield
6x

(b) limy— 4o Inx = limy— - x = +00 so I'Hopital’s Rule applies.
Thus
1 1/x
b Pe im Si=g
x—400 X x—+oc ]
(€) liMy—ioe e = limy— 100 In[x/(x + 1)] = 0 so I'Hopital’s Rule
applies. Thus
— _e—x

4
Fm — = i :
TG * 1] sorw e - %

It is convenient to rewrite this expression as

2
X=X

lim -
x—=+00 —g*

Now 1'Hépital’s Rule applies once more to yield

2x +1

lim -
x—=t0oc =gt

We apply 1"'Hopital’s Rule a last time to obtain

2

= lim - =
x—-+00 —e* :
(d) Since lim,_ 1 sin x does notexist, I’Hopital 's Rule does not apply.
In fact the requested limit does not exist.
(e) Itis convenient to rewrite this limit as

; X
lim -
x——o0 g%
Since liMy——_oc X = liMy—._oce™™ = =oc, 'Hopital’s Rule
applies. Thus
lim - = lim ={.



(f)

(b)

(c)

Solutions to Exercises

Since limy . o In x| = limy—. _s €™ = +o0. ’Hopital’s Rule
applies. Thus
Injx| 1/x

lim - lim
x—=—00 g~ ¥ x——cc —g~+

= 0.

3

: b : X . . 3 )
We write the limitas im, _, .~ = Sineelimy ;. vos % = liMi s yen

€
e* = +oc, 'Hopital’s Rule applies. Thus

’ 3, g .7C3 : %=
lim x"e#"' = lim — = lim — .
X =00 x—to0 ot r—+4oo et

We apply I’'Hopital’s Rule again to obtain
) 6x
= lim —.
x—+00 g¥

Applying I’'Hoépital’s Rule one last time yields
6

= lim — =0.
x—+oo g*
in(1
We write the limit as limy— . o Sml(j /% .Since lim_, 4 sin{1/x)
X
= limy— 4o 1/x = 0, I"'Hopital’s Rule applies. Hence
lim x-sin[l/x] = sa(lix)
x——+0C x—=+oc  1/x
_ g leos(/x] - [=1/x7]
- X—+00 —1/,‘(2
; cos(1/x)
= lim ——=1.
X— 400 1
I 1
We rewrite the limit as limy . .o M Since limy— 1o
1/(x+ 1)

In[x/(x+1)] = limy . 1 1/(x+ 1) = 0.1"Hopital’s Rule applies.
Thus

; ) i , L In[x/(x + 1)]
il /(e 1] (e 4-1) = Tim /x+1)

[(x + 1)/x]-[1/(x = D3]

= T 4
el 7

. —(x+1

= lim ——.

X =+ X
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Now 1’Hépital’s Rule applies again and we obtain

[Inx]

(d) We rewrite the limit as im,_. . . Since limy 4o Inx =

€
limy—. 400 ¢ = 400, I'Hopital’s Rule applies. Thus

) y Inx 1/x
lim Inx-e*= lim — = lim —-— =0.
X— 400 x—+toc ¥ x—+o0 X

A

X
(e) We write the limit as limy_. _o —=—. Since limy_ _s lim x> =
e~

limy . —so ¢~ = 0, I'Hbpital’s Rule apphes. Thus

2
2 2
i 0 A . X . X
lim e -x“= lim — = lim =
X——00 x——og g =X X——00 —2g =%

I’Hopital’s Rule applies one more time to yield

N x—lillloo 4e—2 =
1/x
(f) We rewrite the limit as lim,_.g T Since limy_ge/* =
X
limy—. 1/x = +oc, ’'Hopital’s Rule applies. Thus
1/x 1/x ) 1/x
e els f=10% e

g s i S i e 50 € e
x—=0 x—01/x x—0 —-1/x x—0 1

4. We do (a). (b). (c), (d).

L 1 el
(a) f xdx = lim | x**dx = lim —}
0 e—=0 Jg e—0+| 1/4 ¢

1174 (/4
ey OB
=0t \ 1/4 1/4

3—e
f(x 33 dx = lim (x —3)"3dx
1

e—0%
_ 3y-1/373¢ =il il
X € 2
= lim (—3)— = lim — ) But
e—(F -1/3 1 e—0+ \ —1/3 —1/3
the limit does not exist; so the integral does not converge.
2 1 —l—¢ 1
9 ————dx = lim e T ]
e f_z (@143 P o 2 (x+ DA *



Solutions to Exercises

~

+ lim f . S
e=0% J_14e (x + D13

2

gy [EEDETTE L (G DPR
Sl am T 273
=k =3 ; = —1+e
) (—6)2"(3 (__1')2;’3) . 32;’3 (G)Z;’?}
e'—lrrg" ( 2{3 2/3 : e-_l.r& (2/3 2/3 )

Il
(SRS
T,

L

J_J
3

|

—_
L

6 x R ”
d e s W T
T f_4 E=DE+D ei’£‘+/_4 B TwLT

0 x 1—e 5
+ I ——dx+ i e ——————
0" [—E+e (x—1)(x+2) ! 0o (x—1)(x+2)
6 X
<+ lim f —————— dx. Now
e—0+ Jite (x — D(x +2)
x 13 2/3

= Dx+2 x-1 =+2

Therefore

6
.
~4 (x—=1)(x+2)

wLs 2 O 13 23
=lirnf / — /3dx+]imf 1/ —+ / dx

e—0* )4 X_—l S x+2 e=0+tJ oy . x—1 x-+2
1—e 6
. 1/3  2/3 . 73 . 2/3
+ hm ] -/—+ / dx+ hm / -;-de-
e=0tJo x—1 x+2 =0t Jlpe x—1 x+2
) 1 2 o
= lim [:lnj,x'—lf+—ln|x+2[:]
e—=0T] 23 3 —4
. [1 2 18
+ lim | =In|x—1|+=In|x+2|
e—=0~ _3 2 Joni
1 2 i
+ Im | -Injx—1{+=ln|x+2]
e—(F 1.3 D do
i) " -.6

+ lim | =Injx=1|+ZInjx+2| .
e—=0~ 3 3 Ike
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Now this equals

. 1 2 1 2
m |z -Inf=3—¢|+=-Ine¢ )~ |=-In54=-In2 ] 4 ete.
e—0+ \ 3 3 3 3

The second limit does not exist, so the original integral does not
converge.

5. Wedo (a), (b), (c). (d).

oo _ 6—3.1'
(a) f e~ dx = Jim e ¥ dx = lim { ]
1 ]

N—=+oo N——+oc

[o's} 1 N
(c) f xInxdx = lIim xInxdx 4+ lim xInxdx
0 e—=0% Je N—+oc Jg

= lm [xlnx —x]! + lm [xInx—=x]}
' N—+00

€—T

= _Ihgj(l-lnl—l)—(e-lne—e)]

+ Jhm [(N-InN—-N)—(1Inl-1)]

N—+oo
= lim [-1+€]+ lim [NInN—-N+1]
e—(0+ | — 400
o Nlim [NIn N — NJ. This last limit diverges, so
faae giv. <}
the integral diverges.
 dy N dx
(d) [ s — = lim f 2 == lim [arctanx]’;V
1 14+x Nosx); 14+x¢ N—e+tox

= lm (arctanN —arctanl) =
N—+4oc

] A

T o7
4 4’



